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Simple Summary: Tumor associated macrophages (TAMs) support disease progression by providing
tumor cells cytokines and chemokines necessary for malignant growth and nutrient support. In the
tumor microenvironment (TME), TAMs often rewire their metabolism to reprogram their functions,
which includes changes in the production of angiogenic factors and cytokines. These promote the pro-
tumor function of the TAMs as well as the blunt T cell’s effector function, which at least, in part, explains
the failure or sub-optimal efficacies of TAM-directed therapeutic approaches and immunotherapies. In
recent times, much of these are attributed to the altered metabolism of the TAMs in the TME. Therefore,
understanding the metabolic changes of the myeloid cells of the TME is an essential step in developing
novel therapeutic approaches targeting immune cell metabolism. This review article aims to summarize
the recent findings on the metabolism of TAMs, and how the altered metabolism of these innate immune
cells shapes the tumor microenvironment and the anti-tumor immunity.

Abstract: Cancer cells possess a high metabolic demand for their rapid proliferation, survival,
and progression and thus create an acidic and hypoxic tumor microenvironment (TME) deprived
of nutrients. Moreover, acidity within the TME is the central regulator of tumor immunity that
influences the metabolism of the immune cells and orchestrates the local and systemic immunity, thus,
the TME has a major impact on tumor progression and resistance to anti-cancer therapy. Specifically,
myeloid cells, which include myeloid-derived suppressor cells (MDSC), dendritic cells, and tumor-
associated macrophages (TAMs), often reprogram their energy metabolism, resulting in stimulating
the angiogenesis and immunosuppression of tumors. This review summarizes the recent findings
of glucose, amino acids, and fatty acid metabolism changes of the tumor-associated macrophages
(TAMs), and how the altered metabolism shapes the TME and anti-tumor immunity. Multiple proton
pumps/transporters are involved in maintaining the alkaline intracellular pH which is necessary
for the glycolytic metabolism of the myeloid cells and acidic TME. We highlighted the roles of these
proteins in modulating the cellular metabolism of TAMs and their potential as therapeutic targets for
improving immune checkpoint therapy.

Keywords: immune cell; myeloid cells; macrophage; TAM; metabolism; immune response;
immunotherapy; proton pumps

1. Introduction

In addition to neoplastic cells, the tumor microenvironment (TME) is composed
of non-neoplastic cells, such as immune cells, endothelial cells, fibroblasts, etc. Even
though immune cells are the most abundant non-neoplastic cell types in the majority of
solid tumors, the TME is often immunosuppressive [1,2]. The innate immune cells in
tumor tissues mainly include tumor-associated macrophages (TAMs) and myeloid-derived
suppressor cells (MDSCs), which account for more than half of the non-tumor cells of
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the TME and are generally associated with a worse cancer prognosis [3,4]. Tumor cells
have developed mechanisms to orchestrate these myeloid cells’ phenotypes to promote
tumor growth by regulating angiogenesis, stimulating metastasis, and suppressing immune
function [5,6]. In addition, myeloid cells are regulated by microenvironmental factors such
as chemokines, cytokines, growth factors, as well as metabolites [7,8]. However, several
myeloid cell-directed therapeutic approaches by targeting CSF-1R inhibition have been
tried with little or no success, especially for glioma, an immunologically cold tumors [9,10].
Therefore, alternative approaches for the target of myeloid cells are necessary.

In response to diverse stimuli, immune cells undergo metabolic reprogramming to
support their differentiation, proliferation, and pro-inflammatory effector functions [11].
However, these metabolic alterations are context-specific and cell-type-dependent [12].
Cancer cells use aerobic glycolysis to meet their energy demands even in the presence of
oxygen, a phenomenon termed “Warburg metabolism”. Cancer cells predominantly utilize
glucose for glycolytic metabolism and secret lactate [13]. Cancer cells can harness these
metabolic byproducts to hijack the function of immune cells to promote tumor progression.
This is true for the glycolytic cancer cell-secreted lactate which turns the immune cells into
an immunosuppressive phenotype [14]. Additionally, all the immune cells of the TME
compete for the limited nutrients present [15]. All these interconnected factors shape the
metabolism of the evolving neoplasm [16]. A better understanding of the mechanism of
immune cell metabolism and its influence on cancer immunotherapies is of paramount
importance since the recent advances in the immunotherapies such as immune checkpoint
blockade therapy in treating pancreatic cancer, sarcoma, and melanoma [17–19]. Similar to
T cells, myeloid cells undergo robust metabolic changes upon stimulation and activation.
Myeloid cells are highly heterogeneous and can exhibit heterogeneous metabolic features,
depending on the stimuli and the TME they reside in. These diverse metabolic responses
can give rise to many polarization states and phenotypes, thus controlling the downstream
immune responses [11]. TAM subsets not only differ in their phenotypes regarding cytokine
and surface marker expression, but also in their metabolism [20]. Here, we reviewed the
main metabolic pathways used by myeloid cells of the TME in shaping the evolution of
the neoplasm. We also discussed some of the current strategies to improve the efficacy
of cancer immunotherapies or enhance T cell cytotoxic function by regulating myeloid
cell metabolism.

2. Function of Tumor-Associated Macrophages (TAM) in TME

Myeloid cells are a heterogeneous [3,21] population of innate immune cells that con-
stitute more than 70% of all immune cell populations in the TME [22]. Common myeloid
progenitor cells give rise to macrophages, myeloid-derived suppressor cells (MDSC), gran-
ulocytes, dendritic cells (DC), and neutrophils [23,24]. These cells are associated with
varying degrees of tumor-promoting and anti-tumor functions [23,25–27]. The details of
the myeloid cell types and their roles have been described in a review by Haas et al. [26]. In
the current article, we focused on the discussion of TAMs that include infiltrated peripheral
myeloid cells (macrophages) and brain-tissue-resident macrophages known as microglia.

The cytokines and the molecules responsible for the recruitment and adhesion of the
macrophages produced by the tumor microenvironment recruit macrophages to the tumor
microenvironment [28,29]. It has been proposed that the recruitment and differentiation of
the macrophages are related to local anoxia, inflammation, and the presence of high levels
of lactic acid [14]. The CC chemokines, such as CCL2, CCL11, CCL16, and CCL21, are major
determinants of macrophage infiltration and angiogenesis in the cancer of the breast, lung,
esophagus, ovary, and cervix [28]. Most brain-tissue-resident macrophages (microglia) arise
from the yolk sac of the embryo, apart from those in the intestine [30,31]. In glioma, the
microglia originate from the embryonic yolk sac precursor [32]. In contrast, macrophages
involved in the response against pathogens are derived from the bone marrow (BM) [5,26].
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2.1. TAM in Promoting Tumor Progression

The main function of the macrophages is to recognize and phagocytize antigens and
present them to the T cells; therefore, macrophages are considered the bridge between
innate and acquired immunity [33]. A high level of TAMs correlates with the progression
of the disease in multiple cancers [34–36] and plays a key role in tumor initiation and
progression, including tumor invasion, migration, angiogenesis, immunosuppression, and
metabolic alterations [37]. TAMs produce growth factors, cytokines, and chemokines,
and trigger immune exhaustion of the T cells, developing the immunosuppressive tumor
microenvironment [38,39]. TAMs possess a dual function in the TME where they promote
the vasculature, intravasation, extravasation, and survival of tumor cells [40]. It is well
documented that TAMs interact with the cancer cells to facilitate tumor progression [41].
SPP1/CD44 signaling of the glioma-infiltrated macrophages was shown to interact with the
glioma cells and induce mesenchymal glioma formation [22]. However, more importantly,
TAMs even contribute to the stemness of the tumor cells in breast cancer through the
TAM–tumor cell interaction [42,43]. Cx3Cr1-deficient microglia/macrophages upregulate
IL1β and promote enhanced glioma growth with an enhanced stem cell phenotype [44]. By
direct or indirect interactions, TAMs can exert effects on cancer stem cells (CSCs) including
chemoresistance, perseverance, and the ability to differentiate [45,46].

2.2. TAMs Interaction with T Cells

Growing evidence shows that TAMs not only interact with the tumor cells, but also
with the other immune cells in the TME such as T cells, and natural killer (NK) cells [47,48].
To date, the majority of the immunotherapeutic approaches are developed targeting the T
cells [49]. TAM-secreted TGF-beta and IL-10 hinder the maturation of the dendritic cells
(DCs), promote the expansion of regulatory T cells (Tregs), and suppress the activity of T
cells and NK cells [50–53]. Additionally, TAMs express PD-L1, PD-L2, and PD-1, as well
as the CTL-associated protein 4 (CTLA-4) ligands CD80 and CD86, which bind to their
receptors in the CD8+ T cells and lead to the inhibition of the T cells’ cytotoxic function [54].
Additionally, TAM-secreted TGF-β inhibits the expression of perforin, granzyme A and
B, IFNγ, and the FAS ligand [55] or CXCR3 on T cells [39], which are vital for the T cell-
mediated cytotoxicity. TAMs expressing arginase, an arginine metabolizing enzyme, also
affect the T cell function by creating an arginine-deprived TME and altering the T cell
metabolism [54] (Figure 1). Therefore, TAM possesses a multifaceted avenue to control the
T cells’ function in the TME, which is the center of most immunotherapeutic approaches.

Activated macrophages are often classified as classical-activated M1 macrophages
and alternative-activated M2 macrophages [40]. In general, M1 macrophages are the major
components of host defense against infection in the context of Th1 immunity, whereas M2
macrophages support Th2 immune responses such as tissue repair and remodeling [16,56].
These terms were originated to describe the differential gene expression of the macrophages
in response to interferon-γ (IFN-γ) and/or lipopolysaccharide (LPS) compared to that of IL-
4 activation [57,58]. Along this line, TAMs can be classified into M1 (pro-inflammatory) and
M2 (anti-inflammatory), respectively [16]. However, TAMs’ functional phenotypes in the
neoplastic tissues differ between tumors or even between regions within the same tumor,
and many instances do not fit the simplified M1/M2 classification [3,59]. Therefore, the
M1/M2 classification is overly simplified, lacking immunological contextualization with
complex/mixed phenotypes [60]. Transcriptomic analysis of the TCGA and METABRIC
breast cancer datasets indicated that the M1 macrophage signature is associated with
poor prognosis along with high immune activity and expression of immune checkpoint
molecules [61]. These new findings indicate the ineffectiveness of simplified M1/M2
macrophage polarization characterization and warrant for a deeper understanding of
different macrophage activation stages, phenotypes, and associated cellular functions in
the TME. Therefore, in the next section of this review, we summarized the relationships
between TAM metabolism and their tumor-promoting and/or anti-tumor functions.
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Figure 1. Metabolic crosstalk between TAMs and TME. Highly proliferative cancer cells use aerobic 
glycolysis and consume an elevated amount of glucose for bioenergetic and biosynthetic purposes, 
releasing lactate and H+ in the TME and able to release elevated CSF1. Lactate, H+, and CSF1 favor 
the polarization of M1 TAMs to immunosuppressive M2 macrophages which are characterized by 
the release of metabolic modulators, and immunosuppressive molecules that foster disease 
progression, including vascular endothelial growth factor A (VEGFA), tumor necrosis factor (TNF), 
C-C motif chemokine ligand 5 (CCL5), CCL18, interleukin 6 (IL6), and IL10. Moreover, lactate and 
glucose deprivation exerts immunosuppressive effects on effector T (Teff) cells. M2 TAMs synthesize 
abundant levels of arginase 1 (ARG1), ARG2, and indoleamine 2,3-dioxygenase 1 (IDO1), changing 
the metabolic landscape of the TME and secretes TGF-β which reduces effector T cell function. TNF, 
tumor necrosis factor; NO, nitric oxide; ARG1, arginase 1; ROS, reactive oxygen species. 
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Figure 1. Metabolic crosstalk between TAMs and TME. Highly proliferative cancer cells use aerobic
glycolysis and consume an elevated amount of glucose for bioenergetic and biosynthetic purposes,
releasing lactate and H+ in the TME and able to release elevated CSF1. Lactate, H+, and CSF1
favor the polarization of M1 TAMs to immunosuppressive M2 macrophages which are characterized
by the release of metabolic modulators, and immunosuppressive molecules that foster disease
progression, including vascular endothelial growth factor A (VEGFA), tumor necrosis factor (TNF),
C-C motif chemokine ligand 5 (CCL5), CCL18, interleukin 6 (IL6), and IL10. Moreover, lactate and
glucose deprivation exerts immunosuppressive effects on effector T (Teff) cells. M2 TAMs synthesize
abundant levels of arginase 1 (ARG1), ARG2, and indoleamine 2,3-dioxygenase 1 (IDO1), changing
the metabolic landscape of the TME and secretes TGF-β which reduces effector T cell function. TNF,
tumor necrosis factor; NO, nitric oxide; ARG1, arginase 1; ROS, reactive oxygen species.

3. Energy Metabolism of TAMs

The TME is regulated by crosstalk within and across all its cellular components, includ-
ing TAMs. This extensive interplay between the components often includes extracellular
metabolites that act as communication signals and sources of energy. All parts of the TME
also compete for the limited supply of oxygen and nutrients, shaping the metabolism of
cancer cells as well as the TAMs [16]. Hanahan et al. identified two hallmarks of cancer:
the reprogramming of the energy metabolism and evasion of immune destruction [62].
An altered tumor metabolism creates a TME that depletes critical metabolites, including
glucose, glutamine, and tryptophan, and generates immune inhibitory metabolites, in-
cluding kynurenine [63]. TAMs are also involved in the metabolic reprogramming of the
tumor cells. Interleukin 1-β (IL-1β), secreted from the M2 macrophages, phosphorylates
the key glycolytic enzyme glycerol-3-phosphate dehydrogenase of glioma cells which
increases the substrate affinity and glycolytic metabolism of the glioma cells and promotes
tumorigenesis [64]. Therefore, it is obvious that metabolism in the TME regulates the
differentiation, mobilization, polarization, and anti-tumor immune responses of TAMs.
Here, we discussed how different types of metabolic pathways can influence TAM survival
and cellular functions (Figure 2).
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Figure 2. Key metabolic pathways of M1 and M2 Macrophages. M1 macrophages can first be
activated by an increase in levels of LPS and IFN-γ, increase in glycolysis, and increase in fatty acid
synthesis. Due to the increase in glycolysis, the enzymes PKME and UPFK2 are upregulated, making
more pyruvate and increasing the glycolytic metabolism. This increase leads to an increase in PPP,
creating more NADPH for ROS and NO production. The increase in pyruvate allows more acetyl
CoA to enter the TCA cycle, increasing the levels of citrate and succinate. Higher citrate levels are
then used in FAS. Succinate accumulation then regulates HIF1α leading to further release of IL-1ß and
ROS production. Meanwhile, arginine is converted into NO and citrulline via enhanced iNOS activity,
further depleting the cell’s arginine levels. M2 macrophages are activated by increased IL-4 and IL-10
levels, increased OXPHOS, and increased fatty acid oxidation. Lipoproteins go through the fatty acid
oxidation process and are converted into acetyl-CoA. FAO inhibition can occur by a CPT-1 inhibitor,
etomoxir. When acetyl-CoA goes through the TCA cycle, ATP, NADH, and FADH2 are made. The
electron carriers NADH and FADH2 are used in OXPHOS. M2 macrophages also cause tryptophan
depletion by converting tryptophan into KYN via IDO and TDO enzymes. Arginine is also converted
into urea and ornithine by enhanced ARG1 activity. Ornithine then converts into polyamines using
the ODC enzyme. HIF1α, hypoxia-inducible factor 1α; LPS, Lipopolysaccharide; IFN-γ, interferon-γ;
OXPHOS, oxidative phosphorylation; PPP, pentose phosphate pathway; PKM2, pyruvate kinase;
UPFK2, ubiquitous 6-phosphofructo-2-kinase; TCA, tricyclic cycle; ROS, reactive oxygen species; NO,
nitric oxide; α-KG, alpha-ketoglutarate; iNOS, inducible nitric oxide synthase; ARG1, arginase-1;
ODC, ornithine decarboxylase; IDO, indoleamine 2,3-dioxygenase; TDO, tryptophan 2,3-dioxygenase;
KYN, kynurenine.

3.1. Glucose Metabolism of TAMs

Lipopolysaccharide (LPS)/IFN-gamma-stimulated M1 macrophages require elevated
glycolysis and fatty acid synthesis; meanwhile, IL4/IL-10-activated M2 macrophages require
enhanced fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS) [64,65]. In
cardio-metabolic diseases, the inhibition of FAO or lipolysis by etomoxir (a carnitine palmi-
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toyl transferase 1 inhibitor) resulted in impaired M2 activation [66,67]. M1 macrophage
metabolism is classified by increased glycolysis, an enhanced flow of glucose through the
pentose phosphate pathway (PPP), fatty acid synthesis (FAS), and the truncated citric acid
cycle (TCA cycle) with increased levels of succinate and citrate [68–70]. The PKM2 enzyme
is another factor that contributes to TAMs polarization [71]. Pyruvate kinase is a glycolytic
pathway enzyme that catalyzes the conversion of phosphoenolpyruvate (PEP) to pyru-
vate [72]. PKM2 is an isoform of pyruvate kinase and is highly expressed in proliferating
cells and exists in either an enzymatic monomer or dimer [73]. The PKM2 dimer moves into
a cell’s nucleus and interacts with hypoxia-inducible factor 1α (HIF1α). This PKM2–HIF1α
complex then binds to the promoter of IL-1ß and inhibits this proinflammatory cytokine,
resulting in an increased glycolytic flux and promoting M2 polarization [71,74]. PKM2
dimerization increases the glycolytic flux, which then allows TAMs to utilize oxidative phos-
phorylation, and promotes the transformation of TAMs from M1 to M2, thereby increasing
the number of M2 macrophages and hindering the anti-tumoral immune response [71,75].
Therefore, the inhibition of the pyruvate kinase isoform PKM2 attenuates M2 polarization
while activating the M1 polarization of the TAMs.

IFN-γ and LPS stimulation upregulate phosphofructokinase 2 (PFK2) into its ubiquitous
isoform, ubiquitous 6-phosphofructo-2-kinase (U-PFK2). U-PFK2 converts fructose-6-phosphate
(F6P) into fructose-2,6-bisphosphate (F2,6BP), activating enzyme phosphofructosekinase-1
(PFK1) [65]. U-PFK2 expression is modulated by HIF1α, leading to the high glycolytic metabolism
that M1 macrophages acquire [65,70,72,76]. Downregulation of hexokinase, a glycolytic enzyme,
can inhibit the formation of inflammasomes (which secrete proinflammatory cytokines) in
macrophages after LPS activation [76]. The inhibition or deletion of glycolytic enzyme pyru-
vate kinase can shunt M1 phenotype activation even with LPS and IFN-γ stimulation [71].
The upregulation of glycolysis and changes in the TCA cycle metabolic intermediates can be
beneficial for M1 macrophage activation. The accumulation of the TCA cycle intermediates, suc-
cinates, activates hypoxia-inducible factor 1α (HIF1α), leading to the upregulation of glycolysis,
interleukin-1ß, and reactive oxygen species (ROS) production [77]. Succinate accumulation in
tumor cells and macrophages was reported to facilitate tumorigenesis, cancer cell migration and
metastasis [78]. This increase in succinate is attributed to a reduced succinate dehydrogenase
(SDH) activity. Succinate accumulation triggers PI3K-HIF-1α-mediated pro-tumor TAM polar-
ization and cancer metastasis and serves as a biomarker in lung cancer [78]. Thus, TAMs display
a high degree of metabolic plasticity in the glucose metabolism and response to metabolic cues
present in the TME.

3.2. Amino Acid Metabolism

In the TME, specific amino acid metabolites, including tryptophan and arginine, ac-
tivate TAMs, and these activated TAMs metabolize higher amounts of tryptophan and
arginine [69,79–81]. The arginine is highly metabolized in TAMs, resulting in arginine
depletion within the TME. Arginase-1 (ARG1), the first enzyme of the arginine metabolism,
is highly expressed in M2 TAMs [82,83]. Arginine is metabolized by arginase enzymes to or-
nithine and urea, and by nitric oxide synthase (iNOS) to nitric oxide (NO) and citrulline [77].
Pro-inflammatory cytokines inhibit ARG1 activity, yet activate iNOS activity [81]. In the
urea cycle, ARG1 converts arginine into ornithine and urea, which are then converted
to polyamines by orthenine decarboxylase (ODC). ODC is highly expressed in tumors
and promotes tumor development. In prostate cancer, ARG1 along with ODC can reduce
iNOS activity and NO concentration by depleting arginine as a substrate. Pro-tumoral
M2 macrophages show more arginase activity with more polyamine synthesis, leading to
a higher cell proliferation, while antitumoral M1 macrophages have more iNOS activity,
leading to decreased cell growth [81]. The deletion of NO and arginine is related to tu-
morigenesis and produces pro-tumoral growth factors in the TME, while also reducing
the arginine concentration to suppress immune function [81]. Tryptophan is an essen-
tial amino acid, metabolized into kynurenine (KYN) to a high degree in TAMs by the
tryptophan metabolizing enzymes Indoleamine 2,3-dioxygenase (IDO) and tryptophan
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2,3-dioxygenase (TDO). KYN plays a role in repressing the antitumor immune responses
regulated by the aryl hydrocarbon receptor (AHR), a member of a transcription factor fam-
ily that activates xenobiotics including KYN [84]. Elevated AHR levels by TDO and IDO
cause an increase in AHR target gene transcription, which serves as the antitumor targets.
TAMs also express arginase and iNOS enzymes, which lead to arginine depletion, as well
as IDO elevation, which causes tryptophan depletion [63]. A reduced level of arginine and
tryptophan promotes metabolic quiescence, resulting in the temporary stoppage of cell
cycle progression [85].

While arginine and tryptophan depletion can activate TAMs, the inhibition of the
glutamine metabolism of the immunosuppressive myeloid cells converted these cells into
inflammatory macrophages [63]. Glutamine synthetase (GS) is a glutamate-metabolizing
enzyme that converts glutamine from ammonia and glutamate, two substrates that show
toxicity to the central nervous system (CNS) and can cause neuroinflammation [70,86]. GS
enzyme activity is highly correlated with TAM polarization to immunosuppressive M2
macrophages in TME [87]. Palmieri et al. show that the genetic deletion of the GS enzyme in
TAMs leads to elevated glutamate levels in TAMs [70]. GS activation promotes the transition
of monocytes to M2 macrophages, while GS inhibition causes the phenotypes to switch
to M1 macrophages, causing increased succinate levels [63,70,86,88]. Elevated succinates
in macrophages regulate pro-inflammatory responses by inhibiting anti-inflammatory
cytokines and promoting HIF-1α stabilization [70]. M2 macrophages express more GS,
resulting in higher levels of glutamine synthesis than M1 macrophages. Thus, GS and
glutamine depletion in TAMs show M1 polarization with reduced tumor metastasis, while
the depletion of other amino acid metabolites, including arginine and tryptophan, can
activate immunosuppressive TAMs.

3.3. Fatty Acid Metabolism

TAMs, which resemble M2 macrophages, increase fatty acid uptake and fatty acid
oxidation [67,89,90]. The inhibition of lipid uptake through the blocking of CD36, a glyco-
protein that functions in oxidized LDL uptake and foam cell formation, and FAO inhibition
can shut off the switch to the TAM phenotype in the TME [91]. CD36 has been proposed
to be a marker for different types of epithelial cancers, and it has been confirmed that
CD36 is highly expressed in the TME, especially in macrophages, and highly correlates
with the FAO gene signature [91]. A deficiency in monoacylglycerol lipase (MGLL) can
cause lipid accumulation in TAMs of colorectal cancer, resulting in M2 macrophage acti-
vation and inhibiting CD8+ T cell function [92]. Ding et al. examined how the deficiency
in angiopoietin-like 4 (ANGPTL4), which inhibits lipoprotein lipase (LPL), can lead to
enhanced fatty acid synthesis (FAS) and diminished fatty acid oxidation (FAO) in adipose
tissues and macrophages [93]. The dysregulation of fatty acid metabolism induces ER stress
and inflammation, leading to an upregulation of glycolysis and fatty acid synthesis which
inhibits lipoprotein lipase (LPL) [91]. TAMs thus sustain their fatty acid supply by the
phagocytosis of extracellular fatty acids, increased LPL activity, and de novo production of
fatty acids from acetyl CoA by fatty acid synthase [90]. All of these resources can be utilized
to activate tumor-promoting M2 TAMs. Lipid droplets accumulated in the macrophages
regulate the catabolism of unsaturated fatty acids for mitochondrial respiration and polar-
ize TAMs into M2 phenotypes [90]. The inhibition of LD accumulation and the disruption
of LD synthesis in myeloid cells showed a decreased tumor growth in colon cancer pa-
tients [90], pointing to the role of LD accumulation in TAMs favoring the tumor growth.
Although previous studies have mentioned that long chain fatty acid (LCFA) oxidation can
lead to the activation of M2 macrophages; a recent study showed that LCFA oxidation and
oxidative phosphorylation are not required for M2 macrophage polarization [94]. However,
complex I of electron transport chain inhibitors can inhibit the expression of pro-IL-1ß in
LPS-stimulated macrophages, suggesting that a redox signal, potentially increased ROS,
from complex-I can trigger M2 polarization [72,95]. Thus, TAM activation can be due to
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limited FAO and increased FA synthesis, eventually leading to high levels of lipid droplets
and acetyl CoA production.

3.4. Tumor Acidity in Dysregulated TAM Metabolism

A key feature of the TME is extracellular acidosis and intracellular alkalization due
to the local drop of pH, caused by increased lactate-mediated acidification [96]. In low
pH environments, anti-tumor effectors, including T cells and NK cells, lose their function,
while immunosuppressive effectors, such as myeloid cells and regulatory T cells, can
sustain tumor progression and block antitumor immune responses [97]. Cancer cells
are highly glycolytic, which increases lactate dehydrogenase (LDH) activity, converts
pyruvate to lactate, and enhances lactate generation [96,98]. Tumor cells are essentially net
producers of acid due to aerobic glycolysis, producing large amounts of carbon dioxide
and lactic acid [97]. Lactate accumulation can be a significant TME signal to polarize
M2 macrophages [99]. As tumors grow, glucose is depleted, and lactate concentrations
increase. This drives M2 macrophage reprogramming, and they need to use lactate as a
source of oxidative phosphorylation, which then results in high TCA activity [99]. Even
in the presence of high glucose and lactate levels, TAMs use lactate for citrate production
because pyruvate generation from lactate requires fewer enzymatic processes and produces
NADH [99].

Cancer cells exploit different proton pumps that cotransport lactate and protons. These
pH sensing proteins signal cancer cells to promote their survival in the low pH environment.
G-protein coupled receptors (GPCRs) are examples of pH sensing proteins and when the
TME is acidic, they increase cAMP production and cancer cell survival [97]. With that,
myeloid cells are also very sensitive and can detect even the smallest changes in local pH
and then instantly respond by polarizing and changing their activity [97]. TME acidity is a
major attractor of myeloid cells because immune response molecules, including selectins,
can be modified by acidity. Selectin regulates the recruitment of leukocytes to inflammatory
sites, and under low pH conditions, P and L-selectins bind in high affinity to a P-selectin
glycoprotein ligand 1 (PSGL-1), leading to increased monocyte adhesion to the endothe-
lium [97]. An acidic environment can also induce proinflammatory mediators in different
tumor-associated myeloid cells. The enzyme iNOS is heavily activated in macrophages
through a process that includes the increased nuclear factor k-light-chain-enhancer of B
cells’ (NF-kB) translocation. NO can increase the acid-loading by impairing the intracel-
lular pH recovery [97,100]. This extracellular acidity can increase triglyceride storage in
macrophages, promoting M2 TAM activation [100]. Thus, a more acidic extracellular TME
can lead to macrophage polarization into M2 activation. This dysregulation of pH seen
in tumor cells can drive different processes including tumorigenesis, and the progression,
migration, and reprogramming of cancer cell metabolism.

3.5. The Effect of TAMs Metabolism on T Lymphocytes

The amino acid metabolism of TAMs affects T cells’ immune response [16]. Argi-
nine is necessary for T cell development and activation since the intracellular arginine
concentration of the T cells affects the metabolism, function, and anti-tumoral response
of T cells [69,79,80]. However, as the arginine metabolic pathway plays a vital role in
M2 TAMs’ functions, increased ARG-1 activity by M2 macrophages creates an arginine-
depleted microenvironment which negatively affects T cells’ activation and proliferation,
decreasing T cells’ anti-tumor function [87]. Moreover, tryptophan and its metabolic prod-
uct kynurenine affect the immune response against tumor cells [101]. Elevated IDO enzyme
activity in the TAMs converts tryptophan into kynurenine [87]. The functions of T cells
are disrupted not only by the presence of kynurenine, but also due to the diminution of
tryptophan within the TME [102]. Additionally, kynurenine induces the death of T cells,
lessening the pro-inflammatory T lymphocyte count, and thereby diminishes the immune
response of T cells [103]. As a result, the increasing tryptophan metabolism of the TAMs
dampens the T cell immune response in various ways, providing an opportunity for the
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progression and spread of tumors [87]. However, the tryptophan metabolism and the
association between T cells and TAMs are more complex. Zhao et al. showed that the
IDO enzyme activity in TAMs of the hepatocellular carcinoma tissue is being boosted by
CD69+ T cells, in which CD69 is expressed on early-activated T cells within the TME [104].
TAMs affect the circulating CD69- T cells by promoting CD69 expression, which draws
them into the TME. The early-activated CD69+ T cells secrete inflammatory cytokines
such as IFN-γ [105] which causes the elevation of the IDO enzyme in TAMs and expedites
tryptophan metabolism [106]. Thus, increased IDO activity in TAMs leads to the suppres-
sion of an anti-tumoral T cell response by blocking the inflammatory cytokines’ release
and proliferation of anti-tumoral T cells [105]. Taken together, when these amino acids,
specifically arginine and tryptophan, are depleted, T cell activation and proliferation are
inhibited, while TAMs are activated [107].

The activation of TAMs’ M1 dominancy in tumor tissue leads to enhanced inflamma-
tory T cell infiltration and promotes anti-tumoral T cell response [70]. Glutaminolysis or
the breakdown of glutamine can cause an inflammatory anti-tumor response in effector T
cells, and an increased glutamine consumption polarizes macrophage M1 activation [70].
Palmieri et al. show that the genetic deletion of the GS enzyme in TAMs leads to elevated
glutamate levels in TAMs [70]. Glutamate can be converted to a TCA cycle intermedi-
ate succinate [68,70]. An increased succinate accumulation in TAMs triggers the TAMs
phenotype shift from M2 to M1. Therefore, the high activity of the GS enzyme causes an
increased glutamate metabolism [70]. TAM polarization to M2 phenotype activation nega-
tively impacts T lymphocytes’ anti-tumoral activity [16] and results in tumor cells escaping
from T cell-mediated immune activity [70]. However, M2 cells rely on OXPHOS for energy
metabolism [108], and use amino acids and fatty acids as substrates for the TCA cycle [109]
and express low glucose transporter (GLUT-1) [110]. GLUT-1 deleted macrophages use
amino acids and fatty acids as an energy source alternative to glucose, leading to the
depletion of amino acids in the TME and leaving T cells with insufficient amino acids to
maintain their functions [111]. Taken together, amino acid metabolic pathways and the
GLUT-1 transporter influence TAM polarization, survival, and cellular functions. There are
strong connections between TAM metabolism and the overall immune response against
tumors which is more often beyond the M1/M2 classification. Therefore, TAMs’ metabolic
pathways are valuable targets for cancer therapy.

4. TAM Metabolism as a Target for Immunotherapy

Rapid tumor growth of the tumor tissue causes an increased metabolic demand of
tumor cells, which creates angiogenesis in the TME [112]. However, newly formed vessels
in the tumor tissue only supply insufficient oxygen because of their disrupted structures,
which creates low perfusion and a hypoxic TME [113]. Consequently, by changing their
metabolic preferences, the cells in the TME try to adapt to this hostile condition charac-
terized by hypoxia and nutrient deprivation [114]. TAMs mainly polarize to immune
suppressive M2 macrophages in the TME and often use oxidative phosphorylation for
energy metabolism [115]. By shifting their energy metabolism to OXPHOS, TAMs can use
other substrates for energy sources, such as amino acids and fatty acids, by adding those
substrates’ products to the TCA cycle [11,16]. Here, we discuss the importance of targeting
TAMs’ metabolic pathways to improve the immunotherapies against cancers.

4.1. Targeting TAM Metabolism for Improving Cancer Therapy

Due to the strong relation between the TAMs’ metabolism and anti-tumoral immune
response, targeting the TAMs’ metabolism is a considerable approach for cancer therapy.
The bioenergetic metabolic pathways of TAM subtypes for energy generation differ from
each other [16], with the metabolism shift to oxidative phosphorylation facilitating the
pro-tumoral M2 polarization of TAMs [11]. Therefore, blocking the TAM metabolic shift to
oxidative phosphorylation has the potential to reverse the immune suppressive effects of
the M2 TAMs within the TME [116]. Chen et al. showed that the elevated activity of the
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Mammalian Target of rapamycin (mTOR) pathway enhances the M2 polarization of TAMs
in a mouse model of colon cancer [117,118]. Metformin, an mTOR-inhibiting drug, hinders
the M2 polarization of macrophages [119]. Moreover, lactate plays an important role in
TAMs polarization, and its high concentrations in the TME promote the M2 polarization of
the TAMs. Owing to the direct link between lactate concentration and TAM polarization,
lactate can be targeted to manipulate the TAMs’ metabolism. Lactate dehydrogenase
inhibitor decreased lactate production in the TME to increase the M1/M2 ratio, thereby
reestablishing the anti-tumoral activity of T lymphocytes [120]. The restoration of the lactate
dehydrogenase B activity showed reduced breast cancer cell proliferation by limiting the
macrophage-derived lactate utilized by the cancer cells [121,122]. Since the GS enzyme
triggers TAMs’ polarization by increasing the succinate concentrations in TAMs, it is
a contemporary target considering its effect on amino acid metabolism [87]. The GS-
blocking drug (methionine sulfoximine (MSO) has been used to transform pro-tumoral M2
macrophages into anti-tumoral M1 macrophages, which enhances anti-tumoral T-helper
cells and cytotoxic T cells and reduces the activity of immune-suppressive T-regulatory
cells, ultimately repressing the tumor growth in mice with Lewis lung carcinoma [70].
A recent report by Selvanesan et al. showed that gemcitabine (GEM) in combination
with immunotherapy altered the immunosuppressive TME in a mouse model of PDAC.
GEM, which showed to increase ROS production, when combined with the tetanus toxin,
decreased the immunosuppression of the PDAC tumor by decreasing the MDSC, and Trges
while increasing the CD4+ T cells [123].

Fatty acids are oxidized in the mitochondria, and this oxidization process provides
substrates for the oxidative TCA cycle [124]. In addition, fatty acid oxidation is shown to
trigger the M2 polarization of TAMs [91]. Considering the relation between FAO oxidation
and the M2 activation of TAMS, it became a new target for immunotherapy in cancer
patients. Blocking FA oxidation in the mitochondria with FAO-inhibiting drugs (etomoxir,
ranolazine) decreases the substrate supply to the TCA cycle, which significantly can mitigate
the oxidative phosphorylation of M2 macrophages and blunt immune-suppressive M2
macrophage activity. Additionally, the blockage of M2 activity with FAO-inhibiting drug
results in decreased immune-suppressive cytokines production. Hossain et al. showed
that FAO inhibition with etomoxir does not cause increased anti-tumoral T cell function.
However, the combination of etomoxir with chemotherapy re-establishes the T cells’ anti-
tumoral functions [89].

As amino acids have a vital role in the polarization of TAMs, amino acid metabolism
is another significant target for cancer therapy. The IDO enzyme, which metabolizes
tryptophan, is one of the targets [125] since the IDO enzyme and tryptophan metabolites
(especially kynurenine) favor the tumor growth by blocking the anti-tumoral immune
response [126]. Several studies were reported to develop IDO-blocking drugs [127–129]
and some of the drugs reduced the IDO activity in tumor-associated macrophages [128,129].
Yue et al. showed that tumor growth is decreased in CT26 tumor-bearing mice [128]. One
of the main therapeutic targets for cancer treatment is the inhibition of arginine metabolism
by blocking the arginase enzyme in TAMs [130,131]. The arginase enzyme inhibitor CB-
1158 molecule is an oral agent that blocks arginase enzyme activity and has been tested
in a clinical trial (NCT02903914) [132]. Blocking arginase activity in TAMs with CB-1158
causes increased arginine levels in the TME. With a high arginine supply, T cells metabolize
arginine and maintain their anti-tumoral functions [107]. Taken together, targeting the
metabolism of TAMs emerges as a new strategy to reinvigorate the T cells’ anti-tumor
immune function (Table 1).
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Table 1. Selected agents targeting TAM metabolism for the treatment of cancers.

Drug Target Metabolic Effect Disease Effect on TAMs and TME

Metformin
AMPK

(AMP-activated
protein kinase)

mTOR inhibition, increased
lipid breakdown, impaired

glycolysis
Cancer Decreased M2 polarization

of macrophages [133,134]

Compound 1 Lactate DHG Decreased lactate production,
interfering TME acidity Cancer Increased M1/M2 ratio in

TME [120]

Methionine
Sulfoximine

Glutamine
Synthetase

Inhibition of glutamine
metabolism, impaired

glutamine usage by TAMs
Lewis Lung Carcinoma

Repolarization of M2
macrophages to M1
macrophages [70]

Etomoxir FAO Impaired lipid oxidation Cancer Decreased M2 activity [89]

Ranolozin FAO Impaired lipid oxidation Cancer Decreased M2 activity [89]

CB-1158,
L-Norvaline Arginase

Inhibition of arginine
synthesis, decreasing

arginine levels

Solid tumors,
Alzheimer’s disease

Increased anti-tumoral T
cell response in TME,

Repolarization of TAMs
[89]

Doxorubicin,
Paclitaxel,

Methodextrate
ABC Transporter

Disruption of efflux
mechanism of cells leading

to lipid accumulation in cells

Multidrug Resistant
Cancer

Repolarization of TAMs
[135]

Pralnacasan,
NCX-4016, YVAD,

VAD
Caspase-1 Decreased lipid levels in

inflammatory cells

Cancer, autoimmune
diseases, rheumatoid

arthritis, osteoarthritis
TAMs repolarization [136]

Rapamycin,
RAD001 mTOR Decreased synthesis of

proteins and nucleic acids

Amyotrophic lateral
sclerosis, Glioma,

Non-small cell lung
cancer

Repolarization of TAMs
[137]

PHGDH inhibitors Phosphoglycerate
dehydrogenase

Disruption of serine
synthesis

Breast cancer, lung
cancer, malign

melanoma

Increased anti-tumoral T
cell response in TME

[138–140]

2-deoxyglucose
(2-DG) Hexokinase 2

Aerobic glycolysis inhibition
by effecting the first step of

glycolysis
Cancer Repolarization of TAMs

[141]

CB-839 Glutaminase-1 Negative effect on glutamine
metabolism Breast Cancer Decreased glutamate levels

in TME [142,143]

4.2. Na+ /H+ Exchanger (NHE1) as a Modulator of TAM Metabolism and Immune
Checkpoint Therapy

The Na/H exchanger regulates the cellular pH hemostasis in all cell types [144] which
expels H+ ions out of cells in exchange for a Na+ ion in maintaining the alkaline intracellular
pH necessary for cell survival [145]. The high glycolytic metabolism of the tumor cells leads
to cytosolic H+ accumulation and the direct consequence of glycolytic metabolism is the
activation of the NHE1 function. The expression of a glycolytic enzyme hexokinase 2 (HKII)
correlates with high NHE1 activity in rat fibroblasts and murine T helper cells [146,147].
Additionally, the NHE1 protein has been shown to play an important role in the progression
of breast cancer, glioma, and ovarian cancer [95,144,148–150]. However, NHE1 activity is
also prominent in the TME where it was shown to affect TAM polarization and metabolism.
The pharmacological inhibition or transgenic deletion of NHE1 in TAMs alone or in combi-
nation with the alkylating agent temozolomide shifts the TAMs metabolism to OXPHOS,
increases inflammatory macrophages, and favors the anti-tumor function of the TAMs and
T cells [95,148,151]. Additionally, the blockade of NHE1 with HOE642 increases the glucose
uptake of the glioma-infiltrating CD11b+ macrophages with metabolic shifts towards the
OXPHOS metabolism, and favors the anti-tumor macrophage function [95]. TAMs promote
the expression of PD-L1 in the pancreatic ductal adenocarcinoma cells and are associated
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with the high expression of the key glycolytic enzyme, pyruvate kinase M2 (PKM2), as
assessed by analyzing the PDAC cohort from the TCGA database [152]. Interestingly,
in bladder cancer cells, a reduced NHE1 gene expression is associated with a reduced
PKM2 gene expression [153], pointing to the role of the NHE1 protein in the glycolytic
metabolism, and PD-L1 expression. Therefore, targeting the NHE1 protein may reprogram
the metabolism and phenotype of immune cells in the TME, potentially improving the
therapeutic efficacy of the immune checkpoint therapy (Figure 3).
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tumor progression via multiple mechanisms. NHE1 blockade reduces glycolysis in the tumor cells
and the macrophages reducing H+ and lactate in the TME. Alteration of acidic pHe reduces tumor
angiogenesis by blocking metalloprotease (MMP) activation. Reduced NHE1 activity in the TME
reprograms macrophage metabolism by increasing OXPHOS genes while reducing glycolytic genes
of the macrophages, resulting in reduced TGF-β and IL10 secretion which increases T cell effector
function and reduces regulatory T cells. Reduced PKM2 expression of macrophages leads to reduced
PD-L1 expression of the cancer cells. Therefore, blocking NHE1 rewires the metabolism of the TAMs
which improves the anti-tumor immunity of the T cells. MMP, matrix metalloproteinase; VEGF,
vascular endothelial growth factor; PKM2, pyruvate kinase M2; HKII, hexokinase II; LDHA, lactate
dehydrogenase; PD-L1, programmed death-ligand 1.

4.3. Targeting TAM Metabolism to Improve Immune Checkpoint Therapy

The metabolism of TAMs is highly heterogeneous not only within different TAM
populations, but also among similar TAM populations which, at least in part, explains
the failure or sub-optimal efficacies of TAM-directed therapeutic approaches and im-
mune checkpoint blockade therapies [154,155]. Pro-tumoral M2 macrophages secrete
anti-inflammatory cytokines such as IL-10 and TGF-Beta to block the anti-tumoral T cell
response against tumoral cells [156]. Inflammatory M1-activated macrophages utilize
the glycolytic metabolism for their function [124] and the PKM2 in macrophages enables
the metabolic shifts of the macrophages from OXPHOS to glycolysis. PKM2 has been
shown to enhance the expression of PD-L1 in the LPS-activated macrophages and colon
cancer-infiltrating CD1b+CD4/80+ macrophages [71]; targeting the PKM2 with a synthetic
compound, Tepp-46, reduced the PD-L1 expression in macrophages and dendritic cells [71].
Chen et al. showed that transcriptomic analysis of the myeloid cells upon leukocyte
immunoglobulin-like receptor B (LILRB2) antagonism shows changes in the metabolic
genes and gene networks associated with inflammatory myeloid cells, as opposed to their
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alternatively activated phenotype [157]. The LILRB2 blockade by an antibody transformed
the tumor-infiltrating myeloid cells in the non-small-cell lung carcinoma tumor tissues into
the inflammatory activation spectrum and increased the efficacy of the immune checkpoint
blockade therapy [157]. Moreover, the deletion of an immune checkpoint brake protein
TNFAIP8L2 (TIPE2) in macrophages [158] leads to increased mitochondrial respiration and
inflammatory IFN-γ signaling [159]. In melanoma, Strauss et al. showed the connection
between myeloid cell’s PD-1 expression and metabolic reprogramming of the myeloid
progenitor cells [160], where PD-1-deficient myeloid cells induced increased metabolic
intermediates of glycolysis, the pentose phosphate pathway, and the TCA cycle, but, most
prominently, elevated the level of cholesterol, resulting in an increased T cell effector func-
tion [160]. Tim3, an immune checkpoint molecule, controls the glycolytic metabolism and
lactate production by macrophage cells [161,162]. However, some TAM subsets rely on
PD-L1/PD-1 signaling to stimulate glycolysis. Therefore, the efficacy of targeting immune
checkpoint molecules relies not only on the T cells’ functional reinvigoration, but also on
the metabolic preference of the TAMs. The inhibition of tumor cells’ glycolysis ensures the
sufficient glucose necessary for TAM function. Ultimately, targeting the TAMs’ PD-L1/PD-1
signaling may restore the M1-like phenotype, at least partially [16]. Taken together, target-
ing the TAMs and tumor metabolism in combination with immune checkpoint blockade
therapy in a multifaceted manner may increase their anti-cancer efficacy (Figure 4).
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aerobic glycolysis and consume an elevated amount of glucose for bioenergetic and biosynthetic
purposes releasing lactate and H+ in the TME. In addition to affecting cellular signaling, acidic TME
also affects therapeutic antibody function and integrity and may cause breakage of the antibodies.
Immune checkpoint molecules cause elevation of IL-10 signaling which increases the TCA substrates
and OXPHOS metabolism, and promotes TAM’s tumor promoting function. The elevated level of
Agr1, GS, and IDO cause elevated flux of TCA cycle substrates via amino acid metabolism and FAO,
resulting in increased OXPHOS metabolism, a hallmark of tumor-promoting TAMs. These lead to
depletion of metabolites in the TME necessary for T cell’s effector function. Reducing TME acidity
may increase the OXPHOS genes which elevates the OXPHOS metabolism, reduces glycolysis, and
promotes TAM’s anti-tumor function. As the M1/M2 classification is overly simplified, the preference
of glycolysis for M1 TAMs and OXPHOS for M2 TAMs are also simplified. Therefore, the increase of
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TAM’s OXPHOS, because of glucose metabolism to pyruvate and its progression to the TCA cycle,
may increase the TAM’s anti-tumor function. Additionally, targeting Arg1, GS, and IDO, and reducing
tumor acidity by blocking NHE1 activity may increase the key metabolites in the TME necessary for
the T cells’ effector function. Glu, glucose; ARG1, arginase 1; IDO, indoleamine 2,3-dioxygenase 1; GS,
glutamine synthase; AA, amino acids; FAO, fatty acid oxidation; PKM2, pyruvate kinase M2; LDH,
lactate dehydrogenase; TCR, T cell receptor; mTOR, mammalian target of rapamycin; IC, immune
checkpoint; mAb, monoclonal antibody.

4.4. Effect of Tumor Acidity on the Activity of Therapeutic Antibodies

Due to the elevated aerobic glycolysis in tumor cells, lactate and H+ accumulate in the
TME making an acidic TME that directly blunts T cells’ anti-tumoral response and ther-
apeutic antibodies’ activity [97,163,164]. A low pH induces the TAMs’ transformation to
immune-suppressive M2 macrophages, which blocks the anti-tumoral T cell response [97].
As T cell activity is required for immune-checkpoint antibodies’ efficacy, the depleted anti-
tumoral T cell response is one of the underlying factors that interfere with immunotherapy
efficacy [97,163]. It has been shown that the administration of alkalinizing agents to colorec-
tal cancer patients increased the pH of the TME, resulting in the reversal of the lessened
anti-tumoral T cell response stemming from a low pH [165]. The administration of alkalin-
izing agents significantly increased the overall response to the therapeutic antibodies along
with the resurgence of an anti-tumoral T cell response [165]. The acidic pH of the TME neg-
atively affected the therapeutic antibodies by the breakdown of antibodies and damaging
their binding capacities to the cell-surface targets [97]. Additionally, Pilon-Thomas et al.
showed that when mice bearing melanoma were treated with anti-CTLA-4 and anti-PD-1
antibodies, in combination with bicarbonate to increase the pH in the TME, the therapeu-
tic efficacy of the immune checkpoint inhibitors increased significantly [166]. It is well
known that an acidic pH affects therapeutic antibodies’ binding to the targeted complex
negatively [167]. However, an acidic TME can be exploited by selectively targeting the
TME with engineered or conditionally active therapeutic antibodies possessing enhanced
binding and efficacy in the acidic TME [168]. Engineered trastuzumab, which is a HER2+

selective monoclonal antibody, showed better binding and efficacy at pH 6.5 than those at
pH 7.5, indicating the increased efficacy in the acidic environment, whereas the toxicity in
the healthy tissue was diminished. Therefore, although an acidic TME affects the efficacy of
the immune checkpoint targeted antibodies, it also presents a unique advantage in targeting
tumors featuring an acidic TME while reducing systemic toxicity.

5. Conclusions

Once cancer was recognized as a metabolic disease and it was known that cancer cells
utilize aerobic glycolysis to meet the energy demand. Similar to cancer cells, TAMs also
reprogram their metabolism depending on the metabolic cues they encounter and shape the
neoplasm. Hence, the macrophage is recognized as a dynamic cell population with various
activation phenotypes and metabolic signatures in the different phases of cancer develop-
ment. The macrophages’ adaptation to metabolism has been investigated in recent years,
and their functions are intimately connected to the metabolic state. Current macrophage
targeting therapies, aiming at the alteration or depletion of the M2 macrophages, often fail
due to innate and acquired resistance to the therapy and developing alternative immuno-
suppressive cells compensating for TAMs. The most durable approach would be targeting
multiple immunosuppressive pathways in combination with the metabolic reprogramming
of the macrophages. However, the challenge is to reduce the immunosuppressive func-
tion of the immune cells and, at the same time, provide immunostimulatory cues. New
studies are required to evaluate the immunomodulatory impact of anti-cancer therapies,
especially the new generation of immunotherapies and their interplay with the metabolism
of different TME components.
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