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Aging alters cellular and molecular processes, including those of stem cells biology.
In particular, changes in neural stem cells (NSCs) are linked to cognitive decline
associated with aging. Recently, the systemic environment has been shown to alter both
NSCs regulation and age-related cognitive decline. Interestingly, a well-documented and
naturally occurring way of altering the composition of the systemic environment is through
diet and nutrition. Furthermore, it is well established that the presence of specific nutrients
as well as the overall increase or reduction of calorie intake can modulate conserved
molecular pathways and respectively reduce or increase lifespan. In this review, we
examine these pathways in relation to their function on NSCs and cognitive aging. We
highlight the importance of the Sirtuin, mTOR and Insulin/Insulin like growth factor-1
pathways as well as the significant role played by epigenetics in the dietary regulation
of NSCs and the need for further research to exploit nutrition as a mode of intervention
to regulate NSCs aging.
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AGING AND NEURAL STEM CELL FUNCTION

Aging is the number one risk factor for the majority of diseases currently affecting the developed
and developing world (Niccoli and Partridge, 2012). The area of study addressing this issue, known
as biogerontology, is committed to investigating the underlying mechanisms of aging, to explore
whether they can be intervened upon to delay or perhaps even halt the progression of age-related
conditions such as cardiovascular disease, cancer and neurodegeneration (Verburgh, 2015). An
improved understanding of aging mechanisms could lead to the development of strategies to
increase “healthspan”—the period of time free from debilitating disease (Franklin and Tate, 2008;
Brandhorst et al., 2015). Aging is linked to a number of cellular and molecular processes including
nutrient-sensing pathway, epigenetic and stem cells biology deregulation (López-Otín et al., 2013).
Stem cells in general have been closely linked to aging owing to their reduced regenerative ability
linked to the decline of tissues that accompanies age (Signer and Morrison, 2013; Behrens et al.,
2014). Impaired function of satellite stem cells in muscle and epidermal stem cells of the skin, for
example, is a key process underlying reduced regeneration during aging in these tissues (Castilho
et al., 2009; Day et al., 2010).

The adult NSC population is also negatively affected by age. Post-natal NSCs, able to
differentiate into neurons, have been identified in several areas of the mammalian central
nervous system (CNS), including the rodent and human dentate gyrus (DG) of the hippocampus

http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
http://www.frontiersin.org/Physiology/editorialboard
https://doi.org/10.3389/fphys.2017.00017
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2017.00017&domain=pdf&date_stamp=2017-01-30
http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:sandrine.1.thuret@kcl.ac.uk
https://doi.org/10.3389/fphys.2017.00017
http://journal.frontiersin.org/article/10.3389/fphys.2017.00017/abstract
http://loop.frontiersin.org/people/233510/overview
http://loop.frontiersin.org/people/129600/overview


de Lucia et al. Dietary Regulation of Aging NSC

and the mouse subventricular zone (SVZ). Postnatal-born
neurons—a phenomenon known as adult neurogenesis—in these
areas have been implicated in learning andmemory and olfaction
respectively (Altman and Das, 1965; Pencea et al., 2001; Spalding
et al., 2013). More recently post-natal NSC-derived neurons
have also been identified in the mouse hypothalamus and the
human striatum (Kokoeva et al., 2005; Ernst et al., 2014). Though
mouse models have been extensively used in adult neurogenesis
research, it is becoming clear that there are considerable
differences between rodent and human neurogenesis: firstly,
there seems to be no neuron turnover in the human olfactory
bulb, whilst this is an important neurogenic zone in the mouse
brain. Secondly, whilst hippocampal neurogenesis occurs in both
species, retrospective birth dating of human postmortem tissue
has revealed that nearly all of the dentate granule “turnover”
during adult life, whereas only 10% of themouse granule neurons
are exchanged in adulthood (Spalding et al., 2013). Furthermore,
the rate of decline in hippocampal neurogenesis in response to
age appears far greater in mice than in humans (Bergmann et al.,
2015).

The marked decline in NSC activity in the aging rodent DG
manifests in reduced proliferation that eventually leads to the
depletion of the progenitor pool (Romine et al., 2015; Yang
et al., 2015). This decline partly contributes to the age-linked
decline in cognitive abilities, particularly those dependent on the
hippocampus (Park et al., 2013; Romine et al., 2015; Yang et al.,
2015). In the SVZ, there is a similar marked decline in NSC
function and this contributes to impoverished olfaction during
rodent aging (Enwere et al., 2004). Studies in model species
have shown that deregulated hippocampal neurogenesis, is an
important component of neurodegenerative conditions such as
Alzheimer’s (López-Toledano and Shelanski, 2004, 2007; Winner
et al., 2011), further linking declines in NSC function to the
deterioration of the aging brain. Aging therefore appears to exert
some of its detrimental effects in the CNS by directly interfering
with multiple cellular and molecular processes that govern the
regulation of the NSC population. This notion is summarized
in Figure 1. As aging has such severe effects on the decline of
NSC and the development of neurodegenerative conditions, this
prompts the field to consider whether we can we target the
maintenance of the NSC population to slow cognitive aging and
neurodegenerative disease progression? If so, what are the key
mechanisms to target?

Interestingly, studies investigating the role of aging on NSCs
have also highlighted the importance of the systemic milieu
in regulating the neurogenic niches of the CNS; through the
use of heterochronic parabiosis, Villeda and colleagues showed
that the systemic environment of a young mouse was able
to rescue the cognitive deficits of an aged mouse following
the fusion of young-old circulatory systems (Villeda et al.,
2011, 2014). This rejuvenating effect is also observed following
intravenous infusion of young plasma into old mice, and was
underpinned by a marked reversal of age-related decline in
hippocampal neurogenesis (Villeda et al., 2011) and upregulation
of genes linked to synaptic plasticity (Villeda et al., 2014).
Similarly, enhanced neurogenesis in the SVZ was observed by
Katsimpardi and colleagues following heterochronic parabiosis,

FIGURE 1 | Diagram summarizing the proposed relationship between

aging, nutrition and neural stem cells. Aging and dietary modulation such
as calorie restriction (CR) can alter the composition of the systemic
environment, which affects epigenetic regulation and several nutrient-sensing
pathways, including the mTOR, Sirtuin and Insulin and Insulin like signaling (IIS)
pathways. These in turn alter neural stem cell (NSC) regulation and can
predispose to disease and cognitive decline.

resulting in improved odor discrimination (Katsimpardi et al.,
2014). Notably, these studies have demonstrated the role for
candidate chemokines (e.g., CCL11, Villeda et al., 2011) and
growth factors (e.g., GDF11 e.g., Loffredo et al., 2013) whose
circulating levels fluctuate in aging mice and appear to exert their
effects, at least in part, by altering NSC function. Complementary
to this, studies looking at other populations of stem cells
have observed a similarly rejuvenating effect of the youthful
milieu on the typical age-related declines in stem cell function
throughout the body as well as vice-versa, whereby the old
milieu inhibited stem cell function (Conboy and Rando, 2012).
These data suggest that by altering the composition of the
systemic environment, one could affect the regulation of the
NSCs; a well-documented, naturally occurring way of achieving
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this is through diet and nutrition (Stangl and Thuret, 2009). We
define diet as encompassing dietary paradigms such as calorie
restriction (CR), intermitted fasting (IF), dietary restriction (e.g.,
of specific components such as protein) (DR) and time restricted
feeding (TRF) whereas nutrition involves the intake and/or
supplementation of foods containing pro-neurogenic agents
such as polyphenols, polyunsaturated fatty acids (PUFAs) and
vitamins/minerals.

As stem cells in general are designed to act in response to
their environment and, and as reported above, are responsive to
differing compositions of the systemic environment, it follows
that diet can greatly influence their function (Murphy and
Thuret, 2015). Several authors have reviewed the effect of diet on
stem cells in general (Rafalski et al., 2012; Ochocki and Simon,
2013; Mihaylova et al., 2014), for the purpose of this review
we will focus on the relatively unexplored field of the effects of
diet and aging on NSCs. Briefly, nutritionists have found that
an overabundance of nutrients is detrimental to several aspects
of human and animal health (Keenan et al., 1994; Nagai et al.,
2012). This results from an overstimulation of nutrient sensing
molecular pathways, which eventually become insensitive to the
stimuli (Blagosklonny, 2008; Gems and de la Guardia, 2013). CR,
IF and DR have been reported to have opposite effects on these
pathways and present a means to improved health and life span
(Solon-Biet et al., 2014, 2015; Brandhorst et al., 2015; Fontana and
Partridge, 2015). Figure 1 is a schematic of how aging, diet and
the systemic environment interact to act upon these pathways.
Notably, these effects are conserved across species as they have
been observed in simple organisms such as yeast, C. elegans, and
drosophila through to rodents and humans (Fontana et al., 2010).
We now review the impacts of dietary and nutritional regulation
of NSC activity and function, with focus on the aforementioned
nutrient sensing pathways and their effects on longevity.

IMPACT OF DIET ON NEURAL STEM
CELLS

Dietary paradigms such as CR and IF are the most widely
employed means of assessing the impacts of diet upon stem
cell function and longevity. A 30–40% reduction in calorie
intake, the typical regimen for CR, has often been brought
about by alternate-day feeding—a form of IF. As such, the field
must pay great attention as to whether they are assessing the
impacts of DR or IF, unpublished work from our lab shows that
the positive impacts of IF on hippocampal neurogenesis and
cognitive performance can be derived independent of calorie
intake, suggesting that it is the period of fasting that that is
acting on the NSC pool. Nutritional content, such as the amount
of polyphenols and PUFAs, among other specific nutrients, has
also been reported to impact on NSC function during aging (see
Maruszak et al., 2014; Murphy and Thuret, 2015 for review).

Reducing calorie intake in rodents was shown to counteract
age-related cognitive decline as well as increase the number
of newly generated neurons in the hippocampus (Ingram
et al., 1987; Lee et al., 2000, 2002). Furthermore, Kumar and
colleagues suggest DRmay aid in fighting excitotoxic injury as an

increase in progenitors is seen in the SVZ, SGL, hypothalamus
and cortex of adult rats (Kumar et al., 2009). In contrast,
Bondolfi and colleagues found that CR did not affect the rate
of neurogenesis but affected the survival of new–born glia in
the mouse hippocampus (Bondolfi et al., 2004). Given that
CR and IF (typically involving some degree of CR) have been
shown to positively impact on NSC function, it follows that
excessive calorie intake, as in the case of obesity and other
models of metabolic disorders, will negatively affect NSC activity
and may decrease adult hippocampal neurogenesis (Stangl and
Thuret, 2009). Furthermore, obesity was a detrimental factor in
studies investigating post-stroke recovery in humans, suggesting
that a history of increased calorie intake impairs brain repair
(Kalichman et al., 2007). Interestingly, CR was also proven
beneficial in elderly humans as shown by improved verbal
memory scores (Witte et al., 2009). It must be considered
however, that in elderly, sometimes frail individuals, restricting of
calories may be too dangerous, older populations may therefore
benefit from more targeted pharmacological interventions to
modulate NSCs activity based on CR/IF and DR mimetics.

Though it may seem counter intuitive that reducing calories
may be beneficial to stem cells in particular, this can be explained
by our historical food supply not being readily available and
abundant at all times. Humans have evolved to cope with periods
of reduced calorie intake, resembling the effect achieved by CR
and IF experiments. A possible biological explanation for this
relies on the benefits of refeeding after a fasting period, suggesting
that when an organism is “fasting” it can focus on preparing
resources to act quickly and effectively when nutrients do become
available (Reed et al., 1996). With respects to the NSCs of the DG
in particular, their activity is possibly enhanced in the absence
of nutrients owing to the necessity of “hunting behavior” and
the requirement for cognitive flexibility that must accompany it:
improved cognition may be a means to ensure food is found (As
discussed by Mattson, 2012).

SUPPORTING EVIDENCE FOR THE ROLE
OF NUTRIENT-SENSING PATHWAYS IN
NEURAL STEM CELL REGULATION AND
LONGEVITY

Owing to the compelling research relating diet to longevity
and to NSCs, the field is now trying to delineate the
molecular pathways behind this relationship. Though many
pathways are involved in NSC regulation and an equally
vast amount is involved in nutrient-sensing and aging,
there is a relatively small proportion identified as relating
the three. Thus far, the best characterized, and therefore
most promising starting point for imminent studies, are
the mTOR, Insulin and Insulin-like growth factor signaling
and Sirtuin pathways. In this section, we will focus on
the available data supporting a role for these pathways in
aging, nutrient sensing and NSC regulation. See Figure 2 for
a summary of key NSC related functions affected by these
pathways.
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FIGURE 2 | Schematic summarizing the key effects of the Insulin/Insulin-like Growth factor (IIS) (in purple), mTOR (in green), sirtuin (in blue) and

epigenetic (in orange) pathways on neural stem cell (NSC) function as a result of diet and aging. Solid arrows represent relationships between the molecular
pathways (represented by the four rectangles in the center) and NSC function (represented by the outer, rounded rectangles) or related phenotypes (dotted rounded
rectangles) discussed in this review. The dotted arrows connect possible molecular mechanisms behind the observed phenotypes reported in this review. Red arrows
represent an effect caused by the inhibition of the pathway they stem from. Boxes with gradient coloring represent functions affected by multiple pathways.

mTOR
Themammalian target of rapamycin (mTOR) is a classical dietary
and nutrient sensing pathway. mTOR is a serine/threonine
kinase. It combines with several accessory proteins including
RAPTOR or RICTOR to form mTOR complex 1 (mTORC1) and
mTOR complex 2 (mTORC2), respectively. The two complexes
carry out different functions with mTORC1 being responsible
for cell growth and metabolism while mTORC2 regulates
cytoskeleton organization. Importantly, mTOR is the catalytic
subunit of the complex and is inhibited by the presence of
rapamycin, this inhibition however only occurs when mTOR is
bound to the RAPTOR protein (Magri and Galli, 2013). mTOR
activity is altered by energy and amino acid availability as well
as growth factors, making it a key molecule within nutrition
studies (Magri and Galli, 2013). mTOR is also involved in
a feedback loop with insulin where insulin (discussed below)
activates mTOR and mTOR phosphorylates the S6 kinase, which
in turn inhibits insulin signaling (Blagosklonny, 2008). In the
liver, branched chain amino acids (BCAA) in particular signal
for mTOR activation, showing that protein intake and specific
amino acids alter the total activation of mTOR (measured as
phosphorylated mTOR / total mTOR) and ultimately longevity
(Solon-Biet et al., 2014).

As well as functions in nutrient sensing, the mTOR pathway
has also been linked to longevity (Blagosklonny, 2010). Its

inhibition via ethylaxanthine and rapamycin was shown to
improve longevity in yeast (Wanke et al., 2008) and mice
(Harrison et al., 2009; Fok et al., 2014) respectively, leading
to plans to test the compound in larger and longer-lived
mammals such as companion dogs (Check Hayden, 2014).
Recently, the mechanism of action behind rapamycin’s role
in longevity was suggested to involve a decrease in reactive
oxygen species, as shown by experiments in the rodent liver
(Martínez-Cisuelo et al., 2016). Notably, rapamycin treatment
was shown to exert its beneficial effects even if started at advanced
age, a factor, which usually greatly impairs the efficacy of life-
extending interventions (Harrison et al., 2009). In addition, Tan
and colleagues highlighted increased PI3K/Akt/mTOR pathway
activation during aging as the molecular mechanism responsible
for replicative senescence in vascular smooth muscle cells
(Tan et al., 2016). This pathway has been the focus of aging
research and is shared by both the mTOR and the insulin-like
growth factor signaling (IIS) pathways as explained in Section
Insulin. Several consequences of mTOR activation increase the
risk of premature aging and disease, these include decreased
autophagy accompanied by an increase in protein production
eventually causing an increase in protein agglomeration as well
as an increase in inflammation (Verburgh, 2015). Furthermore,
chronic mTOR activation causes increased proliferation of
several types of stem cells eventually leading to progenitor pool

Frontiers in Physiology | www.frontiersin.org 4 January 2017 | Volume 8 | Article 17

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


de Lucia et al. Dietary Regulation of Aging NSC

depletion. Adequate mTOR regulation could thus be key in
maintaining these populations throughout aging (Sato et al.,
2010; Paliouras et al., 2012).

Though there is a limited number of studies investigating the
role of mTORwithin the NSC population, there have been several
encouraging findings supporting key functions for this nutrient
sensing pathway in NSC regulation and aging.

Firstly, both protein deposition and inflammation are key
hallmarks of neurodegenerative conditions suggesting that
mTOR hyperactivity may contribute to disease progression
within the CNS (O’ Neill, 2013). These observations are
consistent with the evidence supporting aging as a consequence
of overstimulation of signaling pathways, driven by the
overabundance of nutrients. Furthermore, mTOR has also
been shown to be key in dictating the proliferation rate of
the adult SVZ NSC population; its inhibition in fact, caused
progenitor pool depletion (Paliouras et al., 2012). In addition,
Han and colleagues have also reported that, during embryonic
development, mTOR carries an important role for neuronal
differentiation: enhancing mTOR activity via insulin caused an
increase in the number of neurons, which was counteracted
by rapamycin. Intriguingly, in the presence of rapamycin the
decrease in neuronal numbers was attributed to increased
autophagy rather than apoptosis (Han et al., 2008). These findings
also suggested the possibility of similar mechanisms taking place
in adult NSCs. Indeed, Yu and colleagues showed that increased
autophagic death also occurred in adult hippocampal NSC
following insulin withdrawal and was accompanied by a decrease
in cell density, these effects were also exacerbated by the presence
of rapamycin, implicating mTOR activity (Yu et al., 2008). The
authors state that in an aged environment there is decreased
insulin signaling and thus increased autophagy, which may
reduce the survival of stem cells. Contrary to this, the authors
remark that autophagy can enhance cell survival, given its
beneficial effect in clearing unwanted and malfunctioning cells,
an essential mechanism in the context of aging (Cuervo, 2008).
Elevated autophagy in response to reduced insulin signaling may
thus not be a solely negative effect but further research is required
to better delineate the modulatory role of mTOR activity in NSC
during aging (Gems and de la Guardia, 2013).

The limited number of studies (See Table 1) however,
highlights the need for further investigations into the exact
mechanisms of mTOR regulation in adult NSCs, with the
ultimate aim of determining whether modulation of this pathway
can bring preserve the NSC pool during aging. The key effects of
the mTOR pathway on NSCs elucidated this far are depicted in
Figure 2.

Insulin
Insulin and Insulin-like growth factor (IGF) are two hormones
closely linked to nutrition, as they respond to increased glucose.
Insulin is released by the β cells of the pancreas and acts upon
transmembrane tyrosine kinase receptor to activate downstream
signaling pathways and cause glucose uptake by liver and muscle
cells (van Heemst, 2010). Other members of the IGF family
are under the control of growth hormone (GH) release by the
pituitary gland. They also act upon tyrosine kinase receptors and

activate downstream pathways that are often shared with insulin,
coining the term insulin/insulin-like growth factor signaling
(IIS) pathway. Stimulation of the IIS pathway results in the
activation of the PI3K/Akt pathway, a pathway shared with
mTOR signaling, which ultimately leads to the inactivation of
the FoxO transcription factors (van Heemst, 2010). While both
insulin and IGF respond to carbohydrate presence, they usually
carry out slightly different roles with insulin being primarily
occupied with glucose metabolism and IGF with growth and
survival (Rafalski and Brunet, 2011). Besides being activated by
carbohydrates such as glucose, the IIS pathway is also stimulated
by proteins and is involved in a feedback loop with mTOR as
described in Section mTOR (Blagosklonny, 2008).

IIS is also extensively implicated in longevity (Kimura et al.,
1997; Bartke et al., 2013); overactivation, like for mTOR, leads to
decreases autophagy and ultimately to the shortening of lifespan
(Verburgh, 2015). The decrease of the IIS pathway in C. elegans
by Kimura and colleagues was one of the first experiments
to show an increase in lifespan relating to diminished insulin
signaling (Kimura et al., 1997). This was confirmed by several
other studies, with Blüher and colleagues showing that the knock-
out of a fat specific insulin receptor resulted in an increase in
lifespan of 18% (Blüher et al., 2003) and Taguchi et al finding
that the knock-out of downstream substrates of the IIS pathway
caused a 32% increase in female mice lifespan (Taguchi et al.,
2007). Furthermore, serum IGF-1 levels in 31 different mouse
strains negatively correlated to average lifespan (Yuan et al.,
2009). Some encouraging evidence has also been found relating
IIS to human longevity; IIS related polymorphisms correlate to
lifespan (Bonafè et al., 2003; Kojima et al., 2004) and several
centenarians were found to have loss of function mutations
in the IGF-1 receptors (Suh et al., 2008). Conversely, people
affected by acromegaly, characterized by increased GH release,
experienced a 2–3 fold increase in death rate (Clayton, 2003;
Suh et al., 2008; Verburgh, 2015). More recently, reduced growth
hormone secretion, and thus indirectly IIS activity, was shown
to correlate with human familial longevity (van der Spoel et al.,
2016) and genomewide meta-analysis studies linked several gene
loci to longevity and to levels of circulating IGF-related proteins
(Teumer et al., 2016). These studies show that this pathway and
its role in lifespan is conserved in more complex organisms.

Several rodent studies have suggested insulin and IGF may
link nutrition to organism longevity through key functions
in tissue-specific stem cell maintenance. Mechanisms such as
autophagy, compromised by IIS overstimulation, carry out key
functions within the stem cell population. FoxO3A was proven
essential for efficient clearing of age-related cellular debris
which is known to prevent malfunctioning of stem cells and to
lead to improved longevity (Cuervo, 2008; Warr et al., 2013).
The IIS pathway also appears to have important functions on
the regulation of neural stem cells specifically, with studies
implicating it in both development and adulthood.

IGF-1 overexpression alone and IGF-1 and insulin
overexpression on embryonic NSC for example, highlighted
that insulin pushes toward increased differentiation while IGF-1
pushes toward a proliferative phenotype (Arsenijevic et al.,
2001). Furthermore, studies have shown that overexpression of
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TABLE 1 | Table summarizing studies showing supporting evidence for the role of mTOR, IIS, and Sirtuin pathways in NSCs function.

Pathway Model NSC Intervention Supporting evidence Study

mTOR/IIS Rat In vitro Embryonic Increased insulin levels Increase in differentiated neurons, which was
counteracted by rapamycin

Han et al., 2008

mTOR/IIS Rat In vitro DG Insulin withdrawal Increased neuronal death, exacerbated by
rapamycin

Yu et al., 2008

IIS Mouse In vitro SVZ and DG FoxO3 knockout Decreased number of NSC and self-renewal
ability

Renault et al., 2009

mTOR/IIS Rat In vivo Cortex Treated with EGCG + TBI Reduced NSC cell death around damaged area Itoh et al., 2012

IIS Rat In vitro DG Increased IGF-1 Decreased differentiation and increased
proliferation of NSCs

Åberg et al., 2003

IIS Mouse In vitro Striatal Increased insulin Increases NSCs differentiation Arsenijevic et al., 2001

IIS Mouse In vivo Perinatal IGF-1 overexpression Increase in number of neurons and of
oligodendrocytes.

Carson et al., 1993

IIS Mouse In vivo Perinatal IGF-1 KO Decreased proliferation and differentiation of
oligodendrocytes

Ye et al., 2002

IGF-1 Mouse In vivo SVZ IGF-1R KO Reduced age related depletion of NSC Chaker et al., 2015

IGF-II Mouse In vitro Perinatal IGF-II treatment Increased NSC expansion and promoted
self-renewal

Ziegler et al., 2012

IGF-II Mouse In vitro DG Sh-RNA knockdown of IGF-II Impaired proliferation Bracko et al., 2012

Sirtuins Mouse In vitro Perinatal SVZ Oxidation or Sirt1 activation Enhanced astrocytic lineage Prozorovski et al., 2008

Sirtuins Mouse In vitro Perinatal SVZ Reducing environment Enhanced neuronal lineage Prozorovski et al., 2008

Sirtuins Mouse In vitro Perinatal SVZ Sh-RNA knockdown of Sirt1 Disengaged neural fate from redox conditions Prozorovski et al., 2008

Sirtuins Mouse In vivo SVZ and DG Inactivation of Sirt1 Increased oligodendrocyte differentiation and
myelination

Rafalski et al., 2013

Sirtuins/NAMPT Mouse In vivo DG Measuring /ablating NAMPT NAMPT levels decrease with age, its ablation
reduces NSC proliferation and
oligodendrogenesis

Stein and Imai, 2014

Epigenetics Mouse In vitro Embryonic Dnmt1 knockout Increased astrocytic differentiation Fan et al., 2005

Epigenetics Mouse In vitro Perinatal SVZ Dnmt3 knockout Impaired neuronal differentiation Wu et al., 2010

NSC, neural stem cells, IIS, insulin and insulin-like signaling, DG, dentate gyrus, SVZ, sub ventricular zone, KO, knockout.

IGF-1 leads to increased brain size due to increased myelination
(Carson et al., 1993). Finally, Igf-1 null mice presented with
decreased proliferation and differentiation of oligodendrocyte
lineage (Ye et al., 2002).

Whether these effects persist into adulthood requires further
investigation. Recently however, Chaker and colleagues showed
that the inhibition of IGF-1 signaling in rodent adult olfactory
bulb NSCs was able to hinder age-related stem cell decline and
preserve the production and integration of newborn neurons
(Chaker et al., 2015). IGF-1 was also shown to stimulate
proliferation of adult hippocampal NSC both in vivo and in vitro
while blocking the PI3K/Akt pathway stopped the proliferative
effects of IGF-1 on NSCs (Åberg et al., 2000, 2003). This was
later supported by Chigogora and colleagues finding a correlation
between IGF-1 levels and an elevated risk of human depression
(Chigogora et al., 2016), a disorder known to involve neurogenic
and possible NSC deregulation (Hill et al., 2015). Furthermore,
the deletion of the FoxO family members results in increased
brain size and proliferation during development but also in a
depletion of the progenitor pool and ultimately a decrease of
SVZ adult neurogenesis (Paik et al., 2009; Renault et al., 2009).
FoxO3 in particular seems to regulate quiescence of the adult SGL
and SVZ NSC population and to have a role in oligodendrocyte

regulation. FoxO transcription factors are also sensitive to oxygen
changes making them ideal effectors between oxidative stress,
a known aspect of aging, and stem cell maintenance (Renault
et al., 2009). Besides these studies, several others have reported
pro-neurogenic effects of insulin when investigating the mTOR
pathway as discussed in Section mTOR.

Interestingly, IGF-II is produced by choroid plexus and
released in the cerebrospinal fluid (CSF), allowing it to come in
contact with the neurogenic niches. NSCs in the SVZ extend a
process through the ventricular wall and come in contact with
the CSF directly, thereby allowing its composition to directly
alter their regulation. Increased presence of CSF IGF-II during
development for example, promotes neurogenesis (Lehtinen
et al., 2011; Ziegler et al., 2015). IGF-II is also involved in
hippocampal neurogenesis in adulthood (Bracko et al., 2012).
In vitro and in vivo studies showed IGF-II involvement in
promoting NSC maintenance (Ziegler et al., 2012). Studies
have also linked IGF-II dependent mechanisms to hippocampal-
dependent memory retention (Chen et al., 2011) and more
specifically to age-related cognitive decline (Steinmetz et al.,
2016) in rodents, further supporting a link between IGF-II and
NSCs function and presenting a key target for further researching
seeking to preserve AHN during aging (See Table 1).
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The overall effects of this pathway onNSC regulation however,
remain inconclusive due to a limited number of concordant
studies (Åberg et al., 2003; Itoh et al., 2012); some studies
have reported increased IIS resulting in a beneficial increase in
adult neurogenesis, for example during GH and IGF-1 mediated
increases in neurogenesis as a result of exercise (Berg and Bang,
2004) or following a blueberry supplemented diet in rodents
(Shukitt-Hale et al., 2015). In contrast, CR, which is known to
directly target and diminish IIS, has also been proven beneficial
for both cognition and longevity in rodent models of Alzheimer’s
disease (Parrella et al., 2013). Figure 2 summarizes some of the
NSC functions affected by the IIS pathway. As for mTOR, this
highlights the need of a fine-tuned balance between IIS activation
and inhibition throughout the lifespan. It is likely that several
other factors such as oxidative state of the cell, biological age and
brain region all play a role in this balance and can propel toward
a positive or negative effect of the IIS pathway.

Sirtuins
Sirtuins are a group of deacetylases initially shown to extend
lifespan in yeast by regulating mitochondrial function and
cellular redox state (Aguilaniu et al., 2003). Deacetylases are
key regulatory proteins as they can control the expression of
several genes. Furthermore, sirtuin activity is NAD-dependent,
making them likely candidates for the molecular link between
metabolism and aging owing to their ability to respond to the
cell’s energy status. Indeed, Sir2 activation in yeasts mimics
CR-induced longevity, which in turn was shown to depend on
the Sirtuin pathway (Lin et al., 2000). Increased lifespan as a
result of sirtuin overexpression was also confirmed in other
organisms such as Drosophila and C. elegans (Guarente, 2007).
Similarly, the mammalian components of the sirtuin family,
SIRT1 and SIRT4 have also been implicated in CR diet-regulated
processes, showing that the link between metabolism and aging
could be conserved across species (Guarente, 2007). Research
into Sirtuins also highlighted the importance of NAMPT, the
rate limiting enzyme in mammalian NAD+ synthesis; aging is
accompanied by chronic DNA damage which leads to NAD+
depletion, Sirt1 inactivation and thus mitochondrial dysfunction
(Guarente, 2014). Overexpression of NAMPT can rescue NAD+
levels and counteract these changes as shown by interesting
studies investigating its effects on the accelerated aging disorder,
Cockanye syndrome (van der Veer et al., 2007; Guarente, 2014;
Scheibye-Knudsen et al., 2014). The importance of NAD+ and
sirtuins in aging was also supported by recent studies by Song
and colleagues showing that NAMPT inhibition is sufficient to
induce senescence in human fibroblasts (Song et al., 2015).

The above studies however did not focus on the effects of
NAMPT on NSCs. Interestingly, a recent study showed that
NAMPT ablation recapitulated aspects of NSC aging such as
decreased NSC proliferation in rodents (Stein and Imai, 2014),
suggesting that NAMPT and the sirtuin pathway play key roles in
NSC aging as well. Studies are now beginning to integrate the role
of sirtuins, aging and diet or nutrition on the CNS specifically.
For example, increased Sirt1 levels in murine brains due to CR
were shown to increase anxiety and decrease exploratory drive
(Libert et al., 2011). Whilst NSC function was not assessed in
these studies, these conditions are known to involve deregulation

of hippocampal neurogenesis (Libert et al., 2011; Hill et al., 2015)
making it a plausible underlying mechanism. These studies also
highlighted a possible disadvantage of increased Sirt1 activity
and CR. In line with this, when the effect of SIRT1 deletion was
investigated in prion disease, a condition in which neurogenic
deregulation is also implicated (Gomez-Nicola et al., 2014), it
was found to delay disease onset and to prolong the healthy
portion of the affected animals. This was mimicked by CR (Chen
et al., 2008). In contrast, others have shown that sirtuins can
have neuroprotective functions in response to neuronal damage
and neurodegenerative conditions; firstly, SIRT1 is upregulated
in mouse models of Alzheimer’s disease and amyotrophic lateral
sclerosis and shown to enhance neuronal survival both in vitro
and in vivo (Kim et al., 2007). Furthermore, SIRT1 was also
found responsible for neuroprotective effects in murine models
of axonal injury (Araki et al., 2004). SIRT1 overexpression was
found to replicate the beneficial effects of CR in the context of
several neurodegenerative conditions in various animal models
(Gräff et al., 2013).

As many neurodegenerative conditions experience changes
in neurogenesis, it is likely Sirt1 conveys some of its effects
by influencing NSC function. SIRT1 activation in particular
was linked to changes in neurogenesis in the perinatal SVZ;
oxidizing conditions were found to activate SIRT1 and push
the progenitor pool toward astrocytic differentiation whereas a
reducing environment would promote neuronal differentiation
(Prozorovski et al., 2008). Similarly, blocking Sirt1 activity
disengaged redox changes from SVZNSC fate (Prozorovski et al.,
2008). Rafalski et al. in contrast, showed that Sirt1 inactivation
pushed NSCs toward an oligodendrocyte lineage (Rafalski et al.,
2013). Following Prozorovski’s results, it is possible that the
neuroprotective effect of SIRT1 activation, in part, is explained by
improved CNS support from an increased number of astrocytes
(See Table 1). An interesting avenue would be to investigate
whether this finding is replicated in the DG and how this SIRT1-
mediated modulation of the NSC pool changes with age.

Finally, these findings are now being investigated in human
populations, Libert and colleagues for example showed that rare
human SIRT1 variants are associated with anxiety and mood
disorders (Libert et al., 2011). Interestingly, Sirt1 is also one of
the two genes recently implicated in major depressive disorder
by whole-genome sequencing findings (Cai et al., 2015). Though
dietary interventions such as CR seem to be the most potent
effectors of Sirtuin activation, some nutrients, like polyphenols
have also been identified to directly activate components of
this family (Howitz et al., 2003). Together the studies reported
above, suggest the relationship between Sirt1, CR, and aging is
regulated by intricate mechanisms, which become even more
complex when acting upon different types of NSCs. The key
NSC’s functions acted upon by the sirtuin pathway are reported
in Figure 2.

EPIGENETICS

Epigenetics is at the forefront of aging research, a position
supported by the recent establishment of an “epigenetic clock” by
Steve Horvath, and has clear functions in adapting the organism’s
responses to its environment. These attributes make it a key
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mechanism mediating cellular and molecular responses to diet
and aging processes (Rea et al., 2016). Epigenetic modulation
comprises many mechanisms and is usually identified as the
driving force behind changes in gene expression, which are not
due to DNA sequence mutations. Such a process clearly has very
important functions in stem cell regulation of different tissues as
it can confer lineage-determining decisions as well as maintain
quiescence. Epigenetics also plays an important role in aging;
twin studies showed that genetic background only has a 25%
influence on longevity (Herskind et al., 1996) suggesting that
the remaining effects would be dictated by the environment,
which usually ensues its effects through epigenetics. A role
for epigenetics is also supported by notion that the effect of
genetic variations on cognition and brain structure increases with
age, recently reviewed by Papenberg et al. (2015). One of such
environmental factors able to cause epigenetic changes is likely to
be diet.

A line of thought believes that as epigenetic changes are less
permanent, it would be more efficient to target and reverse
them rather than targeting any genetic mutations which may
arise as a result of aging (Rando and Chang, 2012; Beerman
and Rossi, 2015). By restoring a “young” epigenetic environment
one may be able to reverse age-related deficit; in a similar
manner to the aforementioned heterochronic parabiosis studies
(Villeda et al., 2014). Another factor supporting the notion
that targeting epigenetics may be an efficient way to reverse
aging comes from studies showing that only a small number
of loci are altered consistently throughout aging, allowing for
targeted interventions rather than global ones (Beerman and
Rossi, 2015). Furthermore, epigenetic changes could be used
as aging biomarkers, providing important information on the
aging rate of an organism, with the potential to enable more
precise preventive strategies. It is therefore important for us to
understand how age and nutrition affect epigenetics and how
this causes alterations in NSC regulation, disease progression and
longevity. For the remainder of this section we will evaluate the
evidence for such a relationship.

Epigenetics and Nutrition
There are several studies showing perinatal or in utero nutrition
can have vast effect on health later in life, mainly related to
cardiovascular disease, diabetes and obesity (Choi and Friso,
2010). Interestingly, these effects were also witnessed in the
offspring of the affected animals suggesting that epigenetic
changes could be passed through generations. The involvement
of epigenetics was also confirmed viamethylome analysis, though
a causal link is yet to be shown (Radford et al., 2014; Fontana
and Partridge, 2015). Such mechanisms are set in place to ensure
adaptation for the fetus to its environment—CR and DR prepares
a fetus to food scarcity whilst over nutrition primes for a nutrient
abundant environment. Studies have suggested it may be the
mismatching of predicted and actual nutrient availability to cause
some of the detrimental health effects later in life (Perera and
Herbstman, 2011).

While epigenetic changes occurring during the malleable
stages development in response to nutrition have been
extensively studied, those happening during adulthood are

less known. The evidence from developmental studies reported
above, however shows that mechanisms are set in place for
epigenetics to respond to dietary and nutritional cues through
the lifespan. Indeed, diet can alter epigenetics in several ways,
these include the donation of methyl groups and the regulation
of several enzymes (Mathers and Ford, 2009). As well as the
alterations in response to CR and DR, other dietary alterations
can have effects on epigenetics, such as the intake of specific
nutrients. Studies on agouti mice showed amethyl-supplemented
diet was able to cause DNA hypermethylation, making it likely
for diet-acquired methyl donors like choline and methionine
(an essential amino acid) to have similar effects (Waterland
and Jirtle, 2003; Niculescu et al., 2006; Waterland et al., 2007).
Furthermore, the trace mineral zinc interacts with histone
deacetylase regulation (HDAC) and causes their inhibition
(Myzak et al., 2006) whilst resveratrol, a dietary phenol, activates
the HDAC SIRT1 (Rafalski and Brunet, 2011). Vitamin D also
appears to form an important link between nutrition, aging
and epigenetics as its varying concentrations can delay the
aging phenotype in mice and its mechanism of action is known
to involve histone acetylases (HATs) and HDACs (Tuohimaa,
2009).

Epigenetics, Aging, and Neural Stem Cells
Several years ago it was found that cellular methyl content
declines with increasing age in mammals (Wilson and Jones,
1983). This loss is likely to contribute to genomic instability,
which is a hallmark of aging cells. Recently, Horvath and
colleagues showed the existence of an epigenetic clock and
developed a predictor able to estimate the methylation age of
most tissues or cell types, suggesting that specific epigenetic
changes occur as a result of age (Horvath, 2013).

Though there are a number of possible epigenetic marks,
methylation is the mark considered to be the most stable one
and thus the most likely candidate for encoding aging and
nutritional changes. Methylation changes as a result of age can
be divided into two main categories: those resulting from loss
of fidelity when copying methylation marks and those arising
from abnormal addition or removal of methylation marks.
Further to this, a decrease in the activity and expression of
the DNA methyltransferase DNMT1 was found with increasing
age (Cooney, 1993). Interestingly, DNMT1 controls stem cell
balance and lineage decisions in several tissues; its knock out
in embryonic NSCs, for example, causes a preferential push
toward astroglial differentiation (Fan et al., 2005). DNMT1
loss in general causes an aging phenotype highlighting it as a
key molecule governing aging processes (Beerman and Rossi,
2015). In contrast, some housekeeping genes that are usually
unmethylated seem to become methylated with age. This may
be due to an increase in DNMT3 activity; DNMT3 is a
methyltransferase responsible for de novo methylation, a process
shown to be key in regulating stem cells as it halts self-renewal
to allow differentiation. A DNMT3 knock out in mouse in fact
showed impaired post-natal SVZ and SGL NSC differentiation
(Wu et al., 2010) (See Table 1).

An important methylation mark, studied in the field of aging
and NSCs, is the methylation of lysine 27 on histone 3 (H3K27).
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The differing methylation of this mark in fact can regulate adult
NSC differentiation; when this mark has a single methylation,
transcription is enabled, when the mark has 2 or 3 methyl groups
gene transcription is repressed (Zhang et al., 2014). Another
epigenetic mark often involved in aging is histone acetylation;
several histone acetylases (HATs) are key in regulating the
NSC pool by affecting both proliferation and differentiation
of the neural progenitors. Sirtuins as detailed above are part
of this family. There is also evidence of different epigenetic
marks influencing one another—i.e., DNA methylation being
restricted by acetylation marks (Beerman and Rossi, 2015). See
Figure 2 for a representation of this interconnection. Mathers
and Ford suggest that changes in methylation do not occur in
every cell in a tissue. They explain how this leads to promoter
methylation heterogeneity and thus to divergent gene expression
and cellular response across different tissues with increasing age
(Mathers and Ford, 2009). Together these studies show that
epigenetic mechanisms are pivotal to a permissive or restricting
environment for gene transcription in response to environmental
cues and are therefore likelymolecular effectors of nutrient intake
and its ensuing effect on NSC regulation.

Finally, as well as sharing common downstream mechanisms,
aging and nutrition can also affect one another; for example,
nutrient intake may change as a result of age which could then
cause the age-related epigenetic changes. A reduction of fruit and
vegetable intake for instance, would reduce the intake of zinc and
thus affect HDAC function (Mathers and Ford, 2009). Given the
prominent role played by NSCs during aging, an exciting avenue
would be to explore epigenetic changes in these cells in response
to diet.

CONCLUSION

In conclusion, though much progress has been made in
establishing the role played by nutrition in longevity, and on
stem cells more broadly, its role in NSCs regulation is still to
be elucidated. In this review we have discussed how mTOR/IIS

pathway inhibition and sirtuin activation may enhance longevity
and CNS function, an effect achieved at least in part, through
their impact on NSC function. Importantly, we have described
how these responses can be shaped by diet and nutrition.

Whilst the positive impacts of CR and IF continue to
be detailed in model systems, more targeted pharmacological
approaches may be beneficial for use in frail and elderly
populations. This highlights the need for a more thorough
understanding of the molecular pathways involved in these
dietary paradigms.

Further to this, much more research into the genetic and
epigenetic influences of diet and nutrition is required, to refine
populations that potentially stand to gain the most from such
interventions. Despite these caveats, there is much excitement
in the field as dietary paradigms such as IF are employed in
human studies and the ensuing encouraging results with regards
to their impact on cognitive performance (Brandhorst et al., 2015;
Fontana and Partridge, 2015).
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