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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- The catalytic activity of multielement solid surfaces relies on their atomic-level structure under working conditions.

- An active learning scheme for identifying stable surface structures of multielement solids under working conditions is
proposed.

- The morphological evolution of Fe7C3 nanoparticles in various chemical environments is accompanied by the drastic
redistribution of exposed surface sites.

- In silico prediction of the surface sites of multielement catalysts in heterogeneous catalysis becomes computationally
achievable.
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Solid surfaces usually reach thermodynamic equilibrium through particle ex-
change with their environment under reactive conditions. A prerequisite for
understanding their functionalities is detailed knowledge of the surface
composition and atomistic geometry under working conditions. Owing to
the large number of possible Miller indices and terminations involved in
multielement solids, extensive sampling of the compositional and confor-
mational space needed for reliable surface energy estimation is beyond
the scope of ab initio calculations. Here, we demonstrate, using the case
of iron carbides in environments with varied carbon chemical potentials,
that the stable surface composition and geometry of multielement solids
under reactive conditions, which involve large compositional and conforma-
tional spaces, can be predicted at ab initio accuracy using an approach that
combines the bond valence model, Gaussian process regression, and ab
initio thermodynamics. Determining the atomistic structure of surfaces un-
der working conditions paves the way toward identifying the true active
sites of multielement catalysts in heterogeneous catalysis.

INTRODUCTION
The surfaces of solids play central roles in many physical and chemical

applications, such as photoelectric devices, anticorrosion coatings, fuel cells,
and heterogeneous catalysis.1–6 In heterogeneous catalysis, in particular, the
properties and performances of surfaces depend on their composition and
atomic-scale structures in working environments, which usually involve finite
temperatures and pressures. Under such conditions, particle exchange may
occur between the surface and the gaseous or liquid environment by chemical
interactions such as oxidation7 or reduction,8 leading to the alteration of sur-
face structures, which can significantly affect how the surfaces function,
such as catalytic activity and selectivity.9,10 The rational design of solids with
effective surfaces is hindered mainly by the ambiguity of the structure of sur-
faces due to the environment.

Determining the atomic-scale structure of multielement solid surfaces under
variable reactive conditions remains a substantial challenge for both experi-
ments and theory. This can be attributed to the complex nature of structural
evolution caused by air and temperature sensitivity.11–14 Experimentally, scan-
ning electron microscopy (SEM) is an effective technique for obtaining three-
dimensional (3D) images of morphological characteristics or elemental compo-
sitions combined with energy-dispersive X-ray data, but this method cannot
reach atomic resolution.15 Transmission electron microscopy (TEM) has a
higher resolution than SEM, but it is limited to 2D imaging and can cause
sample damage due to the high dose of radiation.15,16 Although environmental
SEM and environmental TEM allow the introduction of a gaseous environment,
the resolution degrades due to the collision of incident electrons with gas
molecules.17,18

Theoretically, under conditions of a defined environment at finite temperature
and pressure, the thermodynamic quantity that determines the equilibrium ge-
ometry and composition of a solid surface is the Gibbs free energy. The founda-
tion for calculating the Gibbs free energy of a surface under given conditions by
usingmodern electronic structure theories was laid by Reuter and Scheffler in ab
initio thermodynamics theory.19,20 Despite its success in predicting the thermo-
dynamic properties of preselected surfaces of elementary substances and
compounds,21–24 the determination of all surface terminations of an inorganic

compound under reactive conditions, which are collectively responsible for the
interfacial behaviors of the surface suchas catalysis, requires adequate sampling
from the entire surface compositional and conformational space. This approach
is intractable for solids of high compositional and structural complexity because
of the prohibitively large computational expenses associated with evaluating the
diverse surface structures that are possible in terms of Miller indices, surface
stoichiometry, and surface terminations.Machine learning interatomic potentials
could dramatically reduce the cost of surface structure sampling, but it suffers
from low transferability and generalizability, so models must be generated for
specific tasks.25 Thus, in many theoretical studies of multielement systems, sur-
face properties have been investigated using only several empirically selected
low-index facets and/or bulk-terminated surface structures,26–29 leading to sig-
nificant “material gaps.”30

In this work, we propose a general and transferable approach for the fast pre-
diction of the thermodynamically stable surface structures of complex multiele-
ment solids in different gaseous environments. This is made possible by
combining the bond valencemodel,31 Gaussian process regression (GPR), active
learning, and ab initio thermodynamics. We demonstrate the validity of our
approach comparedwith full-accuracy density functional theory (DFT) in predict-
ing the stable surface structures of iron carbides at given carbon chemical poten-
tials (DmC) imposed by the gas phase surroundings.11,32 Because atomic-scale
surface structures of iron carbides determined from experiments in reactive
gaseous environments are lacking, direct comparisons of the theoretical predic-
tions with experimental data are not possible. However, using o-Fe7C3, an active
phase in Fe-based Fischer–Tropsch synthesis (FTS),33 as a demonstration case,
we obtain the evolution of stable surface structures and surface sites of nanopar-
ticles with changes in DmC, and the predicted shape under various conditions re-
sembles that of the experiments.We anticipate that our approachwill help bridge
the gap between our understanding of the atomistic structure of multielement
solid surfaces ex situ and under reactive conditions in heterogeneous catalysis
and other complicated gaseous environments.

MATERIALS AND METHODS
DFT methods

All of the geometry optimizations and energy calculations presented were performed at

the DFT level using the Vienna ab initio simulation package,34,35 with the Perdew-Burke-

Ernzerhof generalized gradient approximation36 and the projector-augmented wave37,38

method. Surface calculations were performed on symmetric slabs generated by using the

Python Materials Genomics (pymatgen) package.39 More details of the DFT methods can

be found in the supplemental information.

Geometric descriptor of the degree of surface openness
The degree of surface undercoordination (dsuc) is a geometric descriptor that quantifies

the openness of arbitrary surface structures.40 dsuc for a given slab can be expressed as

follows:

dsuc =

Ph�
Vbulk

i � Vslab
i

�.
Vbulk

i

i2
2A

(Equation 1)

where A is the surface area of one side of the slab, Vslab
i is the generalized atomic valence

(GAV) of atom i in the slab, and Vbulk
i is the GAV that atom i should possess in the bulk. The

GAV of an atom i can be calculated as follows:
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Vi =
X Vj

Vj;max
(Equation 2)

where Vj is the AV of the individual first-nearest-neighbor atom j and Vj;max is the maximum

AVof the element corresponding toatom j in the bulk. TheAVcan quantitatively describe the

atomic coordination under the weight of interatomic distance.31 The AV of an atom j is the

sum of the individual bond valences

Vj =
X

exp
�
Rjk � djk

b

�
(Equation 3)

where b is an empirical constant usually equal to 0.37 Å, djk is the geometric distance be-

tween atoms j and k, Rjk is a parameter that is empirically determined by different bond

types, and in this work, Rjk is determined by the sum of the covalent radii of atoms.

Surface structure dataset
Considering computational cost, all of the surface terminations of surface orientations up

to a maximumMiller index (MMI) of 2 and surface orientations with characteristic peaks in

the simulated X-ray diffraction (XRD)were included in the surface structure dataset. The da-

taset sizeswere 265, 420, 345, and312 for q-Fe3C,c-Fe5C2,g-FeP4, andb-FeSi2, respectively.

All of the surface structures in the dataset were used to test the active learning scheme

A B C

Figure 1. Computational challenge of determining the surface properties of complex multielement solids (A) The abundant bulk phases of Fe carbides. (B) For each phase, the
compositional and structural complexity leads to a large surface compositional and conformational space. (C) Only a small number of surface compositions and conformations are
expected to be thermodynamically stable, and they appear on a crystal particle under specific conditions.

A B

C D

Figure 2. Capturing surface structure features
and predicting surface stability using dsuc (A) In
contrast to the conventional coordination number, the
bond valence can quantitatively represent the atomic
coordination as a function of interatomic distance. (B)
The GAV of an atom (red) introduces a weight to each
bonded atom (purple) corresponding to its atomic
valence (labeled on the atom). GAV = ð2 3 8:25 +
2 3 7:86 + 2 3 5:58Þ =8:41 + ð2 3 4:95Þ=5:75 =
6:88. (C) dsuc of different c-Fe5C2 surface structures.
Each bar represents the surface termination with the
smallest dsuc of the corresponding surface orienta-
tion. (D) Comparison of the surface free energies
predicted from GPR with those calculated from DFT
for test sets of q-Fe3C, c-Fe5C2, g-FeP4, and b-FeSi2.
The surfaces (including only stoichiometric termina-
tions) are limited to those withMMIs of 2 or those with
higher Miller indices, which appear as characteristic
peaks in the simulated XRD. Models are trained
separately for different systems.
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proposed in this work. The dataset composed of terminations with stoichiometric ratio of

the bulk was randomly split into training and test sets (6:4) three times to test the ability

to use descriptors combined with different regression models to predict surface free en-

ergies without considering external environments. The training set sizes were 34, 36, 28,

and 45 for q-Fe3C, c-Fe5C2, g-FeP4, and b-FeSi2, respectively.

RESULTS AND DISCUSSION
Surface compositional and conformational space

For multielement solids, their compositional and structural complexity signifi-
cantly increases the range of the surface conformational space, resulting in
many unique surface configurations. For instance, among the abundant Fe car-
bide phases, o-Fe7C3 (the unit cell structure is given in Figure S1) contains 175
symmetrically distinct surface orientations and 5,729 unique surface termina-
tions (which will take approximately 250,000 h to simulate with DFT on a
24-core computing cluster), evenwhen theMMI reaches 5 (Table S1). A gaseous
environment can lead to a change in the composition of surface structures
through chemical interactions, which could greatly increase the compositional
and conformational space. Fortunately, only a small number of surface struc-
tures are expected to be thermodynamically stable under specific conditions
(Figure 1).

Predicting the surface stability of compounds without considering
external environments

The stability of a surface is describedby its surface free energy, which is essen-
tially the excess energy of the surface atoms due to broken chemical bonds. Pre-
viously, we showed that the simple geometric descriptor of surface undercoordi-
nation (dsuc) based on the bond valence model allows accurate prediction of the
surface stability of arbitrary metal surfaces by quantifying the disruption of inter-
molecular bonds.40 Here, we first assess the suitability of using dsuc to capture
the structural features of the native surfaces of multielement solids without
considering the external environment. As shown in the example of c-Fe5C2,
dsuc can be used to effectively quantify the degreeof surface openness; the larger
the value of dsuc, the more open the surface structure (Figure 2C). This is
attributed to its basis in the fundamental bonding theory and the fact that the

A

B

C
Figure 3. Identifying thermodynamically preferential
surface structures at given chemical potentials with
an active learning framework (A) Schematic drawing
of the surface free energies depending on chemical
potential. (B) Schematic drawing of the “surface
structure free energy surface”. (C) Active learning
scheme for identifying thermodynamically preferen-
tial surface structures.

bond valence model can capture more compre-
hensive geometric information. The bond
valence provides the ability to quantitatively
describe atomic interactions under the weight
of interatomic distance (Figure 2A),31 and the
GAV can capture the atomic coordination envi-
ronment with the contribution of the next-near-
est-neighbors (Figure 2B).40

To further verify the ability of the descriptor
to predict the surface stability of multielement
solids, the surface free energies of the stoi-
chiometric terminations of four binary iron
compounds, q-Fe3C, c-Fe5C2, g-FeP4, and
b-FeSi2 (the unit cell structures are given in
Figure S1), and several bimetallic alloys
(FeTM and Fe3TM, TM = Co, Ni, Pd, and Pt)
were predicted by DFT. We took the dsuc of
the given bulk phase and the surface free en-
ergies from DFT as the inputs and target
values, respectively, to train various machine
learning models, with which predictions could
be made. The results show that for bimetallic
alloys, dsuc can predict the surface free en-

ergies well using a simple linear model (Figure S2). However, for q-Fe3C,
c-Fe5C2, g-FeP4, and b-FeSi2, even the GPR and neural network (NN) models
cannot achieve very accurate prediction (Figures 2D and S3�S5; Table S2).
We speculate that this is because these alloys, despite being multielement
solids, maintain the same atomic packing (body-centered or face-centered
cubic) as pure metals. However, for complex multielement solids such as
q-Fe3C and c-Fe5C2, the C atoms are located in the trigonal prismatic sites
of the distorted hexagonally closed-packed structure of Fe atoms.41 This
structural feature leads to the coexistence of multiple inequivalent Fe sites
accompanied by a variety of Fe�C bond lengths and bond angles, so that
there is no longer a simple relationship between the surface stability and
surface undercoordination. For complex multielement solids with a small
training set, GPR is expected to be a more reliable model than the linear
and NN models. However, the prediction results still greatly deviate from
the DFT data. Thus, for systems with limited training sets, models based
on pure geometric analysis can be used to estimate surface free energies
but are not able to predict accurate values; for this purpose, explicit DFT cal-
culations are indispensable.

Active learning and identification of stable surface structures at given
chemical potentials
Note that the above analysis is only for stoichiometric terminations (symmet-

ric and stoichiometric slabs). Under realistic conditions, the surfacemayundergo
preferential nonstoichiometric termination through particle exchange with its
environment to reach thermodynamic equilibrium. Breaking stoichiometry re-
quires including the chemical potential (m) as a reservoir for nonstoichiometric
systems. For FemXn binary compounds in a gas-phase environment with a
chemical potential of mX, the surface stability depends on mX, which connects
the working environment (Figure 3A). Details of the derivations following ab initio
thermodynamics theory can be found in the supplemental information. Here, we
show how the most stable surface structures of a multielement particle can be
determined by traversing the surface compositional and conformational space;
we take advantage of the simple geometric descriptor dsuc and a machine
learning approach.
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We find that the compositional and conformational space in this problem can
be regarded as a “surface structure free energy surface,” which is composed of
the surface orientation, surface termination, chemical potential, and surface free
energy (Figure 3B). Searching this space is somewhat similar to the conventional
global search task on a potential energy surface. The difference is that the sys-
tem size of the former is variable, whereas that of the latter is constant. Inspired
by the GPR-based global optimization framework proposed by Bisbo and
Hammer,42 we propose a new scheme for identifying thermodynamically prefer-
ential surface structures by accelerating the exploration of the surface composi-
tional and conformational space via active learning (Figure 3C); for these
structures, exact DFT calculations of the surface free energies can be carried out.

In this scheme, the surface free energies of a small number of surface struc-
tures with low-index facets are first predicted via DFT. Amachine learningmodel
is then trained based on the existing DFT data. Considering its high performance
in estimating statistical uncertainties and its high adaptability to dynamic sam-
pling and active learning, GPR is chosen as the regression model; it has been
widely applied to solve surface science problems over the years.43–45 The sur-
face free energy dependence of m is affected by both the surface undercoordina-
tion and the composition. Thus, the dsuc of the entire surface and the dsuc andDN
of different types of atoms (dsuc;Fe, dsuc;X,DNFe,DNX) are treated asmodel inputs,
where DN is the number of excess or deficit atoms per unit surface area and re-
flects the degree to which the surface deviates from the bulk stoichiometry. A
larger absolute value of DN is associated with greater deviation. The details of
the GPR model for predicting surface free energy can be found in the supple-
mental information.

It is notwise to blindly performa large number of calculations to generate a set
of data to train the model. Thus, we use the active learning framework to gradu-
ally refine the model by performing selective sampling of candidate structures
and dynamically updating the training set until the convergence criterion is
reached. This surrogate model is used to predict the surface free energies of un-

sampled structures, and then an acquisition function based on surface free en-
ergies is used to determine which of the candidate structures is the most prom-
ising and should be sampled by DFT. Based on Bayesian probability theory,
uncertainty estimations can be obtained and used to increase the advantages
of unsampled but stable structures on the energy landscape. TheWulff construc-
tion can determine the crystal shape under equilibrium conditions,46 and an
atomistic Wulff structure is useful for identifying active sites on a nanoparticle.47

By combining theWulff construction, the likelihood of a surface structure appear-
ing on a crystal particle can also be included. Although the model prediction er-
rors are generally between 0.10 and 0.15 J/m2 (mean absolute error [MAE]), this
poor accuracy does not significantly affect the final energies. This is because the
final energies are determined at the DFT level. More details of the scheme for
identifying thermodynamically stable surface structures are included in the sup-
plemental information.

Performance of the active learning scheme
In this section, we illustrate that the accuracy of the scheme is comparable to

that of brute-force DFT, but the computational cost can be greatly reduced by
rational sampling through our active learning scheme using Bayesian inference
as the structure selection metric. For testing purposes, we restrict our sampling
to all of the surfaces up to an MMI of 2 and orientations that appear as charac-
teristic peaks in the simulated XRD pattern. The results of traversing the surface
compositional and conformational space with DFT calculations are regarded as
the reference, which predicts similar crystal shapes for q-Fe3C and c-Fe5C2 to
those detected from SEM characterizations (Figures S6 and S7)48,49 and a facet
termination of b-FeSi2(100) that is identical with that obtained by experimental
observation (Figure S8).50 We first chose only a single DmC (�7.55 eV) to verify
our approach to c-Fe5C2, one of the active phases of Fe carbide in FTS, under
conditions in which its crystal shape has a complex facet composition. We
used this scheme to identify the stable surface structure with the lowest surface

A

B

Figure 4. Comparison of GPR-guided sampling with brute-force DFT at a specific DmC for c-Fe5C2 (A) Error curves of the surface free energy for identifying the stable structure of
each surface orientation at a DmC of �7.55 eV. The energy errors represent the MAEs of the surface free energies of all of the stable surface structures determined in each iteration
with respect to the corresponding brute-force DFT results. (B) Wulff similarity curves for comparing the surface structures that appear on crystal shapes at aDmC of�7.55 eV, with the
brute-force DFT as the reference. The Wulff similarity represents the cosine similarity of 2 vectors composed of area fractions on the crystal shape determined in each iteration,
derived from pure geometric analysis, GPR-guided sampling, and brute-force DFT, corresponding to the 3 triangle markers. Pure geometric analysis is only used for stoichiometric
terminations. The legend on the right side of each crystal shape shows the top 5 exposed facets.
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free energy for each surface orientation. The error in the surface free energy of
the identified stable surface structures compared with that of brute-force DFT
can reach 0.01 J/m2 (MAE), which suggests that the surface terminations
with the lowest surface free energy for almost all of the surface orientations
have been identified. However, only 25.2% of the structure dataset of c-Fe5C2

needs to be calculated in our scheme (Figure 4A). The GPR model trained with
a limited dataset is also accurate enough (MAE of 0.12 J/m2 for model predic-
tion) to be embedded in the active learning framework to guide DFT sampling
for reconstructed or defect surfaces without noticeable errors (Figure S9).

Furthermore, as a more practical extension, we identify the stable surface
structures that appear on the crystal shape. As shown in Figure 4B, the ratios
of surface exposure obtained by our active learning scheme are in good agree-
ment with those from brute-force DFT, with a high Wulff similarity of 96.2%
(for the definition of the cosine similarity of two Wulff shapes, see the supple-
mental information); however, the computational cost is only 20.9% that of
brute-force DFT. Most of the stable surface structures on the crystal shape are
successfully reproduced; the only exception among the top five exposed facets
is that the metastable termination C1(b) is incorrectly regarded as the most sta-
ble termination of the (110) facet instead of the C3 termination predicted by
brute-force DFT. However, the difference in the surface free energy between
the terminations C1(b) and C3 is only approximately 0.05 J/m2, so the stabilities
of these two terminations are very close. From a statistical point of view, surface
structures that are close in energymay have similar populations according to the
Boltzmann distribution.We also examined the sampling ofmultiple candidates in
each iteration, proving that our scheme allows parallel computing on computing
clusters (Figure S10). As a comparison, the crystal shape from pure geometric
analysis has a low Wulff similarity of only 28.6% to the shape obtained by the
brute-force DFT. The ratios of the surface exposures of crystal shapes from
different approaches are given in Table S3.

When considering a range of DmC, we can use this scheme to obtain the sur-
face phase diagram. The calculated surface free energies of the most stable ter-
minations at different DmC can be used to construct the surface phase diagram
of c-Fe5C2, as shown in Figure 5. The diagram based on GPR-guided sampling is
very close to that based on brute-force DFT but is obtained at only 48% of the

computational cost. The slight deviations for the (10 1), (21 1), and (221) facets
can be attributed to the existence of surface terminationswith very close surface
free energies. In addition, we investigated q-Fe3C, g-FeP4, and b-FeSi2, and high
consistency between the surface phase diagrams of our scheme and those of
brute-force DFT was reached (Figures S11�S13).

Identifying the stable surface structures and atomic sites of an o-Fe7C3

nanoparticle
Limited by the space resolution of existing experimental techniques, it is rarely

possible to observe the atomic-scale surface structures and crystal shapes of
single-phase Fe carbide in gaseous environments via high-resolution electronmi-
croscopy. As far as we are aware, among the Fe carbides, the only phase with a
morphology at various carbon chemical potentials that has been determined
experimentally is Fe7C3. Liu et al.51 reported that o-Fe7C3 is most likely the
Fe7C3 phase that contributes to the experimental XRD pattern under FTS condi-
tions.33 Multiple diffraction peaks attributed to high-index facets in the simulated
XRD data hint at the complexity of the preferentially exposed facets of the
o-Fe7C3 crystal (Figure S14). However, the existing theoretical work on the stable
surface structures of o-Fe7C3 is unsystematic and limited to low-index fac-
ets.26,51 Using the approach proposed in this work, we can extensively explore
a large compositional and conformational spacewith 5,729 candidate structures
with MMIs up to 5 while reducing the computational cost by 2 orders of magni-
tude (Figure 6B). We studied the thermodynamic stability of the surface
structures of this material and the evolution of crystal shapes under different
conditions, which are vital for tuning the surface composition and structure
and synthesizing materials with tailored shapes. The calculated stable termina-
tions and crystal shapes at differentDmC values are shown in Figure 6A. The opti-
mized surface structures of all of the stable terminations are available at https://
github.com/spdkit/ML-Assisted_Surface_Structure_Prediction.
In the studied range ofDmC (�7.75 to�5.75 eV), the stable surface structures

of o-Fe7C3 are mainly carbon-rich terminations. At low DmC (�7.75 eV), the facet
composition of the crystal shape is more complex and has no obvious predom-
inant facets. This can be attributed to the narrow distribution of the surface free
energy (0.20 J/m2 across the top 5 exposed surface structures). Despite the

A B

Figure 5. Comparison of GPR-guided sampling with brute-force DFT at variousDmC values forc-Fe5C2 (A and B) Surface free energies of the stable terminations as a function ofDmC
from (A) GPR-guided sampling and (B) brute-force DFT. For clarity, surface terminations with chemical potential ranges less than 0.05 eV are not shown. The surfaces (including all
possible terminations) are limited to those with MMIs of 2 or those with higher Miller indices, which appear as characteristic peaks in the simulated XRD.

ARTICLE

ll The Innovation 5(2): 100571, March 4, 2024 5

https://github.com/spdkit/ML-Assisted_Surface_Structure_Prediction
https://github.com/spdkit/ML-Assisted_Surface_Structure_Prediction


difficulties in discriminating all of the exposed surfaces in the in operando condi-
tions, the ellipsoidal shape and (101) facet have been clearly detected at similar
DmC values by high-resolution TEM (HRTEM) characterization (Figure 6C) in pre-
viously published experimental work.33 Four of the five facets with the largest
contributions are high-index facets, namely, (131), (124), (103), and (115), and
they cover 41.6% of the total surface area, emphasizing the significance of inves-
tigating high-index facets. When DmC increases to�6.75 eV, the surface free en-
ergy of the facets is broadened, resulting in a decrease in the number of exposed
facets, with the (101) facet having the largest proportion. At higherDmC, our theo-
retical prediction shows a polyhedral shape with sharp edges and the (011) facet
being predominant. Similar shape features and the (011) facet have also been
detected by HRTEM characterization in earlier reported experimental work for
a higher chemical potential (Figure 6D).52

An extremely fascinating transformation of the nanoparticle structure with
changingDmC is the change in surface atomcoordination.Metal siteswith varied
coordinations are known to exhibit quite different coordination chemistries in re-
gard to reacting gas molecules. Therefore, the catalytic performance and other
interfacial properties of a solid nanoparticle are mainly determined by the distri-
bution of the metal coordination sites.53,54 In FTS, for example, previous
studies55,56 have reported that active sites with low coordination numbers,
such as vacancy sites, are likely responsible for the large decrease in the CO
dissociation barrier. However, surface Fe sites with high Fe�C coordination
numbers can favor CH4 formation.55,57 In this case, with themorphology and sur-
face structures of all the exposed facets determinable at ab initio accuracy, our
approachmakes it possible to track the changes in the atomic-site distribution of
an entire nanoparticle with variable external environments.

As a demonstration, we constructed a realistic Fe7C3 nanoparticlewith a diam-
eter of 13 nmat high and lowDmC (Figures 7A and 7C), whichwas experimentally
synthesized33,52,58,59 and used in FTS with the carbon chemical potential tuned
by the H2/CO ratio in syngas. This approach is important whenmatching theory
with experiments in which functional materials or catalysts usually exist in the
form of nanoparticles, and the evolution of their precise atomistic structures
with the external environment may be unclear. We used the GAV to reflect the
coordination of the surface atoms and the structural features of the surface

sites (Figure 7B) and performed t-distributed stochastic neighbor embedding
(t-SNE)60 visualization for 18,753 Fe sites on the surface of the nanoparticles
at different DmC (Figures 7D and 7E). The sites are color-coded by their GAVs.
The site fingerprint consists of a series of bond valence values between the cen-
tral site and 12 nearest-neighbor Fe atoms and 6 nearest-neighbor carbon
atoms. The proximity in this reduced space indicates a similarity in the structural
features of the surface sites. More details of the t-SNE visualization can be found
in the supplemental information.
As shown in Figure 7D, the types of Fe sites on the surface of the nanopar-

ticles are diverse in terms of the GAV, and their distribution changes signifi-
cantly with DmC. Edge and corner sites generally have low GAVs and are group-
ed into their own clusters. However, we find that some sites belonging to
crystal facets (e.g., high-index (131) and (124) facets) also have low coordina-
tion and are grouped into clusters containing edge and corner sites, which in-
dicates that these sites may play similar roles as edge and corner sites in FTS
processes. Overall, from low DmC to high DmC, more C atoms from gaseous en-
vironments are deposited on the surfaces of the nanoparticles. Taking the
(011) facet as an example, with increasing DmC, the types of sites on the facet
can be grouped into different clusters with GAVs centered at 5.6, 6.6, and 7.2 at
a DmC of �7.75 eV and centered at 6.1, 7.1, and 8.9 when DmC increases to
�5.75 eV (Figures 7D and 7E). The separation of these clusters in the latent
space indicates a drastic change in the distribution of bond valence (and
thus coordination) between the Fe sites and their neighbors due to the change
in surface terminations from stoichiometric to carbon rich. Moreover, with
increasing DmC, the exposed area of high-index facets and the number of edges
and corners decrease due to the reduction in the number of exposed facets
(Figure 6A). These findings explain why the coordination of Fe sites on the sur-
face increases as DmC increases, as shown in Figure 7B, which suggests that
o-Fe7C3 nanoparticles at high DmC may have higher intrinsic activity in cata-
lyzing CH4 formation in FTS.

CONCLUSION
We propose a new active learning scheme for identifying the surface struc-

tures of multielement solids under realistic conditions based on the bond

A

B C D

Figure 6. Evolution of stable terminations and crystal shapes of o-Fe7C3 under different conditions (A) Calculated stable terminations and crystal shapes at different DmC. The
surfaces (including all possible terminations) are limited to an MMI of 5. The legend on the right side of each crystal shape shows the top 5 exposed facets. (B) Number of sampled
structures for identifying the stable surface structures that appear on the crystal shape at a single DmC in o-Fe7C3 surface compositional and conformational spaces of different sizes
using GPR-guided sampling. (C) and (D) Experimental HRTEM images reported in the literature. (C) Reproduced with permission from reference 33. Copyright 2018, American
Chemical Society. (D) Reproduced with permission from reference 52. Copyright 2018, Elsevier.
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valence model, GPR, and ab initio thermodynamics. This scheme is able to effi-
ciently and accurately identify the most thermodynamically stable structures
that appear in the crystal shapes of multielement solids in different gaseous
environments, which has been a major obstacle in understanding their struc-
ture‒performance relationships under working conditions. Using this approach,
we demonstrate via o-Fe7C3 that the evolution of the crystal shapes of multi-
component solids in various chemical environments is accompanied by a
drastic redistribution of exposed surface sites, which may profoundly influence
their catalytic performance. This approach can be extended to systems with
more constituent elements. The deciphered atomistic structure of surfaces
in actual environments paves the way toward identifying the true active
sites of multielement solid catalysts in heterogeneous catalysis and under-
standing the actual surface structures of materials in contact with gaseous
environments.
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