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Abstract

Protein prenylation by farnesyltransferase (FTase) is often described as the targeting of a

cysteine-containing motif (CaaX) that is enriched for aliphatic amino acids at the a1 and a2

positions, while quite flexible at the X position. Prenylation prediction methods often rely on

these features despite emerging evidence that FTase has broader target specificity than

previously considered. Using a machine learning approach and training sets based on

canonical (prenylated, proteolyzed, and carboxymethylated) and recently identified shunted

motifs (prenylation only), this study aims to improve prenylation predictions with the goal of

determining the full scope of prenylation potential among the 8000 possible Cxxx sequence

combinations. Further, this study aims to subdivide the prenylated sequences as either

shunted (i.e., uncleaved) or cleaved (i.e., canonical). Predictions were determined for Sac-

charomyces cerevisiae FTase and compared to results derived using currently available

prenylation prediction methods. In silico predictions were further evaluated using in vivo

methods coupled to two yeast reporters, the yeast mating pheromone a-factor and Hsp40

Ydj1p, that represent proteins with canonical and shunted CaaX motifs, respectively. Our

machine learning-based approach expands the repertoire of predicted FTase targets and

provides a framework for functional classification.

Introduction

CaaX-type protein prenylation refers to the covalent linkage of a farnesyl or geranylgeranyl

isoprenoid group (C15 and C20, respectively) to proteins containing a COOH-terminal CaaX

motif, where C is an invariant cysteine, a1 and a2 are typically aliphatic residues, and X is one

of many amino acids [1]. Farnesyltransferase (FTase) and geranylgeranyltransferase-I

(GGTase-I) facilitate the isoprenoid addition to the CaaX cysteine thiol, with GGTase-I target-

ing the subset of CaaX sequences having Leu, Phe or Met at the X position [2–4]. For many

CaaX proteins, initial isoprenylation is followed by proteolysis that removes the aaX tripeptide,

mediated by Rce1p or Ste24p, and carboxymethylation of the isoprenylated cysteine, mediated

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0270128 June 24, 2022 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Berger BM, Yeung W, Goyal A, Zhou Z,

Hildebrandt ER, Kannan N, et al. (2022) Functional

classification and validation of yeast prenylation

motifs using machine learning and genetic

reporters. PLoS ONE 17(6): e0270128. https://doi.

org/10.1371/journal.pone.0270128

Editor: Patrick Lajoie, Western University, CANADA

Received: October 20, 2021

Accepted: June 5, 2022

Published: June 24, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0270128

Copyright: © 2022 Berger et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting information

files.

Funding: This work was supported by NIH funds to

WKS and NK (NIH NIGMS GM132606, https://

https://orcid.org/0000-0002-6346-7690
https://orcid.org/0000-0003-4471-6759
https://orcid.org/0000-0002-3359-3434
https://doi.org/10.1371/journal.pone.0270128
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270128&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270128&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270128&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270128&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270128&domain=pdf&date_stamp=2022-06-24
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0270128&domain=pdf&date_stamp=2022-06-24
https://doi.org/10.1371/journal.pone.0270128
https://doi.org/10.1371/journal.pone.0270128
https://doi.org/10.1371/journal.pone.0270128
http://creativecommons.org/licenses/by/4.0/
https://www.nih.gov/


by isoprenylcysteine carboxyl methyltransferase (ICMT; Ste14p in yeast) [5]. These modifica-

tions increase the overall COOH-terminal hydrophobicity of modified proteins and often

occur to CaaX proteins well-known to be membrane associated (e.g., Ras GTPases) (Fig 1A).

Despite FTase arguably being the most well characterized enzyme in the CaaX modification

pathway, its specificity still remains unclear. Early primary sequence comparisons of known

FTase targets often outlined the standard, aliphatic-enriched consensus motif termed CaaX.

One of the first methods to predict FTase substrates was developed into the Prenylation Pre-

diction Suite (PrePS) [6]. This method evaluated the last 15 amino acids of known prenylated

targets, including many Ras and Ras-related GTPases and a few non-canonical sequences for

which evidence of prenylation was previously established, to determine a consensus of physio-

biochemical properties important for prenylation, which was then used to predict prenylation.

Fig 1. Biochemical and machine learning workflow diagrams. A) Modifications occurring to CAAX proteins.

Isoprenylation involves attachment of a farnesyl (C15) or geranylgeranyl (C20) lipid to the consensus cysteine amino

acid (C) of a COOH-terminal CaaX motif. Shunted CaaX proteins are not further modified. Canonical CaaX proteins

undergo proteolytic cleavage to remove the ‘aaX’ portion of the motif and carboxylmethylation of the isoprenylated

cysteine. Examples shown are yeast proteins, but examples exist in other systems. a–aliphatic amino acid; X–one of

several amino acids. B) Positive and negative training sets for prenylation and cleavage predictions were curated from

published data, used to generate features, then used to train four machine learning algorithms. The trained models

were subject to 10-fold cross validation to determine accuracy, precision, recall, and F1-score. The best models, along

with a PSSM-based model, were then used to predict prenylation and cleavage outcomes for naïve test sequences that

were compared against the experimental observed properties of these sequences.

https://doi.org/10.1371/journal.pone.0270128.g001

PLOS ONE Prediction of prenylation motifs

PLOS ONE | https://doi.org/10.1371/journal.pone.0270128 June 24, 2022 2 / 21

www.nih.gov/) and funds to WKS (NIH NIGMS

R01GM117148, https://www.nih.gov/). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

no competing interests exist.

Abbreviations: FPB, FlexPepBind; FTase,

farnesyltransferase; GBDT, Gradient Boosting

Decision Tree; GGTase-I,

geranylgeranyltransferase-I; PrePS, Prenylation

Prediction Suite; SGD, Saccharomyces Genome

Database; SVM, support vector machine.

https://doi.org/10.1371/journal.pone.0270128.g001
https://doi.org/10.1371/journal.pone.0270128
https://www.nih.gov/
https://www.nih.gov/


PrePS was then applied to create a database of all prenylation predictions across all known pro-

teins, regardless of species [7]. The prenylation potential of nearly all 8000 possible CaaX

sequences has also been investigated using genetics and high throughput NextGen Sequencing

(NGS) in the context of a mutated form of H-Ras (Ras61) that was heterologously expressed

in yeast [8]. The identified target sequences were consistent with the initially described consen-

sus CaaX motif. Parallel in vitro and in silico studies have suggested, however, that FTase may

be able to accommodate substantially broader substrates than initially proposed [9–13]. A

broader consensus for human FTase was also proposed using FlexPepBind (FPB), an approach

involving structure-based molecular docking and energy minimization constraints [12]. This

approach identified several sequences that were not initially expected to be prenylated but sub-

sequently biochemically validated as FTase targets. Despite these new experimental observa-

tions and advancements in prenylation prediction methods, many prenylated sequences still

fail to be accurately predicted as FTase substrates. Past approaches involving in vitro peptide

libraries and metabolic labeling with farnesyl analogs suitable for click-chemistry have been

able to identify additional non-canonical sequences as FTase targets, however, peptide libraries

are often costly and can be labor intensive and metabolic labeling is limited to cell specific

sequences [9, 10, 14–17]. Thus, limitations still prevent exploration of the full scope of prenyla-

tion for all 8000 Cxxx sequences.

While the specificity of FTase is emerging to be more flexible than anticipated, the CaaX

proteases that mediate subsequent cleavage of the aaX tripeptide appear more stringent,

requiring aliphatic residues at a1 and/or a2 positions [18]. This observation identifies an inher-

ent bias in many FTase assays due to the use of canonical reporters such as Ras and a-factor

where the specificity of the downstream proteases may limit the prenylatable sequences that

can be identified. To overcome this bias, we recently developed S. cerevisiaeHsp40 Ydj1p into

a novel in vivo reporter for yeast FTase activity [19]. Unlike canonical reporters previously

used in vivo, the non-canonical CaaX sequence of Ydj1p (CASQ) is farnesylated, then

“shunted” out of the canonical CaaX pathway without being further proteolyzed and carboxy-

methylated. Previous studies have shown that yeast require Ydj1p prenylation for proper inter-

actions with Hsp90 and growth at high temperatures, as evident by a growth defect at higher

temperatures when canonical modification occurs (i.e., prenylation, proteolysis and carboxy-

methylation), and a further reduction in growth with lack of prenylation [19–21]. This growth

phenotype was used to identify 153 sequences that supported Ydj1p prenylation-dependent

yeast growth at high temperatures [22]. The recovered sequences were vastly different than

standard canonical CaaX sequences, lacking characteristic aliphatic amino acids but consistent

with specificities observed through in vitro and in silico studies. For clarity, all 8000 sequences

are referred to as Cxxx sequences in this study, while predicted prenylated sequences are

referred to as CaaX motifs with qualifiers added to specify those that are canonically modified

(i.e., cleaved) or shunted (i.e., uncleaved).

In this study, we used machine learning and yeast genetic data derived from both Ras61

and Ydj1p in vivo reporters to develop methods for predicting the prenylation potential of all

8000 Cxxx sequences within the yeast system. Predictions were then compared to those

derived using PrePS, FPB, and Freq. The latter is a frequency-based, in-house method devel-

oped in our previous study of Cxxx sequences that support Ydj1p-dependent thermotolerance.

Our findings suggest that the use of machine learning with data derived from both canonical

and non-canonical reporters results in improved prediction of yeast FTase targets. This

approach was also used to develop a first-ever prediction for CaaX proteolysis, leading to effec-

tive predictions for establishing whether a prenylated sequence follows the canonical or

shunted pathway (i.e., cleaved vs. uncleaved).
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Materials and methods

Training set curation

Prenylation. Training sets can be found in S1 File and were derived from previously pub-

lished datasets. The positive set initially included 369 sequences identified through a Ras61

prenylation screen (enrichment score >3 at 37˚C;�5 occurrences) and 153 sequences identi-

fied through a Ydj1p prenylation screen [8, 22]. The positive training set was curated to form a

reduced set of 489 unique sequences by removing duplicate sequences that overlapped

between the sets (n = 8), sequences found naturally in the Saccharomyces cerevisiae proteome

(n = 21), and sequences that had previously been incorporated into reporters (n = 4). The neg-

ative set initially consisted of 514 sequences that were lowest scoring in the Ras61 prenylation

screen (enrichment score�0.036 at 37˚C;�5 occurrences at 25˚C). The negative set was

curated to form a reduced set of 508 unique sequences by removing 6 sequences found natu-

rally in the Saccharomyces cerevisiae proteome.

Cleavage. Training sets can be found in S1 File and were derived from previously pub-

lished datasets [8, 22]. The positive set initially included 153 top scoring Ras61 sequences

(enrichment score >3 at 37˚C;�5 occurrences). From this, the positive training set was

reduced to a unique set of 140 by removing duplicate sequences that overlapped with the

Ydj1p set (n = 2), sequences found naturally in the Saccharomyces cerevisiae proteome (n = 8),

and sequences that had previously been incorporated into reporters (n = 3). The negative set

initially included 153 sequences recovered in theYdj1p screen. The negative set was reduced to

136 sequences by removing sequences that were genetically confirmed to be canonically modi-

fied (n = 15), sequences found naturally in the Saccharomyces cerevisiae proteome (n = 1), and

sequences that had previously been incorporated into reporters (n = 1).

Feature generation & pre-processing

Feature generation. In order to generate features for machine learning, we explored three

different ways of representing Cxxx sequences: 1) the specific amino acid sequence represented

by one-hot encoding, 2) the physico-biochemical features retrieved from the AAindex data-

base (ftp://ftp.genome.jp/pub/db/community/aaindex/; downloaded 1/17/2021) [23], and 3)

sequence embedding generated by ESM-1b (https://github.com/facebookresearch/esm; down-

loaded 2/9/2021), a state-of-the-art Transformer model that was pre-trained on roughly 250M

protein sequences [24]. Sequence features were represented by an array of size 60, which

accounts for one-hot encoding of 20 amino acid residues at the 3 variable “x” positions of the

Cxxx sequence. AAindex features were represented by an array of size 1659, which accounts

for all 553 physico-biochemical features defined by the database for each of the 3 positions.

These features were normalized to a range of 0 to 1 in order to equalize their scales. ESM-1b

features were generated by taking advantage of the model’s ability to account for contextual

information, capturing the potential effects of neighboring residues. We represented the

COOH-terminal localization of the Cxxx sequence by front-padding with 100 unspecified “x”

residues. In addition, the model added two special characters to represent the beginning and

end of the amino acid sequence. This sequence was used to generate an embedding of size

(1280, 106), which represents a 1280-dimensional abstract description of 104 residue positions

plus two special symbols. ESM-1b features were extracted from this embedding by retrieving

the positions corresponding with the Cxxx sequence and end-of-sequence character, which

resulted in an array of size (1280, 5), flattened to size 6400. We retained the positional encod-

ing corresponding to the invariant cysteine due to the model’s unique ability to capture con-

textual information.
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Dimensionality reduction. Redundant features were removed through principal component

analysis, a standard dimensionality reduction technique [25]. This resulted in the reduction of

sequence features from 60 to 53 dimensions, AAindex features from 1659 to 50 dimensions,

and ESM-1b features from 6400 to 276 dimensions. These reduced features captured 99% of

total variance in each feature set.

Prediction of Cxxx prenylation & cleavage

Scoring. We quantified the performance of all prediction models based on accuracy, pre-

cision, recall, and F1-score. Reported values indicate the mean across 10-fold cross validation

while confidence intervals indicate the standard deviation.

Position-specific scoring matrix (PSSM). We constructed a PSSM based on prenylated

or cleaved motifs. The amino acid distribution was normalized against a background amino

acid distribution defined by the BLOSUM62 substitution matrix [26] with a pseudo-count of

0.05. The resulting model was used to calculate the log probability of a given sequence being

prenylated or cleaved. In order to obtain binary predictions, we defined a cutoff log probability

that best separated the positive from the negative examples.

Machine learning algorithms. We tested the performance of various machine learning

algorithms as implemented by Scikit-learn [27]. The parameters of individual predictors were

optimized by grid search. Specific algorithms tested were support vector machine (SVM), Naïve

Bayes, k-nearest neighbor (kNN), and Gradient Boosted Decision Tree (GBDT). In subsequent

analyses, we estimated the probabilities of each prediction for SVM through Platt scaling [28].

Software. All computational analyses, unless otherwise mentioned, were implemented in

Python 3 using NumPy [29] and PyTorch [30]. Figure plots were created using Matplotlib

[31], seaborn [32], WebLogo3 [33], and Adobe Illustrator. For WebLogo3, a custom color

scheme was used where cysteine (C) was blue, polar charged amino acids (H, K, R, E, D) were

green, polar uncharged amino acids (N, Q, S, T, Y) were black, branched-chain amino acids

(L, I, V) were red, and all other amino acids (F, A, P, G, M, W) were purple. This scheme

matches that used in a previously published study of FTase specificity by our group [22].

Cut-offs used for predictions by prenylation methods. For analysis with the Prenylation

Prediction Suite (PrePS; https://mendel.imp.ac.at/PrePS), all 8000 Cxxx sequences were evalu-

ated in the context of human H-Ras (RQHKLRKLNPPDESGPGCMSCKCxxx). While PrePS

only requires 15 amino acids for scoring, 26 were used to remain consistent with previous

studies [19, 22]. For PrePS, sequences scoring greater than -2 were deemed positive predic-

tions. For FlexPepBind, sequences scoring greater than -1.1 were deemed positive predictions,

consistent with the stringent threshold defined by the original study [12]. For Freq, prenylation

sequences scoring greater than -1 were deemed positive predictions, while sequences scoring

greater than 0 were deemed positive predictions for cleavage [22].

Experimental validation

Yeast strains. Strains used in this study are listed in S3 Table and are available upon

request. Lithium acetate-based transformation methods were used to introduce plasmids into

yeast strains [22, 34]. All strains were propagated at 25˚C unless otherwise stated, in YPD or

appropriate selection media. For yWS2393, deletion of STE24 was carried out in strain yWS44

(mfa1Δmfa2Δ) using: a DNA fragment from pWS405 (CEN URA3 ste24::KanMX4) that was

transformed into yWS44 [35]. G418 resistant colonies were checked by PCR for integration of

ste24::KANMX4 at the STE24 locus. For yWS2462, deletion of RCE1 was carried out in strain

yWS44 using a rce1::KAN fragment recovered by PCR from the haploid yeast gene deletion

collection [36], and integration at the RCE1 locus was confirmed by PCR.
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Plasmids. Plasmids used in this study are listed in S4 Table and are available upon request.

All plasmids newly created for this study were constructed using methods previously reported

[19, 22, 37]. Briefly, new plasmids encoding Ydj1p or a-factor reporters were constructed

using PCR-directed recombination. Mutagenic oligonucleotides (S5 Table) encoding desired

Cxxx sequences were co-transformed with linearized or gapped parent plasmids, transforma-

tion mixes plated onto appropriate selection media, and plasmids recovered from surviving

colonies. Plasmids were sequenced through the entire open reading frame of the reporter

using an appropriate DNA sequencing primer and a sequencing service (Genewiz, Southfield

NJ; Eurofins Genomics, Louisville, Kentucky). pWS130 (2μ URA3 PPGK-HsRce1Δ22) was con-

structed by subcloning a PCR-derived fragment from a baculovirus expression vector encod-

ingHsRce1Δ22 (courtesy of P. Casey, Duke University). The PCR fragment was designed to

contain 5´ BamHI and 3´ PstI sites that were used for subcloning, where the latter was blunted

with T4 Polymerase prior to cloning into the BamHI and SacII sites of pWS28 (2μ URA3

PPGK) [38]. pWS1609 was created from pWS1275 (2μ URA3 PPGK-HA-HsSTE24) by PCR-

directed, plasmid-based recombination to eliminate the HA-tag, followed by subcloning PPGK-

HsSTE24 into pRS316 (CEN URA3) [37, 39].

Ydj1p gel shift assay. The prenylation status of Ydj1p was examined as described previ-

ously. Briefly, yeast strains expressing Ydj1p were cultured to A600 0.9–1.1 at 30˚C in synthetic

complete media lacking uracil (SC-U). Cell pellets of the same mass were collected by centrifu-

gation, washed with water, and cell extracts prepared by alkaline hydrolysis followed by TCA

precipitation [40]. Cell extracts were resuspended in Sample Buffer (250 mM Tris, 6 M Urea,

5% β-mercaptoethanol, 4% SDS, 0.01% bromophenol blue, pH 8) and analyzed by SDS-PAGE

and immunoblotting with rabbit anti-Ydj1p antibody (courtesy of Dr. Avrom Caplan) and

HRP conjugate antibody in TBST (10 mM Tris, 150 mM NaCl, 0.1% Tween-20; pH 7.5) with

1% milk/TBST. Blots were developed with WesternBright ECL Spray (Advansta Inc, San Jose,

California), and images captured using X-ray film or a digital imager (Kwikquant, Kindle Bio-

sciences, Greenwich, Connecticut). Prenylation was evaluated by quantifying Ydj1p band

intensities using NIH ImageJ and calculating ratios for both prenylated and non-prenylated

species or an equivalent gel position when a band was not apparent.

Yeast mating assay. Mating assays were performed as previously described [22]. Briefly,

MATa andMATα strains were cultured to saturation at 30˚C in synthetic complete media

lacking leucine (SC-L) and YPD, respectively, then normalized to an A600 value of 1 by dilution

with appropriate sterile media.MATa cultures were mixed individually 1:10 with theMATα
cultures, each mixture was serially diluted 10-fold using the normalizedMATα culture as the

diluent, and serial dilutions were pinned onto minimal (SD) and synthetic complete media

lacking lysine plates (SC-K). Plates were incubated for 72 hours and imaged against a black

background using a flat-bed scanner. Images were adjusted using Photoshop to optimize the

dynamic range of signal by adjusting input levels to a fixed range of 25–150.

Results

Prenylated and cleaved Cxxx sequences can be distinguished based on

primary amino acid sequence feature

To evaluate whether the information encoded in primary sequences can be used to distinguish

prenylated and cleaved sequences, we first curated a training dataset from two previously pub-

lished genetic screens that used Ras61 and Ydj1p as reporters (Fig 1B) [8, 22]. As prenylation

is necessary for the optimal function of both Ras61 and Ydj1p reporter activities, we curated

489 prenylated sequences by combining the top performing sequences from both screens.

Another 508 low performing sequences from the Ras61 study served as the non-prenylated set;
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the Ydj1p-based study did not yield information for low-performing sequences. Notably, pre-

nylation and proteolysis have historically been considered coupled events, and as such, previ-

ous methodologies do not report on proteolysis. However, the Ydj1p reporter is uniquely able

to differentiate between shunted (i.e., only prenylated) and cleaved sequences (i.e., canonically

modified; prenylated, cleaved and carboxymethylated). Thus, we curated 136 sequences from

the Ydj1p screen and 140 sequences from the Ras61 screen to serve as shunted and cleaved

sets, respectively [22].

We next evaluated the contribution of three sequence representation methods: one hot

encoding of primary sequence (sequence-only), AAindex, and ESM-1b. These methods cap-

ture different aspects of Cxxx sequences (see Materials & methods for additional details) in

classifying prenylated and non-prenylated sequences. Two-dimensional projections of each set

of features revealed that sequence-only and AAindex features readily distinguish prenylated

and non-prenylated sequences, while ESM-1b exhibited poor separation (Fig 2A). As AAindex

appeared to best separate the prenylated and non-prenylated sequences, we used Weblogo to

analyze the sequences clustered with the right and left sides of the projection (Fig 2B). The

right-side cluster was mostly composed of prenylated sequences that closely resembled the

canonical definition of CaaX, with a clear enrichment of aliphatic amino acids at the a2 posi-

tion, and to some extent the a1 position. By comparison, the left-side cluster was a mixed popu-

lation of prenylated and non-prenylated sequences lacking these canonical aliphatic residues.

Although ESM-1b encodes more information (276 dimensions to capture 99% variance in

data compared to 50 dimensions for sequence and AAindex (see Materials & methods), the

poor separation observed with ESM-1b is likely a consequence of the additional contextual

information which could not be sufficiently compressed into two-dimensional space. All three

sequence representation methods, meanwhile, are suitable for separating cleaved and

uncleaved sequences (Fig 2C).

SVM-ESM-1b outperforms several machine learning-based models for

prenylation and cleavage predictions

A position-specific scoring matrix model (PSSM) is a common bioinformatics method

employed for motif detection [41]. A variation of this method is used by the PrePS model [6].

We thus constructed a PSSM model based on the Cxxx sequences from our curated datasets to

establish a baseline for comparisons of other prenylation and cleavage prediction models. The

PSSM model applied to a curated dataset of both canonical and non-canonical sequences

achieved 83.8 ± 3.3% accuracy for prenylation predictions, and a second PSSM model to pre-

dict cleavage achieved 93.8 ± 4.6% accuracy, based on 10-fold cross validation (Table 1). We

next evaluated whether the baseline PSSM classification accuracy could be improved through

different representations of Cxxx sequences using machine learning (see Materials & methods

for details on methods used).

For prenylation, most of the 12 machine learning methods evaluated scored above 80% in

all categories, with the variation in output from different machine learning algorithms being

attributed to the different inductive biases used by each algorithm to make predictions about

unseen data [42]. We selected the best model based on F1-score, defined as the harmonic

mean of precision and recall. Based on this criterion, support vector machine (SVM) paired

with ESM-1b features was the best overall performer. We next evaluated how well each model

predicted prenylation of a validation set of 31 Cxxx sequences that were not part of training

sets (S1 Table). Within this validation set, there was a subset of sequences found naturally

within the yeast proteome, including 6 pairs (12 sequences) where the Cxxx motif differs by

only one amino acid, and yet this change of one residue resulted in opposite prenylation
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predictions across varying prediction methods. For example, CIIS (found on Ras2) is predicted

to be prenylated while CIKS (Hmg1) is predicted to be non-prenylated. Seven additional, natu-

rally occurring sequences were evaluated for various reasons–they were non-canonical and/or

had varying prenylation or cleavage predictions across the different prediction methods (e.g.,

PrePS, Freq, etc.). In sum, 19 sequences from the yeast proteome were used for validation pur-

poses. The remaining 12 sequences were chosen due to differing predictions by SVM-ESM-1b,

PrePS, and the frequency-based scoring system (Freq). The 31 sequences representing the vali-

dation set were incorporated onto Ydj1p and prenylation evaluated by a gel shift assay (Fig 3A

and 3B), with the exception of one sequence (CQSQ) that had been previously evaluated [22].

The effect of prenylation on protein migration by SDS-PAGE is not fully understood, but in

the case of Ydj1p, it has long been established that prenylation causes a downward shift (i.e.,

faster migration) under carefully optimized gel conditions [20]. Cleavage does not impact

Ydj1p mobility but does seem to impact the mobility of other proteins such as Ras [19, 22, 43].

Relative to PSSM, most machine learning methods improved at predicting actual prenylation

(Table 1; Validation score). SVM was repeatedly the best overall performer when paired with

ESM-1b features. Considering the results of performance testing with training and naïve test

sets, SVM paired with ESM-1b features was chosen as the preferred machine learning method

for additional prenylation prediction studies.

Fig 2. Separation of sequences by machine learning-based methods. A) Data points from all three features sets:

sequence only, AAindex and ESM-1b, are represented as a two-dimensional projection of prenylated (red x) and non-

prenylated sequences (black dot). The axes are not shown as they represent a linear combination of all features that

maximizes variance. B) Bimodal distribution of sequences across the X-axis from the AAindex manifold were graphed

as sequence logos. The distribution shown on the left contains a mix of non-prenylated Cxxx sequences and

prenylated, non-canonical sequences, while the one on the right mostly consists of prenylated, canonical CaaX

sequences. C) A similar two-dimensional projection was used to represent cleaved (red x) and shunted (i.e., uncleaved)

sequences (black dot).

https://doi.org/10.1371/journal.pone.0270128.g002
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We also explored sequence cleavage using similar methods (Table 2; S2 Table). All models

performed comparably well based on 10-fold cross validation, with most scoring above 90% in

all categories. As observed for prenylation prediction, many of the models surpassed the PSSM

model for accuracy and recall, and only 1 bettered PSSM for precision (Table 2). Overall, SVM

Table 1. Performance of various models for prenylation prediction.

Modela Featuresb Accuracyc Precision Recall F1 Validationd

PSSM sequence 83.8 ± 3.3 87.7 ± 3.5 77.9 ± 5.9 82.4 ± 3.8 68.4 (13/19)

SVM sequence 86.0 ± 2.7 86.5 ± 4.0 84.9 ± 3.8 85.6 ± 2.8 84.2 (16/19)

SVM AAindex 85.1 ± 3.5 86.6 ± 4.1 82.4 ± 3.6 84.4 ± 3.6 73.7 (14/19)

SVM ESM-1b 86.4 ± 3.0 86.6 ± 3.3 85.5 ± 4.1 86.0 ± 3.1 84.2 (16/19)

GBDT sequence 86.2 ± 2.4 87.9 ± 3.5 83.4 ± 3.5 85.5 ± 2.6 68.4 (13/19)

GBDT AAindex 86.2 ± 2.8 87.2 ± 3.5 84.3 ± 4.3 85.6 ± 3.0 73.7 (14/19)

GBDT ESM-1b 85.0 ± 2.9 85.8 ± 3.8 83.2 ± 3.6 84.4 ± 3.0 78.9 (15/19)

Näive Bayes sequence 82.9 ± 1.8 85.5 ± 3.1 78.7 ± 3.3 81.9 ± 1.9 63.2 (12/19)

Näive Bayes AAindex 82.1 ± 3.0 82.2 ± 4.0 81.4 ± 3.6 81.7 ± 3.0 73.7 (14/19)

Näive Bayes ESM-1b 73.2 ± 2.3 70.4 ± 1.9 78.3 ± 3.9 74.1 ± 2.5 57.9 (11/19)

kNN sequence 84.1 ± 3.7 82.7 ± 4.3 85.5 ± 4.3 84.0 ± 3.7 78.9 (15/19)

kNN AAindex 82.7 ± 2.3 83.5 ± 3.1 81.0 ± 3.0 82.2 ± 2.3 78.9 (15/19)

kNN ESM-1b 83.0 ± 2.3 82.4 ± 3.5 83.4 ± 2.4 82.9 ± 2.1 78.9(15/19)

aPSSM–Position-specific Scoring Matrix; SVM–support vector machine; GBDT–GradientBoost Decision Tree; kNN–k-Nearest Neighbors.
bFeatures for predicting sequence prenylation were based on one-hot encoding (sequence), physico-biochemical properties of amino acids (AAindex), and the ESM-1b

Transformer model (ESM-1b).
cReported percentages indicate the mean across 10-fold cross validation, while confidence intervals indicate the standard deviation.
dReported percentages based off validation set tested in vivo

https://doi.org/10.1371/journal.pone.0270128.t001

Fig 3. Empirically determined prenylation and cleavage of various Cxxx sequences. Yeast strains lacking

chromosomally encoded YDJ1 (yWS304 or yWS2544, ydj1Δ) orMFA1 andMFA2 (SM2331,mfa1Δmfa2Δ) were

engineered to individually express the indicated Ydj1p-Cxxx or a-factor-Cxxx variant, respectively, using a plasmid-

based expression system. Prenylation of the indicated naturally occurring Cxxx sequences in yeast (A) or global Cxxx

sequences (B) were determined by Ydj1p-gel shift assay. Yeast extracts were evaluated by SDS-PAGE and anti-Ydj1p

immunoblot to reveal prenylated (closed triangle) and non-prenylated sequences (open triangle). Partial prenylation

(i.e., doublet bands) were counted as a positive result. C) Cleavage of the indicated Cxxx sequences was determined by

the a-factor mating assay.MATa yeast cultures were serial diluted 10-fold in the presence of excessMATα yeast

(IH1793) and plated on SD media. Mating is indicated by diploid growth and is reported relative to mating exhibited

by wildtype a-factor (CVIA).

https://doi.org/10.1371/journal.pone.0270128.g003
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paired with either sequence or ESM-1b features achieved the best F1-score for predicting

cleavage. As SVM-ESM-1b had the smaller standard deviation, it was chosen as the preferred

method for cleavage prediction. We next evaluated how well each model predicted cleavage of

the validation set of 19 naturally occurring Cxxx sequences. We incorporated these 19

sequences onto the a-factor reporter that conditionally requires both prenylation and cleavage

for bioactivity (Fig 3C). Because 5 of the sequences were not observed to be prenylated by gel-

shift assay (CIKS, CIDL, CSEI, CSGL, CSGK), these sequences were not expected to exhibit

any a-factor activity, which was indeed the case. For this reason, these 5 sequences were not

included statistically in the a-factor validation set (i.e., CaaX cleavage is prenyl-dependent).

The remaining 14 sequences either possessed a-factor activity, indicative of cleavage, or lacked

bioactivity, indicative of only being prenylated. Surprisingly, we found that several models out-

performed SVM-ESM-1b on the validation set when considering the 14 prenylated sequences

(Table 3, S1 Table). We caution, however, that the small size of the validation set may lack suf-

ficient statistical power to make proper comparisons and conclusions.

Global predictions for prenylation and cleavage of Cxxx sequence space

After evaluating different models for prenylation and cleavage with our curated training and

validation sets, we chose SVM paired with ESM-1b to predict both prenylation and cleavage

for the full scope of Cxxx sequences (S2 File). In the case of prenylation, our model was trained

to make binary predictions, but these sequence predictions are better represented on a contin-

uum as partial prenylation could occur, resulting in sequences with fractions of the protein

population being prenylated. In order to model this continuum, we obtained probabilistic out-

puts for the SVM model by Platt scaling [28] (Fig 4). We note that this method only provides

an estimated probability, which does not perfectly translate to a strict cutoff value for the actual

binary classification. Altogether, our analysis of all 8000 Cxxx sequences predicts that 67%

(n = 5373) are unmodified, 18% (n = 1420) are shunted (i.e., prenylation only), and 15%

(n = 1217) cleaved (i.e., canonically modified; prenylated, cleaved, and carboxylmethylated)

(Fig 5A and 5D). We also made global predictions using the SVM-ESM-1b prenylation model

paired with our previously published Freq method that outperformed all machine learning

models on cleavage validation score (Fig 5B and 5E), as well as using Freq for both prenylation

Table 2. Performance of various models for cleavage prediction.

Modela Features Accuracy Precision Recall F1 Validation

PSSM sequence 93.8 ± 4.6 97.1 ± 4.5 90.7 ± 7.9 93.6 ± 4.9 89.4 (12 / 14)

SVM sequence 97.5 ± 2.3 96.7 ± 4.3 98.6 ± 2.9 97.5 ± 2.2 78.9 (10 / 14)

SVM AAindex 96.4 ± 2.8 95.3 ± 4.1 97.9 ± 3.3 96.5 ± 2.7 78.9 (10 / 14)

SVM ESM-1b 97.5 ± 1.6 97.3 ± 3.3 97.9 ± 3.3 97.5 ± 1.6 78.9 (10 / 14)

GBDT sequence 94.9 ± 3.4 94.6 ± 3.9 95.8 ± 5.7 95.0 ± 3.4 52.6 (8 / 14)

GBDT AAindex 86.9 ± 3.2 87.7 ± 4.3 85.3 ± 3.1 86.4 ± 3.2 73.7 (11 / 14)

GBDT ESM-1b 86.2 ± 1.9 87.0 ± 2.8 84.5 ± 2.3 85.7 ± 1.9 78.9 (10 / 14)

Näive Bayes sequence 89.9 ± 6.0 89.1 ± 6.6 91.5 ± 7.0 90.1 ± 5.9 68.4 (9 / 14)

Näive Bayes AAindex 94.2 ± 2.4 94.5 ± 4.0 94.3 ± 4.3 94.3 ± 2.3 89.4 (12 / 14)

Näive Bayes ESM-1b 85.5 ± 7.6 85.3 ± 7.3 86.4 ± 10.3 85.7 ± 7.9 68.4 (9 / 14)

kNN sequence 94.9 ± 4.3 96.5 ± 4.7 93.6 ± 5.9 94.9 ± 4.4 84.2 (12 / 14)

kNN AAindex 94.6 ± 3.3 92.4 ± 5.9 97.9 ± 3.3 94.9 ± 3.0 78.9 (10 / 14)

kNN ESM-1b 95.3 ± 4.5 94.7 ± 5.6 96.4 ± 5.8 95.4 ± 4.5 78.9 (10 / 14)

aTerms, definitions, and calculations are as described for Table 1.

https://doi.org/10.1371/journal.pone.0270128.t002
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predictions and cleavage (Fig 5C and 5F) [22]. All predictions were qualitatively similar, with

the majority of the 8000 sequences being unmodified, and more shunted sequences predicted

relative to canonical sequences.

Comparisons to previous prenylation methods and evaluation of yeast

proteome predictions

Several prenylation predictors have been developed previously. These include: PrePS, a PSSM-

based model; FlexPepBind (FPB), a molecular docking-based model encompassing energy

scores; and Freq, an in-house method developed by scoring the frequency of residues at each

position in the positive and negative testing sets used for machine learning in this study [6, 12,

22]. Relative to all 8000 Cxxx sequence space, our SVM-ESM-1b based model predicts prenyla-

tion for more sequences (33%) in comparison to PrePS (20%) and FlexPepBind (17%), but less

by comparison to Freq (42%) (S2 File). While Freq predicts more prenylated sequences, it is

important to note that this method overpredicts prenylation in the negative training set rela-

tive to the SVM-ESM-1b model (~40% vs. 3%, respectively). A potential explanation for the

higher false positive rate of Freq may be that this method does not explicitly encode contextual

information when generating features. Overall, we conclude that the SVM-ESM-1b based

machine learning model predicts more prenylatable space, as compared to PrePS and

Table 3. Comparison of prenylation and cleavage prediction models with empirical observations.

Prenylation Cleavage

yeast protein CaaX SVMa,b PrePS Freq FPB Observedc SVMa Freq Observedd

similar sequences Ras2 CIIS + + + + + + + +

Hmg1 CIKS - - - - - NA NA NA

Rho2 CIIL + + + - + + + +

Ssp2 CIDL - - - - - NA NA NA

Skt5, MiY1 CVIM + + + - + + + +

Tbs1 CVKM - - - - + + - -

YDL022C-A CSII + + + + + + + +

YBR096W CSEI - - - - - NA NA NA

YMR265C CSNA - - + - + - - -

Pet18 CYNA - - - + + - - -

Lih1 CSGL - - + - - NA NA NA

Cup1 CSGK - - - - - NA NA NA

other sequences Nap1 CKQS + + + - + - - -

Cst26 CFIF + + - - + + - -

YIL134C-A CAPY + + - - + - - -

Atr1 CTVA + + + + + + + +

Las21 CALD + - + + + - + -

YDL009C CAVS + + + + + - + +

Sua5 CIQF + + + - + + - -

number observed/predicted 16/19 15/19 14/19 11/19 10/14 13/14

aSigns represent predictions of prenylation and cleavage that were reported as positive (+) or negative (-) by the indicated model. NA—not applicable; the non-

prenylated status of the sequence precludes it from being cleaved; CaaX cleavage is prenyl-dependent.
bSVM–SVM-ESM-1b; PrePS–Prenylation Prediction Suite; Freq–in-house, frequency-based; FPB–FlexPepBind.
cObserved by Ydj1p prenylation gel shift–see Fig 3A, S1 Fig.
dObserved by a-factor mating–see Fig 3C.

https://doi.org/10.1371/journal.pone.0270128.t003
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Fig 4. Probability distributions for prenylation and cleavage predictions made by SVM-ESM-1b. Probability distributions for both prenylation (A)

and cleavage (B) determined for the training sets (top) and for all 8000 Cxxx motifs (bottom). A) For prenylation, the training set distribution is

represented as a stacked bar plot where prenylated sequences are black, while non-prenylated sequences are white. B) For cleavage, the training set

distribution is represented as a stacked bar plot where shunted sequences (prenylation only) are white and cleaved sequences for proteolysis are black.

The probability distributions were determined for the training sets (top) and for all 8000 Cxxx motifs (bottom).

https://doi.org/10.1371/journal.pone.0270128.g004

Fig 5. Predictions for modification of Cxxx sequences based on various methods. Predictions for prenylation and

cleavage for all 8000 Cxxx sequences (A-C) and 89 naturally occurring yeast Cxxx sequences (D-F). Models used for

prenylation prediction were SVM-ESM-1b (A,B,D,E) and the in-house, frequency-based method (C,F). Models used

for cleavage prediction were SVM-ESM-1b (A,D) and the in-house, frequency-based method (B,C,E,F). Predictions are

binned as non-prenylated (white), shunted (gray), and cleaved sequences (black). Cleaved sequences have a

prerequisite of being prenylated by the indicated prediction model.

https://doi.org/10.1371/journal.pone.0270128.g005
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FlexPepBind, and may more accurately predict prenylation than our previously reported Freq

method. Regarding CaaX cleavage prediction, Freq has been the only available method for bin-

ning prenylated sequences as either shunted or cleaved. Freq predicts more shunted sequences

relative to PSSM-based predictions (30% vs. 21%, respectively), while the prediction for

cleaved sequences is the same in both cases (12%) (Fig 5B and 5C).

Altogether, the yeast genome contains 89 proteins having Cxxx at the COOH-terminus.

Prenylation and cleavage predictions were determined for the Cxxx sequences associated with

these proteins using our SVM-ESM-1b and PSSM models, respectively. SVM predicted 41

yeast Cxxx proteins to be prenylated, where 32 were canonically modified and 9 were shunted

(Fig 5B). While many of the canonically modified CaaX proteins have been previously charac-

terized (a-factor, Ras, etc.), some have non-canonical Cxxx sequences and have not been previ-

ously evaluated for their prenylation status, including Cst26p (CFIF; an acyltransferase) and

Sua5p (CIQF; involved in threonylcarbamoyladenosine synthesis). Of the 89 Cxxx sequences

associated with the yeast proteome, 19 were directly evaluated in this study in the context of

the Ydj1p reporter (Table 3, Fig 3A, S1 Fig). The SVM-ESM-1b model correctly predicted the

prenylation (both positive and negative) for 84% of the sequences. By comparison, PrePS was

next best, correctly predicting 79%, followed by Freq correctly predicting 74%, and FPB cor-

rectly predicting 58%. Because SVM-ESM-1b, PrePS, and Freq performed similarly in predict-

ing prenylation of naturally occurring Cxxx sequences, we evaluated additional sequences to

better differentiate the prediction methods. Our lab possesses a large collection of plasmids

encoding Ydj1-Cxxx variants (n> 200). Excluding those with Cxxx sequences that were part

of machine learning training sets and others for which SVM-ESM-1b and PrePS had the same

prediction led us to 12 plasmids with varying differential predictions by SVM, PrePS, and Freq

(Table 4). For these 12 Cxxx sequences, Freq correctly predicted 10, SVM-ESM-1b correctly

predicted 9, and PrePS correctly predicted 4 (Table 4, Fig 3B). Evaluation of immunoblot band

intensities revealed that all 12 sequences were either fully prenylated (100% prenylation, n = 7)

or mostly prenylated (>75% prenylation, n = 5), indicating a higher percentage of false nega-

tives for PrePS relative to other prediction models. Thus, for the combined set of 31 sequences

evaluated for prenylation, SVM correctly predicted 81% (25/31), Freq correctly identified 77%

(24/31), and PrePS correctly predicted 61% (19/31) (Table 5).

For assessing cleavage, we used the yeast a-factor mating pheromone as a reporter (Fig 3C).

Canonical modification of a-factor (i.e., prenylation, cleavage, and carboxylmethylation) is

required for mating of haploid yeast, which can be quantified as an indirect measure of a-fac-

tor production. As noted previously, CaaX cleavage is prenyl-dependent, so we only evaluated

the 14 sequences that were confirmed as being prenylated by Ydj1p gel-shift, regardless of

whether they were predicted to be prenylated by any computational method. In this case, Freq

outperformed SVM-ESM-1b, correctly predicting cleavage for 93% of sequences compared to

71%, respectively; FBP and PrePS are not able to predict cleavage, so they were not evaluated

(Table 3). For sequences where mating is observed, the mating levels are comparable to that of

the wild type a-factor sequence (CVIA) (Fig 3C), indicative of complete rather than partial

cleavage.

Limitations of machine learning for predicting CaaX protein PTMs

While SVM-ESM-1b can predict prenylation and cleavage, one limitation is that it does not

provide any information about enzyme specificity due to the lack of enzyme-specific training

information. For both prenylation and proteolysis, there are two possible enzymes for each

reaction. For prenylation, FTase and GGTase-I can each prenylate a wide array of CaaX pro-

teins with C15 farnesyl and C20 geranylgeranyl, respectively, while for proteolysis, Rce1p and
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Ste24p are both able to cleave the farnesylated CVIA motif of a-factor, but selectivity is

observed for other motifs. The determinants of substrate specificity have not been fully ascer-

tained for the aforementioned enzymes. A case in point is proteolysis of the CaaX motif CSIM,

a sequence found on human prelamin A that has long thought to be a substrate of both CaaX

proteases. SVM-ESM-1b and PSSM both predict that CSIM is cleaved, which we confirmed by

using the a-factor reporter. When both proteases were present, comparable mating levels were

observed between strains expressing a-factor with the native CVIA motif that is cleaved by

both Rce1p and Ste24p, the CTLM motif that is Rce1p-specific, and the CSIM motif for which

cleavage specificity is debated (Fig 6A). When evaluated in the context of just one CaaX prote-

ase, we observed that all three motifs could be cleaved by Rce1p, but only CVIA was cleaved by

Ste24p (Fig 6B). A similar result was observed when evaluating cleavage of these sequences by

the human CaaX proteases expressed in our yeast system (Fig 6C). Our observations are con-

sistent with multiple reports challenging the role of Ste24p as an authentic CaaX protease,

Table 4. Comparison of SVM-ESM-1b and PrePS prenylation predictions with empirical observations.

Reporter Prenylation

Ydj1-Cxxx SVMa,b PrePS Freq FPB Observedc

CAAQ + - + - +

CAHQ + - + - +

CASA + - + - +

CKQH + - + - +

CNLI + - + - +

CSFL + - + - +

CVAA + - + - +

CVFM + - + - +

CKQG - + + - +

CKQL - + + - +

CQTS - + - - +

CQSQd + + - - +

number observed/predicted 9/12 4/12 10/12 0/12

aSigns represent predictions of prenylation and cleavage that were reported as positive (+) or negative (-) by the indicated model.
bSVM–SVM-ESM-1b; PrePS–Prenylation Prediction Suite; Freq–in-house, frequency-based; FPB–FlexPepBind.
cObserved by Ydj1p prenylation gel shift–see Fig 3B.
dObservation previously reported [22].

https://doi.org/10.1371/journal.pone.0270128.t004

Table 5. Summary of prenylation and cleavage predictions.

Prenylation Cleavage

SVMa, PrePS Freq FPB SVMa Freq

number observed/predictedb 25/31 19/31 24/31 11/31 10/14 13/14

%observed/predicted 81% 61% 77% 28% 71.4% 92.9%

number false positive 0/20 0/14 1/22 0/6 3/7 1/7

% false positive 0 0 4.5% 0 42.8% 14.3%

number false negative 6/11 12/17 5/9 20/25 1/7 0/7

% false negative 54.5% 70.6% 55.5% 80% 14.3% 0

a SVM–SVM-ESM-1b; PrePS–Prenylation Prediction Suite; Freq–in-house, frequency-based; FPB–FlexPepBind.
bValues determined by empirical data via Ydj1p prenylation gel shift (prenylation, Fig 3A and 3B, S1 Fig) or a-factor mating (cleavage, Fig 3C).

https://doi.org/10.1371/journal.pone.0270128.t005
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including a recent in vitro study demonstrating the inability of the human Ste24 ortholog,

ZMPSTE24 to cleave at the Cys(farnesyl)-Ser bond of the CSIM motif, as would be expected

for a CaaX protease [44].

Discussion

A collection of in vivo, in silico and in vitro observations support a wider array of prenylation

substrates than those previously defined by the COOH-terminal CaaX motif [8–12, 22].

Among the new substrates are those that lack aliphatic amino acids at the a1 and a2 position,

leading to a broader definition for the prenylation motif. To develop a robust machine learning

platform to predict prenyation, we first tested three sequence representation methods. Initially,

AAindex appeared to best distinguish prenylated versus non-prenylated sequences, with ESM-

1b appearing to show poor separation (Fig 2A). The reason for these differences in the feature

representation methods is likely because AAindex directly utilizes known biophysical features

while ESM-1b utilizes a learned embedding vector based on biologically observed sequences.

Because ESM-1b features are a product of representation learning, they cannot be directly

translated into concrete biophysical features. For prenylation, both AAindex and ESM-1b fea-

tures were good at modeling the preference for aliphatic residues in the Cxxx motif. Differ-

ences between the two methods emerge, however, when modeling non-canonical prenylation

motifs. ESM-1b features uniquely predict Cxxx sequences containing Gln at x2 or x3 to be pre-

nylated, while AAindex uniquely models a preference for Trp and Phe at x2. We speculate that

AAindex features may incorrectly model a general preference for nonpolar residues, due to the

enrichment of aliphatic residues in the training set.

After further training and cross-validation, it was determined that the machine learning

platform SVM paired with ESM-1b training on CaaX motifs identified using both shunted and

canonical reporters was the best overall performer in predicting canonical and non-canonical

Cxxx prenylation. SVM-based predictions suggest that approximately 33% of all 8000 Cxxx

motifs are prenylatable. This estimate is approximately 50% higher than the number of poten-

tial targets predicted by PrePS and is approximately double the number of sequences predicted

by FlexPepBind (FPB). These findings are not meant to be indicative of the number of preny-

lated proteins in a cell since far fewer than all 8000 possible Cxxx motifs are encoded in

genomes. For example, S. cerevisiae encodes only 89 proteins that end Cxxx. Of these,

SVM-ESM-1b predicted 46% (n = 41) to be prenylated. By comparison, FPB and PrePS pre-

dicted 27% (n = 24) and 32% (n = 29) of yeast proteins to be prenylated, respectively. Confir-

mation of SVM-predicted prenylation will need to be evaluated on a case-by-case basis or by

Fig 6. Rce1 is responsible for cleavage of yeast a-factor-CSIM. Yeast strains expressing the indicated a-factor Cxxx

variant as the sole source of a-factor were evaluated as described for Fig 3 in the context of yeast and human CaaX

proteases. Yeast strains expressing A) both yeast CaaX proteases (SM2331,mfa1Δmfa2Δ), B) one or the other yeast

CaaX protease (yWS2393,mfa1Δmfa2Δ ste24; yWS2462,mfa1Δmfa2Δ rce1), or C) plasmid-based human CaaX

proteases (pWS130,HsRce1Δ1–22; pWS1609, ZMPSTE24) in a strain lacking both yeast CaaX proteases (yWS164,

mfa1Δmfa2Δ rce1 ste24).

https://doi.org/10.1371/journal.pone.0270128.g006
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application of emerging methods for in vivo labeling of prenylproteins to firmly establish

whether SVM is an improvement over previous methods. Despite the potential limitations of

our prediction method, it is clear that SVM-ESM-1b predicted prenylation of known, non-

canonical Cxxx sequences in instances where other methods did not (e.g., Ydj1p CASQ and

Pex19p CKQQ) (S2 File), suggesting that SVM is an improvement for identifying prenylated

proteins as a whole. Moreover, the non-canonical CKQS sequence associated with the histone

chaperone Nap1p is also predicted to be prenylated by our SVM-ESM-1b model. To date,

there exists no direct evidence for yeast Nap1p prenylation, but such evidence does exist for

human and plant Nap1 homologs, which both possess a similar CKQQ motif [45, 46]. Notably,

the CKQQ sequence is also present on the human tumor suppressor Lkb1, another well docu-

mented prenylprotein [47].

As part of this study, we were also able to develop SVM-ESM-1b into a first-ever method

for distinguishing between shunted (i.e., prenylation only) and cleaved sequences (i.e., canoni-

cal). Of the approximately 2600 sequences predicted to be prenylated by SVM, approximately

63% are predicted to be shunted and the remaining 37% cleaved. Again, these findings are not

meant to reflect the actual ratio of shunted and cleaved prenylated proteins in cells. In fact, we

observe that the predictions are somewhat inversed within the yeast proteome. Of the 41

sequences predicted to be prenylated, 27% are predicted to be shunted and the remaining 73%

cleaved. This observation suggests that the cleavage and carboxymethylation of the prenylated

COOH terminus may serve an important role in vivo, potentially increasing membrane associ-

ation, as historically expected for canonical CaaX modifications. While the role of the isopre-

nyl group on shunted proteins remains unclear, we posit that this PTM may help mediate

protein-protein interactions and/or provide a structural role rather than contribute to mem-

brane association. This is supported by observations made on the human protein Spindly,

whose CPQQ sequence is predicted to be shunted by our SVM model and for which a farne-

syl-dependent protein complex interaction has been proposed [48, 49].

An unexpected result from this study was the observation that Freq and SVM-ESM-1b had

a similar level of accuracy for prenylation prediction of the validation set (77% and 80%,

respectively). As noted previously, Freq globally predicted more prenylated sequences than

SVM-ESM-1b (42% and 33%, respectively), which is consistent with Freq having a higher false

positive rate compared to SVM for our negative training set (40% and 3%, respectively). This

suggests to us that Freq overpredicts prenylation. It’s also worth noting that while Freq and

SVM-ESM1b rely on the same data set for predictions, their predictions are not coincident,

indicating that predictions are fundamentally different for the two methods. Long term, we

expect that future advancements in machine learning will lead to better prediction perfor-

mance relative to the Freq-based method.

To further improve our prediction methods, one aspect that we wish to especially improve

upon is the high false negative rate for prenylation predictions that was determined empirically

by evaluating a small subset of test sequences (n = 31; Table 5). While a larger test set may

yield a more accurate false negative rate, it remains possible that the high negative false rate is

simply due to the training datasets themselves being too small or somehow compromised. We

have high confidence that our positive prenylation training set is composed of prenylated

sequences that, importantly, were derived from studies involving both canonical and shunted

reporters. Our negative training test set, however, was derived from a single study that relied

on a canonical reporter, and it is suspected that shunted sequences may be among the negative

hits in that study, thus poisoning the quality of our negative test set. Our future studies are

aimed at identifying a set of sequences that better reflect non-prenylatable sequences for use as

an improved negative training set that we expect to lead to improved prenylation predictions

and a lower false negative rate. Ultimately, we expect that prenylation potential will be best
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defined by knowing the profiles of both preferred and non-preferred residues. The reasons for

both states will also need to be explored. One likely possibility may be that only certain individ-

ual residues or groups of residues can be accommodated in the active site of prenyltransferases.

But, we also recognize that preferred residues may be insufficient to drive prenylation if the

Cxxx sequence is buried in the protein core, is involved in secondary structure that is required

for protein stability, is exposed on the protein surface but involved in stable interactions with

partner proteins, is oriented topologically away from the cytosol and inaccessible to the cyto-

solic prenyltransferases (i.e., outside the cell or within organelles).

Interestingly, we observed that several models out-performed SVM-ESM-1b for cleavage

prediction (e.g., PSSM, Freq). As previously noted, a larger set of test sequences may be needed

to better assess performance. Alternatively, it may be that a better genetic test for cleavage is

required. Previous studies have reported that geranylgeranylated a-factor has less mating activ-

ity in vivo [18, 22, 50], suggesting that the genetic mating assay may only work well in the con-

text of farnesylated a-factor. This potentially impacts results associated with the CFIF and

CIQF sequences in our test set; the terminal Phe is a preferred GGTase-I feature. SVM-ESM-

1b predicted prenylation of both sequences while SVM-ESM-1b, PSSM and Freq methods all

predicted cleavage. Prenylation was confirmed in the context of Ydj1p, but neither sequence

supported a-factor mating activity that would be indicative of cleavage. It remains unclear

whether lack of mating activity is due to shunting or geranylgeranylation. Because of this issue,

it is difficult to fully assess the accuracy of any of the cleavage predictors described in this

study. In terms of the CaaX proteases, while CSIM was identified as a canonical motif, addi-

tional genetic studies utilizing a-factor were needed to resolve whether cleavage was mediated

by Rce1p or Ste24p. As the yeast a-factor mating pheromone is the only known substrate of

Ste24p to date, it is tempting to speculate that Rce1p is the main and possibly only relevant

CaaX protease. If that eventually bears out to be the case, then our cleavage predictors could be

used to infer Rce1p specificity.

Altogether, we have demonstrated that machine learning can be developed into a useful

tool to predict prenylation and cleavage events associated with CaaX proteins. The utility of

this tool is reflected by its ability to better identify possible shunted sequences relative to other

publicly available prediction methods, in addition to identifying canonically modified

sequences. These findings represent an important step in expanding the full scope of prenyla-

table motifs in yeast. Given the high degree of target specificity exhibited by both prenyltrans-

ferases and CaaX proteases across species, it is likely that the prenylatable space identified by

this study also represents the full scope of prenylated motifs in humans. Among these are

sequences associated with proteins that represent potential new additions to the prenylome,

which has implications for the impact of prenyltransferase and protease inhibitors being devel-

oped as therapeutics.
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