SYSTEMATIC REVIEW

The use of preoperative enteral immunonutrition in patients undergoing elective colorectal cancer surgery: A systematic review and meta-analysis

Tyler McKechnie^{1,2} | Tania Kazi¹ | Ghazal Jessani³ | Victoria Shi³ | Niv Sne^{1,3} | Aristithes Doumouras^{1,2,3} | Dennis Hong^{1,3} | Cagla Eskicioglu^{1,3}

¹Division of General Surgery, Department of Surgery, McMaster University, Hamilton, Ontario, Canada

²Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada

³Michael G. DeGroote School of Medicine, McMaster University, Hamilton, Ontario, Canada

Correspondence

Cagla Eskicioglu, Division of General Surgery, Department of Surgery, McMaster University, St Joseph's Healthcare, 50 Charlton Avenue East Hamilton, Ontario, L8N 4A6, Canada, Email: eskicio@mcmaster.ca

Abstract

Aim: The present systematic review and meta-analysis aims to compare adult patients receiving enteral immunonutrition prior to elective colorectal surgery with those receiving conventional preoperative nutrition.

Methods: MEDLINE, Embase and the Cochrane Central Register of Controlled Trials were searched from database inception to March 2024. Articles were included if they were randomized controlled trials or cohort studies evaluating adult patients undergoing elective colorectal surgery comparing preoperative enteral immunonutrition with conventional preoperative nutrition protocols. Main outcomes of interest included surgical site infection, anastomotic leak, overall postoperative morbidity and postoperative length of stay. An inverse variance random effects meta-analysis was performed. Risk of bias was assessed with Cochrane risk of bias assessment tools. The GRADE approach was conducted to assess quality of evidence.

Results: After reviewing 2508 relevant citations, 10 studies met inclusion criteria. Overall, 1521 patients (mean age 64.9 ± 10.0 years, 49.4% women) received preoperative immunonutrition and 1816 patients (mean age 64.1 ± 11.0 years, 52.1% women) received conventional preoperative nutrition. Across seven studies, there was a non-significant 30% relative risk reduction of surgical site infection (risk ratio 0.70, 95% CI 0.44-1.11, P=0.13, l^2 = 33%) and a non-significant 44% relative risk reduction of anastomotic leak (risk ratio 0.56, 95% CI 0.28-1.10, P=0.09, $I^2=0\%$) in the immunonutrition group. Across eight studies, postoperative length of stay was 0.48 days shorter in the immunonutrition group (mean difference -0.48, 95% CI -0.84 to -0.12, P=0.01, $I^2=53\%$). GRADE certainty of evidence was low or very low for all outcomes.

Conclusion: While point estimates suggest a likely benefit associated with preoperative enteral immunonutrition, wide corresponding 95% CIs suggest uncertainty remains. Further prospective study is warranted.

KEYWORDS

colorectal cancer, colorectal surgery, immunonutrition, preoperative nutrition, systematic review

Tyler McKechnie and Tania Kazi are co-first authors and contributed equally.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. © 2025 The Author(s). Colorectal Disease published by John Wiley & Sons Ltd on behalf of Association of Coloproctology of Great Britain and Ireland.

INTRODUCTION

While perioperative protocols have significantly improved over the past several decades, the risk of experiencing postoperative morbidity such as infection continues to impact patients undergoing colorectal cancer surgery [1, 2]. Incidence of postoperative surgical site infection (SSI) can be as high as 22.5%, an especially worrisome statistic given the prevalence of colorectal cancer [2, 3]. Additionally, total lifetime treatment costs of colorectal cancer in Canada can range from \$187 million to as high as \$333 million Canadian dollars with over 60% of the lifetime costs being associated with hospitalization, highlighting the financial burden that postoperative complications place on both patients and healthcare systems alike [4].

Enhanced recovery after surgery (ERAS) guidelines have improved postoperative outcomes in patients undergoing colorectal surgery, recommending bundled preoperative, intraoperative and postoperative care packages specifically aimed at reducing postoperative morbidity and speeding postoperative recovery [5–7]. The most recent ERAS guidelines for elective colorectal surgery strongly recommend preoperative nutritional screening and preoperative nutritional supplementation based on low and moderate certainty of evidence, respectively [5, 8]. Nonetheless, approaches to preoperative nutritional optimization are variable, with none uniformly recommended.

Immunonutrition products, composed of arginine, omega-3 fatty acids, glutamine and/or nucleotides, are often advertised as effective agents for reducing negative clinical outcomes like infection and inflammation amongst colorectal cancer patients [9-15]. Parenteral and enteral forms are available [16]. While studies have begun exploring the role of immunonutrition in preoperative care, demonstrating both safety and efficacy, immunonutrition has yet to become the standard of care for elective colorectal cancer surgery. Systematic reviews and meta-analyses have published data examining the pooled effect of preoperative immunonutrition in this population [9]. However, there have been recent randomized controlled trials (RCTs) and large observational studies since the most recent data synthesis [10, 11]. Moreover, most past systematic reviews primarily focused on both enteral and parenteral immunonutrition both prior to and following colorectal surgery [9-15, 17, 18]. Our study aims to update these and compare adult patients receiving enteral immunonutrition prior to elective colorectal surgery to those receiving conventional preoperative nutrition.

MATERIALS AND METHODS

This systematic review and meta-analysis are reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA; Appendices S1 and S2) [19]. The study protocol was registered on the International Prospective Register for Systematic Reviews (PROSPERO) a priori (CRD42022379834). Local ethics review board approval was not required.

Search strategy

MEDLINE, Embase and the Cochrane Central Register of Controlled Trials (CENTRAL) databases were searched from inception through March 2024. The search was designed and conducted by a medical research librarian with input from study investigators. Search terms included 'colorectal cancer', 'immunonutrition' and more (complete search strategy available in Appendices S3 and S4). References of published studies and grey literature were manually searched.

Study selection

Articles were eligible for inclusion if they were RCTs, prospective cohort studies or retrospective cohort studies evaluating adult patients (i.e., over the age of 18) undergoing elective colorectal surgery comparing preoperative enteral immunonutrition with conventional preoperative nutrition protocols/control and reporting any of the outcomes of interest. Enteral immunonutrition was defined as dietary supplementation solutions containing one or more of the following: arginine, glutamine, omega-3 fatty acids, nucleotides [20]. Articles written in any language were considered for inclusion. Conference abstracts were eligible for inclusion. Studies including patients receiving parenteral immunonutrition, paediatric patients, patients undergoing non-colorectal cancer surgeries and patients undergoing emergency surgery were excluded. Studies with a comparison group also receiving immunonutrition as well as studies evaluating immunonutrition in the context of the ERAS protocol and not reporting outcome data specific for nutrition were also excluded. Single-arm, non-comparative studies, as well as case-control studies, case series, case studies, surveys or any study not reporting primary data were excluded.

Outcomes assessed

The outcomes assessed were SSI, anastomotic leak, postoperative genitourinary (GU) complication, postoperative respiratory complication, overall postoperative morbidity, postoperative length of stay (LOS) and 30-day readmission. SSI was defined according to the Centers for Disease Control and Prevention classification of SSIs [21]. If a study did not report overall SSI, the following order of priority for infective outcomes was used to represent the event rate: (i) organ or space SSI, (ii) deep incisional SSI, (iii) superficial incisional SSI. Anastomotic leak was defined as communication between the intraluminal and extraluminal compartments of the site of surgical anastomosis resulting from defect of the intestinal wall, identified radiologically or intraoperatively [22]. For our purposes, overall postoperative morbidity was defined as any deviation from the expected postoperative course as reported by each included study. If studies did not report overall morbidity as a pooled outcome, the outcome was reported as missing. Similarly, other outcomes from the primary studies were excluded if they were deemed to be dissimilar to our pre-defined outcomes by members of

the study team. Postoperative LOS was defined as the number of days from the index procedure to the time the patient left an acute care bed. Thirty-day readmission was defined as readmission to hospital reported within 30 days of the index surgery.

Data extraction

Three reviewers (TK, GJ, VS) independently screened the systematically searched titles and abstracts using a standardized, pilottested form on Covidence. Discrepancies in the title and abstract screening phases were resolved by inclusion. At the full-text screening stage, discrepancies were resolved by consensus between the three reviewers. If disagreement persisted, a fourth reviewer (TM) was consulted. Three reviewers (TK, GJ, VS) independently and in duplicate conducted data extraction into a data collection form designed a priori and pilot tested on Microsoft Excel[©]. The extracted data included study characteristics (e.g., author, year of publication), patient demographics (e.g., age, gender, diagnosis), intervention characteristics (e.g., immunonutrition components), postoperative outcomes (e.g., SSI, anastomotic leak, overall postoperative morbidity) and healthcare cost (i.e., total inpatient healthcare cost).

Risk of bias assessment and certainty of evidence

Risk of bias was assessed using the Cochrane Risk of Bias Tool for Randomized Controlled Trials 2.0 and the Non-randomized Studies of Interventions (ROBINS-I) assessment tool for RCTs and observational studies, respectively [23, 24]. Three reviewers assessed the risk of bias and quality of these studies independently. Discrepancies were discussed until consensus was reached.

Certainty of evidence for estimates derived from meta-analyses was assessed by Grading of Recommendations, Assessment, Development and Evaluation (GRADE), scored as high, moderate, low or very low for each outcome according to six pre-specified categories (i.e., risk of bias, inconsistency of results, directness of evidence, imprecision, publication bias and other) [25]. These results were ultimately collated in a summary of findings table using the GRADEPro software [26].

Statistical analysis

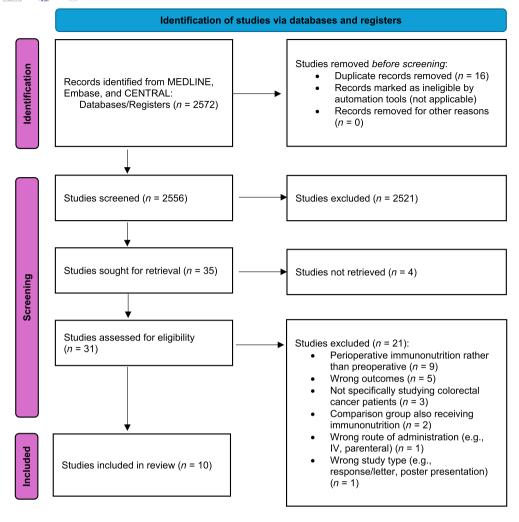
Statistical analyses were performed on STATA version 15 (StataCorp, College, TX, USA) and DataParty (Hamilton, ON, Canada). The threshold for statistical significance was set a priori at P < 0.05. A pairwise meta-analysis was performed using an inverse variance random effects model for all comparative data stratified based on type of study (i.e., randomized study vs. nonrandomized study). If an event rate was very low (i.e., < 5%) then a Mantel-Haenszel random effects model was used for comparative dichotomous data. A fixed effects model was used if a small

study bias was suspected. Pooled effect estimates for binary outcomes were estimated by calculating the risk ratio (RR) along with the respective 95% CI. Pooled effect estimates for continuous outcomes were estimated with mean difference (MD) along with the respective 95% CI. Mean and SD were estimated for studies that only reported median and interquartile range using the method described by Wan et al. [27]. Missing SD data were calculated according to the prognostic method [28]. Assessment of between-study heterogeneity was done using the inconsistency (I²) statistic. An I² greater than 40% was considered to represent considerable heterogeneity [29]. Bias in meta-analysed outcomes was assessed with funnel plots if over 10 studies were included in the meta-analysis [30]. A leave-one-out sensitivity analysis was performed iteratively, removing one study at a time from the inverse variance random effects model to ensure pooled effect estimates were not driven by a single study. Subgroup analysis was determined a priori and performed based on risk of bias (i.e., high vs. moderate/low). Planned subgroup analyses in the protocol that were not performed included operative approach (i.e., more than 50% minimally invasive vs. less than 50% minimally invasive), type of disease (i.e., more than 50% colorectal cancer vs. less than 50% colorectal cancer) and type of control (i.e., active vs. control/no intervention) due to a paucity of data.

RESULTS

Study characteristics

Database and registry searches identified 2572 relevant records. After excluding 16 duplicates, 2556 independent records were available for screening. Title and abstract screening excluded 2521 records. Four full texts were sought but not retrieved. After assessing 31 full texts for eligibility, two RCTs, seven cohort studies and one conference abstract were included [11-14, 31-36]. A PRISMA flow diagram of the study selection process is given in Figure 1. Excluded studies with their reason for exclusion are given in Table S1.


Study characteristics including demographics and a description of the preoperative immunonutrition regime for each included study are reported in Table 1. Included studies were conducted from 2006 to 2023. Overall, 1521 patients (mean age 64.9 ± 10.0 years, 49.4%women) received preoperative immunonutrition and 1816 patients (mean age 64.1±11.0 years, 52.1% women) received conventional preoperative nutrition. Two studies specifically reported following ERAS protocols for all participants [34, 36].

Intervention details

There was significant between-study heterogeneity in type of immunonutrition formula used and preoperative regimen followed. Four studies reported using some variation of the Impact® brand

FIGURE 1 PRISMA diagram: transparent reporting of systematic reviews and meta-analysis flow diagram outlining the search strategy results from initial search to included studies.

of immunonutrition, whereas the remaining studies reported immunonutrition regimes involving some combination of arginine, omega-3 fatty acids and nucleotides. Seven studies utilized a 5-day preoperative course of immunonutrition, one study utilized a 7-day preoperative course of immunonutrition, one study utilized an 8-day preoperative course of immunonutrition and one study utilized a 10-day preoperative course of immunonutrition.

Control details

Most control groups received conventional preoperative care, following a normal preoperative diet. Tesauro et al. was the only study where the control group followed a specific preoperative diet, consisting of 3 days of high protein and low fibre, with clear fluids consisting of sugar/simple carbohydrates consumed up to 4 h before surgery [36]. Three studies specifically reported both mechanical and chemical bowel preparation for all participants [16, 17, 34].

Treatment characteristics

Treatment characteristics are reported in Table 2. The most common indication for colorectal surgery was colorectal cancer (55.0%). Most colorectal cancer surgeries were performed on Stage III tumours (37.2%). Most operations were performed laparoscopically (85.5%). There were no data reported on stoma rates across the 10 studies.

Postoperative outcomes

Postoperative outcomes for each of the individual included studies are reported in Table 3. Pooling from five studies, there was a non-significant 20% relative risk reduction in the risk of overall postoperative morbidity in the immunonutrition group (RR 0.8, 95% CI 0.57–1.12, P=0.20, $I^2=64\%$; Figure 2). Subgroup analyses based on risk of bias could not be performed. Results were unchanged with leave-one-out sensitivity analysis.

TABLE 1 Study characteristics of included studies.

_4	0	
	ESCP Excess Score of co.ceysoc to.ces	

Study	Study type	N total	Inclusion	Description of immunonutrition	Arm	z	Mean age in years (SD)	N female (%)	Mean BMI (SD)	ASA score (%)	Preoperative serum albumin g/dL (SD)
Achilli, 2020 [31]	Single-centre retrospective analysis	130	Frail, CCI greater than or equal to 3, colorectal resection for cancer with curative intent between January 2014 and December 2017	10-day preoperative course of Impact® Oral (arginine, ω-3 fatty acids and nucleotides). Increased to 14-day preoperative course for patients identified as being at high nutritional risk (i.e., BMI less than 18.5 kg/m²)	Immunonutrition	65 65	78.8 (6.0)	45 (44.6) 34 (46.2)	1 1	I-II: 48 (73.9) III-IV: 17 (26.2) I-II: 48 (73.9) III-IV: 17 (26.2)	1 1
Banerjee, 2017 [32]	Retrospective cohort study	716	Patients 18 years of age or above who underwent elective colorectal surgery with anastomosis in a Washington hospital that participated in the S4S initiative between 2012 and 2013	5-day preoperative course of arginine-based nutrition supplement	Immunonutrition	565	58.8 (1.3) 60.2 (0.7)	74 (49.0)	26.0 (0.4)	1 1	1 1
Horie, 2006 [12]	Prospective study	67	Patients with CRC undergoing elective surgery without malnutrition, bowel obstruction, severe cardiopulmonary complications, diabetes, collagen disease or renal failure	5-day preoperative course of 750 mL/day Impact® Japanese version containing 9.6g arginine, 2.49 g ω-3 fatty acids and 0.96 g ribonucleic acid	Immunonutrition	33	69.0 (9)	8 (24.2)	22.8 (3.2)	I: 13 (39.4); II: 20 (60.6) I: 18 (52.9); II: 16 (47.1)	4.1 (0.3)
Lee, 2023 [11]	Randomized controlled trial	161	Patients 20–80 years of age with primary colon cancer who provided written informed consent to participate	7-day preoperative course of 400 mL/day of immunonutrient-enriched oral nutrition supplements with high protein levels, arginine and ω-3 fatty acids	Immunonutrition Control	82	65.3 (9.2)	23 (29.1)	24.4 (3.5)	1 1	4.4 (0.4)
Manzanares Campillo, 2017 [13]	Randomized controlled trial	8	Patients 18 years of age or above with CRC, scheduled and underwent intestinal resection surgery with curative intent (including resectable metastatic disease patients), signed informed consent for surgery and study	8-day preoperative course of 3×237mL per day of Impact® Oral containing high proteins (L-arginine), carbohydrates, fats (ω-3 fatty acids), fibre, nucleotides, vitamins, trace elements	Immunonutrition Control	2 4 4	69.9 (11)	13 (31.0)	1 1	1 1	1 1
Ogilvie, 2023 [33]	Retrospective cohort study	826	Patients undergoing elective, major intra-abdominal colorectal surgery between January 2014 and December 2016 (control) and October 2017 and November 2019 (intervention) with a nutritional index in the 30 days prior to surgery	5-day preoperative course of 3x237mL per day of Ensure Surgery, Abbott Laboratories, Abbott Park, Illinois, containing 18g of protein and 4.2 g of arginine	Immunonutrition	514	60.6 (15.0)	282 (54.9) 174 (55.8)	28.8 (7.0)	1-II: 242 (47.3); III: 257 (50.2); IV-V: 13 (2.5) 1-II: 146 (46.8); III: 152 (48.7); IV-V: 14 (4.5)	1 1

TABLE 1 (Continued)

							Mean age		;		Preoperative	
Study	Study type	Ntotal	N total Inclusion	Description of immunoputrition Arm	Arm	z	In years (SD)	N female (%)	Mean BMI (SD)	ASA score (%)	serum albumin ø/dl (SD)	
caa	مروم دالم					:	(20)	(cc) amusic (co)	(20)	(a/) a load wew	8, 45 (25)	".
Putrus, 2015	Retrospective	114	Patients seen by the colorectal	5-day preoperative course	Immunonutrition	57	ı	ı	ı	ı	ı	00.00
[34]	cohort study		clinical specialist consultant in pre-admission clinic and underwent	of 3×23 / mL per day of Impact Advanced Recovery®	Control	57	1	1	1	ı	1	10C10L08#
			elective colorectal surgery	containing ω -3 fatty acids, nucleotides and arginine								the cooper
Tang, 2023 [35]		106	Patients with rectal cancer	5 or more days of preoperative	Immunonutrition	53	57.5 (11.0)	20 (37.7)	23.6 (2.7)	1: 6 (11.3); 11: 29	4.1 (0.4)	
	cohort study		who underwent neoadjuvant chemoradiotherapy and oncological	glutamine supplementation (50–100 mL of 20% alanyl-						(54.7); III: 18 (34.0)		
			resection between January 2013 and July 2022	glutamine once daily)	Control	53	57.2 (12.6) 19 (35.8)	19 (35.8)	22.7 (3.3)	I: 6 (11.3); II: 30 (56.6); III: 17 (32.1)	4.0 (0.5)	
Tesauro, 2021 [36]	Retrospective cohort study	173	Patients 18 years of age or above, normo-nourished (MNA-SF score ≥	5-day preoperative course of IN containing arginine and leptin,	Immunonutrition	47	65.6 (12.2)	19 (40.4)	26.0 (3.5)	I: 9 (19.2); II: 27 (57.4); III: 11	4.0 (0.6)	
			12), diagnosed with primary colorectal carcinoma, underwent elective laparoscopic colorectal resection following ERAS, ASA I, II. III.	as weil as a maitodextrin load a few hours before surgery	Control	126	66.3 (12.3) 49 (38.9)	49 (38.9)	25.6 (4.1)	(23.4) I: 26 (20.6); II: 64 (50.8); III: 36 (28.6)	3.9 (0.5)	
Thornblade, 2017 [14]	Prospective study	096	Adult patients who underwent colorectal surgery at a SCOAP	5-day preoperative course of $3 \times 237 \mathrm{mL}$ per day IN containing	Immunonutrition	480	58.4 (15.5)	239 (50.0)	27.7 (6.8)	I-II: 284 (59.0); III-V: 196 (41.0)	ı	
			hospital administering IN to at least 10 patients during the study period of 1 January 2012 to 30 June 2015	arginine and ω -3 fatty acids	Control	480	57.9 (15.7)	248 (52.0)	28.1 (6.5)	I-II: 255 (53.0); III-V: 225 (47.0)	1	

Abbreviations: ASA, American Society of Anesthesiologists; BMI, body mass index; CCI, Charlson Comorbidity Index; CRC, colorectal cancer; ERAS, enhanced recovery after surgery; IN, immunonutrition; MNA-SF, Mini Nutritional Assessment – Short Form; N, number of patients; S4S, strong for surgery; SCOAP, Surgical Care and Outcomes Assessment Program.

TABLE 2 Treatment characteristics of included studies.

		Š			
_	à	d	Ž	,	
	ď	М	ż		

Study	Arm	Indication for surgery (%)	Type of colorectal resection (%)	Tumour stage (%)	Laparoscopic (%)	Neoadjuvant therapy (%)
Achilli, 2020 [31]	Immunonutrition	Colorectal cancer 65 (100)	Right colectomy 37 (56.9); left colectomy 10 (15.4); rectal resection with ileostomy/colostomy 7 (10.8); rectal resection without ileostomy/colostomy 2 (3.1); Miles procedure 9 (13.9)	I: 18 (27.69); II: 20 (30.77); III: 25 (38.46); IV: 2 (3.08)	74 (83.1)	CRT 16 (21.6)
	Control	Colorectal cancer 65 (100)	Right colectomy 38 (58.5); left colectomy 14 (21.5); rectal resection with ileostomy/colostomy 5 (7.7); rectal resection without ileostomy/colostomy 4 (6.2); Miles procedure 4 (6.2)	I: 15 (23.08); II: 20 (30.77); III: 30 (46.15); IV: 0 (0)	62 (69.2)	CRT 7 (6.9)
Banerjee, 2017 [32]	Immunonutrition	1	1	1	1	1
	Control	ı	ı	1	I	1
Horie, 2006 [12]	Immunonutrition	Caecal cancer 3 (9.1); ascending colon cancer 5 (15.2); transverse colon cancer 1 (3.0); descending colon cancer 1 (3.0); sigmoid colon cancer 8 (24.2); rectal cancer 15 (45.4)	lleocaecal resection 3 (9.1); right hemicolectomy 5 (15.2); transverse colectomy 1 (3.0); descending colectomy 1 (3.0); sigmoid colectomy 8 (24.2); lower anterior resection 10 (30.3); super low anterior resection 2 (6.1); abdominoperineal resection 3 (9.1)	1	1	1
	Control	Caecal cancer 2 (5.9); ascending colon cancer 7 (20.6); transverse colon cancer 1 (2.9); descending colon cancer 0 (0.0); sigmoid colon cancer 8 (23.53); rectal cancer 16 (47.1)	lleocaecal resection 1 (2.9); right hemicolectomy 9 (26.5); transverse colectomy 0 (0); descending colectomy 0 (0); sigmoid colectomy 8 (23.5); lower anterior resection 14 (41.2); super low anterior resection 0 (0.0); abdominoperineal resection 2 (5.9)	1	1	1
Lee, 2023 [11]	Immunonutrition	Right colon cancer 31 (39.2); left colon cancer 48 (60.8)	Right hemicolectomy 26 (32.9); transverse colectomy 2 (2.5); left hemicolectomy 3 (3.8); anterior resection 48 (60.8)	I: 28 (35.4); II: 14 (17.7); III: 33 (41.8); IV: 4 (5.1)	79 (100.0)	1
	Control	Right colon cancer 30 (36.6); left colon cancer 52 (63.4)	Right hemicolectomy 27 (32.9); transverse colectomy 2 (2.4); left hemicolectomy 5 (6.1); anterior resection 48 (58.5)	I: 20 (24.4); II: 14 (17.1); III: 40 (48.8); IV: 8 (9.8)	79 (96.3)	1
Manzanares Campillo, 2017 [13]	Immunonutrition	Colon cancer 20 (47.6); rectal cancer 22 (52.4)	ı	I	ı	ı
	Control	Colon cancer 26 (61.9); rectal cancer 16 (38.1)	1	ı	ı	1

TABLE 2 (Continued)

Study	Arm	Indication for surgery (%)	Type of colorectal resection (%)	Tumour stage (%)	Laparoscopic (%)	Neoadjuvant therapy (%)
Ogilvie, 2023 [33]	Immunonutrition	Colorectal cancer 213 (41.5); benign disease 301 (58.5)	Segmental colectomy 427 (83.1); subtotal colectomy 33 (6.4); total proctocolectomy 11 (2.1); APR 28 (5.4); small bowel resection 15 (2.9)	I-III: 188 (88.3); IV: 25 (11.7)	392 (76.3)	1
	Control	Colorectal cancer 109 (34.9); benign disease 203 (65.1)	Segmental colectomy 261 (83.7); subtotal colectomy 25 (8.0); total proctocolectomy 4 (1.3); APR 10 (3.2); small bowel resection 12 (3.9)	I-III: 77 (70.6); IV: 32 (10.3)	230 (73.7)	ī
Putrus, 2015 [34]	Immunonutrition	Colorectal cancer 57 (100)	ı	1	ı	ı
	Control	Colorectal cancer 57 (100)	I	I	ı	ı
Tang, 2023 [35]	Immunonutrition	Rectal cancer 53 (100)	Low anterior resection 43 (81.1); APR 10 (18.9)	I: 4 (7.5); II: 20 (37.7); III: 29 (54.7)	53 (100)	CRT 24 (45.3); RT 1 (1.9); chemotherapy 28 (52.9)
	Control	Rectal cancer 53 (100)	Low anterior resection 45 (84.9); Hartmann's procedure 1 (1.9); APR 7 (13.2)	I: 3 (5.7); II: 17 (32.1); III: 33 (62.3)	52 (98.1)	CRT 16 (30.2); RT 1 (1.9); chemotherapy 36 (67.9)
Tesauro, 2021 [36]	Immunonutrition	Colorectal cancer 47 (100)	Right hemicolectomy 16 (34.1); left hemicolectomy 26 (43.8); anterior rectal resection 4 (22.6); other 1 (4.1)	1	47 (100.0)	1
	Control	Colorectal cancer 126 (100)	Right hemicolectomy 33 (26.2); left hemicolectomy 59 (46.8); anterior rectal resection 28 (22.2); other 6 (4.8)	1	126 (100.0)	1
Thornblade, 2017 [14]	Immunonutrition	Colorectal cancer 282 (59.0); diverticulitis 72 (15.0); IBD 69 (14.0); other 57 (12.0)	Colon resection 366 (76.0); rectal resection 114 (24.0)	1	1	1
	Control	Colorectal cancer 282 (59.0); diverticulitis 64 (13.0); IBD 72 (15.0); other 62 (13.0)	Colon resection 359 (75.0); rectal resection 121 (25.0)	1	1	1

Abbreviations: APR, abdominal perineal resection; CRT, chemoradiotherapy; IBD, inflammatory bowel disease; N, number of patients; RT, radiotherapy.

TABLE 3 Study morbidity outcomes reported in included studies.

[32]] mpillo, 4]	complications (%)	N sSSI (%)	complication (%)	complication (%)	leak (%)	N ileus (%)	(SD)	readmission (%)
32] npillo, 3]	1	1	ı	1	ı	-	8.5 (1.7)	ı
32] npillo,	1	ı	ı	ı	I	ı	9.8 (1.9)	ı
npillo,	1	ı	4 (0.7)	ı	0.0)	ı	6.5 (0.0)	ı
npillo,	1	ı	2 (1.6)	ı	2 (1.1)	ı	(0.0) 6.9	ı
mpillo, 3]	ı	0.0) 0	0.00) 0	0.00)	0 (0.0)	1 (3.0)	12.5 (3.8)	I
mpillo, 3]	1	4 (11.8)	1 (2.9)	1 (2.9)	1 (2.9)	1 (2.9)	14 (7.2)	ı
mpillo, 3]	25 (31.6)	8 (10.3)	1 (1.3)	3 (3.8)	0 (0.0)	5 (6.4)	7.6 (2.5)	2 (2.5)
mpillo, 3]	24 (29.3)	6 (7.3)	0.00)	3 (3.7)	0.0) 0	8 (9.8)	7.4 (2.3)	5 (6.1)
3]	1	10 (23.8)	ı	ı	5 (11.9)	ı	12.7 (8.3)	I
3]	1	17 (40.5)	1	1	7 (16.7)	1	13.1 (10.8)	ı
4]	123 (23.9)	35 (6.9)	ı	1	ı	ı	5.0 (3.0)	I
[4	67 (21.5)	20 (6.4)	1	1	ı	1	5.7 (3.2)	ı
	ı	9 (15.8)	4 (7.0)	9 (15.8)	1 (1.8)	ı	9.2	I
	1	14 (24.6)	10 (17.5)	13 (22.8)	5 (8.8)	1	12.2	I
lang, 2023 [33] Immunonutriuon	12 (22.6)	1 (1.9)	0 (0.0)	1 (1.9)	2 (3.8)	1 (1.9)	7.7 (2.3)	I
Control	27 (50.9)	7 (13.2)	1 (1.9)	2 (3.8)	4 (7.5)	2 (3.8)	9.5 (4.2)	I
Tesauro, 2021 [36] Immunonutrition	7 (14.9)	1 (2.1)	0.00)	1	2 (4.3)	4 (8.5)	4.9 (2.3)	2 (4.1)
Control	32 (25.4)	10 (7.9)	3 (2.4)	1	9 (7.1)	11 (8.7)	6.1 (3.9)	3 (2.4)
Thornblade, 2017 [14] Immunonutrition	1	1	1	1	1	1	5.9 (4.9)	1
Control	I	-	1	1	1	1	5.8 (4.5)	1

Abbreviations: GU, genitourinary; LOS, length of stay; N, number of patients; sSSI, superficial surgical site infection.

Total Postoperative Complications

Study	Immunonutrition	(%)	Control	(%)	Weight	RR [95% CI]	Favours Immunonutrition ←	Favours Control
RCT	ımmunomuti ili	(70)	Control	(70)	weight	int [55% CI]		
Lee (2023)	25/79	(31.6%)	24/82	(29.3%)	20.4%	1.08 [0.68, 1.73]		
Subgroup Estimate	25/79	(31.6%)	24/82	(29.3%)	I^2 : 0%	1.08 [0.68, 1.73]		
Non-RCT								
Ogilvie (2023)	123/514	(23.9%)	67/312	(21.5%)	27.7%	1.11 [0.86, 1.45]		
Tang (2023)	12/53	(22.6%)	27/53	(50.9%)	17.4%	0.44 [0.25, 0.78]		
Tesauro (2021)	7/47	(14.9%)	32/126	(25.4%)	12.8%	0.59 [0.28, 1.24]		
Thornblade (2017)	34/480	(7.1%)	45/480	(9.4%)	21.8%	0.76 [0.49, 1.16]		
Subgroup Estimate	176/1,094	(16.1%)	171/971	(17.6%)	I^2 : 71%	0.73 [0.47, 1.12]		
Pooled Estimate					I2: 64%	0.8 [0.57, 1.12]		
Mantel-Haenszel, DerSimonian-Laird Random Effects Subgroup Effect	p=0.20, z=1.29 \(\tau^2 = 0.09\) \(\text{y}^2 = 1.50\) \(\text{p=0.22}\) \(\text{I}^2 = 33.2\)					RR: Risk Ratio CI: Confidence Interval	1	

FIGURE 2 Forest plot of total postoperative complications results.

Postoperative Anastomotic Leak

							Favours Immunonutrition	Favours Control
Study	Immunonutritio	n (%)	Control	(%)	Weight	RR [95% CI]	←	_
RCT								
Lee (2023)	0/79	(0.0%)	0/82	(0.0%)	3.0%	1.04 [0.02, 51.66]		
ManzanaresCampillo (2017)	5/42	(11.9%)	7/42	(16.7%)	5.0%	0.71 [0.25, 2.07]	-	
Subgroup Estimate	5/121	(4.1%)	7/124	(5.6%)	$I^2: 0\%$	0.73 [0.26, 2.05]		
Non-RCT								
Banerjee (2017)	0/151	(0.0%)	2/565	(0.4%)	4.6%	0.74 [0.04, 15.43]		
Horie (2006)	0/33	(0.0%)	1/34	(2.9%)	40.2%	0.34 [0.01, 8.13]		
Putrus (2015)	1/57	(1.8%)	5/57	(8.8%)	10.2%	0.2 [0.02, 1.66]	-	
Tang (2023)	2/53	(3.8%)	4/53	(7.5%)	16.7%	0.5 [0.1, 2.61]		
Tesauro (2021)	2/47	(4.3%)	9/126	(7.1%)	20.4%	0.6 [0.13, 2.66]	-	0
Subgroup Estimate	5/341	(1.5%)	21/835	(2.5%)	I^2 : 0%	0.45 [0.19, 1.11]		
Pooled Estimate					I2: 0%	0.56 [0.28, 1.1]		
Mantel-Haenszel, DerSimonian-Laird Random Effects Subgroup Effect	p=0.09, z=1.69 r ² =0.00 y ² =0.47, p=0.49, I ² =0.0%					RR: Risk Ratio CI: Confidence Interval	0.01 0.1 1	10 100

FIGURE 3 Forest plot of postoperative anastomotic leak results.

Surgical Site Infection Favours Immunonutrition Favours Control Study Immunonutrition (%) Control Weight RR [95% CI] RCT Lee (2023) 8/79 (10.1%)6/82 (7.3%)14.3% 1.38 [0.5, 3.81] ManzanaresCampillo (2017) 10/42 (23.8%)17/42 (40.5%)2.4% 0.59 [0.31, 1.13] Subgroup Estimate 18/121 (14.9%)23/124 (18.5%) I2: 49% 0.82 [0.36, 1.88] Non-RCT Horie (2006) 0/33 (0.0%)4/34 (11.8%) 24.2% 0.11 [0.01, 2.04] Ogilvie (2023) 35/514 (6.8%)20/312 (6.4%)29.1% 1.06 [0.62, 1.81] Putrus (2015) 9/57 (15.8%)14/57 (24.6%)20.9% 0.64 [0.3, 1.36] Tang (2023) 0.14 [0.02, 1.12] 1/53 (1.9%)7/53 (13.2%) 4.5% Tesauro (2021) 0.27 [0.04, 2.04] 1/47 (2.1%)10/126 (7.9%)4.6% Subgroup Estimate 46/704 (6.5%)55/582 (9.5%)I2: 44% 0.57 [0.28, 1.16] **Pooled Estimate** I^2 : 33% 0.7 [0.44, 1.11] RR: Risk Ratio CI: Confidence Interval Mantel-Haenszel Random Effects Subaroup Effect 10

FIGURE 4 Forest plot of surgical site infection results.

Pooling data from seven studies, there was a non-significant 44% relative risk reduction in the risk of anastomotic leak in the immunonutrition group (RR 0.56, 95% CI 0.28-1.10, P=0.09, $I^2=0\%$; Figure 3). No subgroup interaction was observed according to risk of bias (P=0.41). Results were unchanged with leave-one-out and publication status sensitivity analyses.

Pooling data from seven studies, there was a non-significant 30% relative risk reduction in the risk of SSI in the immunonutrition group (RR 0.70, 95% CI 0.44-1.11, P=0.13, $I^2=33\%$; Figure 4). No subgroup interaction was observed according to risk of bias (P=0.57). Results were unchanged with leave-one-out and publication status sensitivity analyses.

0.1

100

0.01

Pooling data from five studies, there was a non-significant 36% relative risk reduction in the risk of postoperative GU complication in the immunonutrition group (RR 0.64, 95% CI 0.41-1.02, P=0.06, I^2 =0%; Figure 5). No subgroup interaction was observed according

Postoperative Genitourinary Complication

							Favours Immunonutrition	Favour	s Control
Study	Immunonutritio	n (%)	Control	(%)	Weight	RR [95% CI]	←		\longrightarrow
RCT									
Lee (2023)	3/79	(3.8%)	3/82	(3.7%)	8.6%	1.04 [0.22, 4.99]			
ManzanaresCampillo (2017)	10/42	(23.8%)	17/42	(40.5%)	49.5%	0.59 [0.31, 1.13]			
Subgroup Estimate	13/121	(10.7%)	20/124	(16.1%)	$I^2: 0\%$	0.64 [0.35, 1.17]			
Non-RCT									
Horie (2006)	0/33	(0.0%)	1/34	(2.9%)	2.1%	0.34 [0.01, 8.13]			
Putrus (2015)	9/57	(15.8%)	13/57	(22.8%)	36.0%	0.69 [0.32, 1.49]			
Tang (2023)	1/53	(1.9%)	2/53	(3.8%)	3.8%	0.5 [0.05, 5.35]			
Subgroup Estimate	10/143	(7.0%)	16/144	(11.1%)	I^2 : 0%	0.65 [0.32, 1.32]			
Pooled Estimate					I2: 0%	0.64 [0.41, 1.02]	-		
Mantel-Haenszel, DerSimonian-Laird Random Effects Subgroup Effect	p=0.06, $z=1.88\tau^2=0.00\tau^2=0.00, p=0.98, I^2=0.0\%$					RR: Risk Ratio CI: Confidence Interval	0.01 0.1 1	10	100

FIGURE 5 Forest plot of postoperative genitourinary complication results.

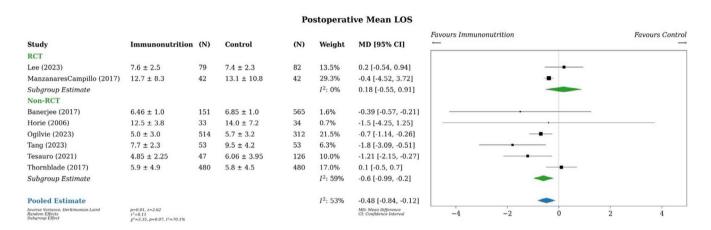


FIGURE 6 Forest plot of postoperative mean LOS results.

to risk of bias (P=0.91). Results were unchanged with leave-one-out and publication status sensitivity analyses.

Pooling data from six studies, there was no significant reduction in the relative risk of postoperative respiratory complication in the immunonutrition group (RR 0.95, 95% CI 0.26-3.48, P=0.94, I^2 = 49%; Figure S1). No subgroup interaction was observed according to risk of bias (P=0.14). Results were unchanged with leave-oneout and publication status sensitivity analyses.

Pooling data from four studies, there was no significant relative risk reduction in the risk of postoperative ileus in the immunonutrition group (RR 0.81, 95% CI 0.38-1.57, P=0.48, $I^2=0\%$; Figure S2). Subgroup analyses based on risk of bias could not be performed. Results were unchanged with leave-one-out sensitivity analysis.

Across eight studies, postoperative LOS was 0.48 days shorter in the immunonutrition group (MD -0.48, 95% CI -0.84 to -0.12, P=0.01, $I^2=53\%$; Figure 6). No subgroup interaction was observed according to risk of bias (P=0.14). Results were unchanged with leave-one-out sensitivity analysis.

Lastly, only two studies reported 30-day readmission, and so meta-analysis was not possible (RR 0.82, 95% CI 0.20-3.46, P=0.79, $I^2 = 31\%$; Figure S3).

Risk of bias

Figure 7 presents the risk of bias analyses according to the RoB 2.0 tool for the two included randomized control trials. Figure 8 presents the risk of bias analyses according to the ROBINS-I for the seven included full-text observational cohort studies. Overall, four studies were deemed to be at serious risk of bias due to significant concerns of confounding [12, 32-34]. Five studies were deemed to have some concerns/moderate risk of bias and one study was deemed to be at low risk of bias. No included studies were at risk of bias due to missing data.

Certainty of evidence

The GRADE certainty of evidence summary table is presented in Table 4. Overall GRADE certainty of evidence was low for anastomotic leak and postoperative GU complication, and very low for the remaining outcomes. Outcomes were downgraded due to inclusion of high risk of bias studies, inconsistency, indirectness and imprecision. Variability in the patient populations across studies also contributed to serious concerns for indirectness with some studies

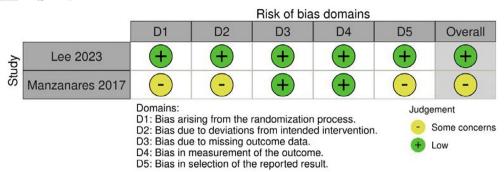


FIGURE 7 Revised Cochrane risk-of-bias tool for randomized trials (RoB 2.0) results per individual randomized controlled trial.

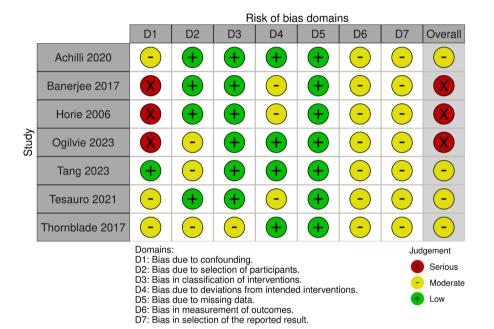


FIGURE 8 Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) assessment tool results per individual observational cohort study.

including a significant portion of patients undergoing colorectal surgery for benign disease. Small pooled sample sizes and wide 95% CIs led to serious concerns for imprecision.

DISCUSSION

The current systematic review and meta-analysis is the first to pool previously published data pertaining specifically to the use of preoperative enteral immunonutrition in patients undergoing elective colorectal surgery. The pooled data suggest a 20% non-significant decrease in relative risk of overall postoperative morbidity, 44% non-significant decrease in relative risk of anastomotic leaks, 30% non-significant decrease in relative risk of SSIs, 36% non-significant decrease in relative risk of postoperative GU complication, and a statistically significant 0.48 day shorter postoperative LOS for the enteral immunonutrition group compared to conventional nutrition.

All point estimates had wide associated 95% CIs crossing the line of no effect.

The strengths of this study include novelty, rigorous methodology, thorough risk of bias analysis, and certainty of evidence evaluation with GRADE. Limitations include reliance on non-randomized data, residual confounding and between-study heterogeneity. We were only able to identify two RCTs pertaining to this research question, while the remainder of the included studies were nonrandomized, heightening the risk of various biases, including residual confounding. Most included studies did not report data such as smoking status and receipt of neoadjuvant therapy, amongst other baseline demographics with the potential to impact postoperative outcomes [37, 38]. Importantly, between-study heterogeneity impacted the certainty of evidence in our meta-analysed outcomes. Specifically, differences in type of immunonutrition supplementation used, duration of use, as well as differences in types of diseases and operations, increased heterogeneity amongst our observed

ESCP (SCP Colopred

 TABLE 4
 Summary of findings table for meta-analysed outcomes.

Certainty assessment							Summary of findings	S			
							Study event rates (%)	(9		Anticipated absolute effects	e effects
Participants (studies) follow-up	Risk of bias	Inconsistency	Indirectness	Imprecision	Publication bias	Overall certainty of evidence	With control	With	Relative effect (95% CI)	Risk with control	Risk difference with immunonutrition
Overall postoperative morbidity 2065 (4 non- Serious randomized studies)	morbidity Serious ^a	Serious ^b	Serious ^c	Serious ^d	None	#OOO Very low	171/971 (17.6%)	176/1094 (16.1%)	RR 0.73 (0.47-1.12)	176 per 1000	48 fewer per 1000 (from 93 fewer to 21 more)
Postoperative length of stay 245 (2 RCTs) Not	of stay Not serious	Serious ^b	Serious ^c	Seriouse	None	⊕○○○ Very low	124	121	ı	The mean postoperative	MD 0.2 days higher (0.6 lower to 0.9
Anastomotic leak 245 (2 RCTs)	Not serious	Not serious	Serious ^c	Serious ^d	None		7/124 (5.6%)	5/121 (4.1%)	RR 0.73 (0.26-2.05)	was 9.3 days	15 fewer per 1000 (from 42 fewer to
Surgical site infection 245 (2 RCTs)	Not serious	Serious ^b	Serious ^c	Serious ^d	None		23/124 (18.5%)	18/121 (14.9%)	RR 0.82 (0.36-1.88)	185 per 1000	59 more) 33 fewer per 1000 (from 119 fewer to
Postoperative respiratory complication 1176 (5 non-randomized	ory complicatior Serious ^a	Serious ^b	Serious ^c	Very serious ^f	None	⊕○○○ Very low	17/835 (2.0%)	8/341 (2.3%)	RR 0.80 (0.19–3.45)	20 per 1000	163 more) 4 fewer per 1000 (from 16 fewer to
studies) Postoperative genitourinary complication 245 (2 RCTs) Not serious N	rinary complicat Not serious	ion Not serious	Serious ^c	Serious ^d	None	0000 Prow	20/124 (16.1%)	13/121 (10.7%)	RR 0.64 (0.35-1.17)	161 per 1000	50 more) 58 fewer per 1000 (from 105 fewer to
Prolonged postoperative ileus 346 (3 non-randomized studies)	ve ileus Serious ^a	Not serious	Serious ^c	Serious ^d	None	⊕○○○ Very low	14/213 (6.6%)	6/133 (4.5%)	RR 0.88 (0.38-1.57)	66 per 1000	2/ more) 8 fewer per 1000 (from 41 fewer to 37 more)

Abbreviations: MD, mean difference; RCT, randomized control trial; RR, risk ratio.

^aDowngraded one level for inclusion of studies at high risk of bias.

 $^{^{\}rm b}$ Downgraded one level for $l^2 > 40\%$.

^cDowngraded one level for differences in patient populations and intervention details.

^dDowngraded one level for the 95% CIs crossing the clinical decision threshold and for the overall pooled sample size being less than the optimal information size.

^eDowngraded one level for the 95% Cls crossing the clinical decision threshold.

Downgraded two levels for the 95% Cls crossing the clinical decision threshold, for the overall pooled sample size being less than the optimal information size, and small number of pooled outcome events.

outcomes. We explored this heterogeneity with subgroups based on study type and risk of bias. Limitations in the greater body of evidence pertaining to the use of preoperative enteral nutrition prior to elective colorectal surgery include the lack of RCT data and the possibility of selection bias amongst non-randomized studies.

The molecular constituents of preoperative enteral immunonutrition often encompass omega-3 fatty acids, glutamine and/ or arginine in varying amounts [39]. Omega-3 fatty acids exhibit anti-inflammatory properties, potentially mitigating surgical stress responses and reducing complications [40]. This is particularly relevant for colorectal cancer patients in whom tumour-derived cytokines drive systemic inflammation [41]. Glutamine, a critical fuel for enterocytes and immune cells, aids in preserving gut integrity and supporting immune function, crucial for optimal recovery [42]. Arginine serves as a precursor for nitric oxide synthesis, facilitating vasodilation and improving tissue perfusion, thereby contributing to wound healing [43]. For intestinal tissue in particular, arginine may significantly improve the host immune response, oxygenation and micro-perfusion at the time of surgery [44].

In surgical contexts beyond colorectal procedures, preoperative enteral immunonutrition presents a compelling avenue for enhancing patient outcomes. Studies across diverse surgical procedures, including but not limited to oesophagectomy, gastrectomy and joint arthroplasty, have suggested potential benefits associated with perioperative enteral nutrition [45-48]. Mingliang et al. meta-analysed seven RCTs comparing perioperative enteral immunonutrition to standard nutrition and found the relative risk of anastomotic leak to be reduced by 41% with associated confidence intervals crossing the line of no effect (5.4% vs. 9.4%, RR 0.59, 95% CI 0.33–1.04, P=0.07) [46]. Cheng et al. meta-analysed seven RCTs in patients undergoing gastrectomy for gastric cancer, assessing clinical outcomes (i.e., overall postoperative morbidity) and biochemical outcomes (i.e., CD4, CD8 and immunoglobulin levels), finding significant improvements in both with the use of perioperative enteral immunonutrition [45]. Still, further guidance on the optimal preoperative nutrition regimen for patients undergoing colorectal surgery is essential for the development of clearer ERAS guidelines. Immunonutrition may play a role in this optimal preoperative regimen and may offer clinical benefits; however, the ideal immunonutrition formula and regimen remains understudied. Current immunonutrition strategies vary widely, and individual nutritional needs often differ, complicating the identification of the optimal approach for each clinical scenario. Substantial work is necessary prior to the formal integration of immunonutrition within future colorectal ERAS protocols.

Overall, enteral immunonutrition prior to elective colorectal surgery may decrease the risk of overall postoperative morbidity, as well as specific postoperative complications such as anastomotic leak, SSI, postoperative GU complication and postoperative respiratory complication. While point estimates associated with these outcomes suggest a potential important benefit, the wide associated 95% CIs and resultant risk of type II error creates uncertainty surrounding their potential benefit in this setting. A large, high-quality

RCT evaluating preoperative enteral immunonutrition in patients undergoing elective colorectal surgery is required to resolve this uncertainty.

AUTHOR CONTRIBUTIONS

Tyler McKechnie: Conceptualization; methodology; data curation; formal analysis; writing – review and editing; writing – original draft. Tania Kazi: Conceptualization; methodology; data curation; formal analysis; writing – original draft; writing – review and editing. Ghazal Jessani: Conceptualization; methodology; data curation; formal analysis; writing – review and editing; writing – original draft. Victoria Shi: Conceptualization; methodology; formal analysis; writing – review and editing. Niv Sne: Conceptualization; methodology; formal analysis; writing – review and editing. Aristithes Doumouras: Conceptualization; methodology; formal analysis; writing – review and editing. Cagla Eskicioglu: Conceptualization; methodology; formal analysis; writing – review and editing. Cagla Eskicioglu: Conceptualization; methodology; formal analysis; writing – review and editing.

ACKNOWLEDGEMENTS

The authors have nothing to report.

FUNDING INFORMATION

This research was conducted without external or internal sources of funding.

CONFLICT OF INTEREST STATEMENT

None of the authors have any potential conflicts of interest to declare.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID

Tyler McKechnie https://orcid.org/0000-0002-7668-4096

Tania Kazi https://orcid.org/0009-0004-2360-2159

Victoria Shi https://orcid.org/0009-0001-2102-1498

Cagla Eskicioglu https://orcid.org/0000-0003-3920-066X

REFERENCES

- Nelson G, Wang X, Nelson A, Faris P, Lagendyk L, Wasylak T, et al. Evaluation of the implementation of multiple enhanced recovery after surgery pathways across a provincial health care system in Alberta, Canada. JAMA Netw Open. 2021;4(8):e2119769. https:// doi.org/10.1001/jamanetworkopen.2021.19769
- Artinyan A, Orcutt ST, Anaya DA, Richardson P, Chen GJ, Berger DH. Infectious postoperative complications decrease long-term survival in patients undergoing curative surgery for colorectal cancer: a study of 12,075 patients. Ann Surg. 2015;261(3):497–505. https://doi.org/10.1097/SLA.0000000000000854
- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87– 108. https://doi.org/10.3322/caac.21262

15 of 16

- 4. Farooq A, Merath K, Hyer JM, Paredes AZ, Tsilimigras DI, Sahara K, et al. Financial toxicity risk among adult patients undergoing cancer surgery in the United States: an analysis of the National Inpatient Sample. J Surg Oncol. 2019;120(3):397-406. https://doi.org/10. 1002/jso.25605
- 5. Choi BY, Bae JH, Lee CS, Han SR, Lee YS, Lee IK, Implementation and improvement of enhanced recovery after surgery protocols for colorectal cancer surgery. Ann Surg Treat Res. 2022;102(4):223-33. https://doi.org/10.4174/astr.2022.102.4.223
- Pang Q, Duan L, Jiang Y, Liu H. Oncologic and long-term outcomes of enhanced recovery after surgery in cancer surgeries a systematic review. World J Surg Oncol. 2021;19(1):191. https://doi.org/10. 1186/s12957-021-02306-2
- 7. Turaga AH. Enhanced recovery after surgery (ERAS) protocols for improving outcomes for patients undergoing major colorectal surgery. Cureus. 2023;15(7):e41755. https://doi.org/10.7759/cureus. 41755
- 8. Gustafsson UO, Scott MJ, Hubner M, Nygren J, Demartines N, Francis N, et al. Guidelines for perioperative care in elective colorectal surgery: Enhanced Recovery After Surgery (ERAS®) Society recommendations: 2018. World J Surg. 2019;43(3):659-95. https:// doi.org/10.1007/s00268-018-4844-y
- Xu J, Sun X, Xin Q, Cheng Y, Zhan Z, Zhang J, et al. Effect of immunonutrition on colorectal cancer patients undergoing surgery: a meta-analysis. Int J Colorectal Dis. 2018;33(3):273-83. https://doi. org/10.1007/s00384-017-2958-6
- Benavides-Buleje JA, Fernández-Fernández PV, Ruiz-Úcar E, Solana-Bueno A, Parra-Baños PA, Martínez-Torres B, et al. Postoperative diet with an oligomeric hyperproteic normocaloric supplement versus a supplement with immunonutrients in colorectal cancer surgery: results of a multicenter, double-blind, randomized clinical trial. Nutrients. 2022;14(15):3062. https://doi.org/10. 3390/nu14153062
- Lee SY, Lee J, Park HM, Kim CH, Kim HR. Impact of preoperative Immunonutrition on the outcomes of colon cancer surgery: results from a randomized controlled trial. Ann Surg. 2023;277(3):381-6. https://doi.org/10.1097/SLA.000000000005140
- 12. Horie H, Okada M, Kojima M, Nagai H. Favorable effects of preoperative enteral immunonutrition on a surgical site infection in patients with colorectal cancer without malnutrition. Surg Today. 2006;36(12):1063-8. https://doi.org/10.1007/s0059 5-006-3320-8
- Manzanares Campillo M d C, Martín Fernández J, Amo Salas M, Casanova Rituerto D. A randomised controlled trial of preoperative oral immunonutrition in patients undergoing surgery for colorectal cancer: hospital stay and health care costs. Cir Cir. 2017;85(5):393-400. https://doi.org/10.1016/j.circen.2017.11.008
- Thornblade LW, Varghese TK, Shi X, Johnson EK, Bastawrous A, Billingham RP, et al. Preoperative immunonutrition and elective colorectal resection outcomes. Dis Colon Rectum. 2017:60(1):68-75. https://doi.org/10.1097/DCR.000000000000740
- Moya P, Soriano-Irigaray L, Ramirez JM, Garcea A, Blasco O, Blanco FJ, et al. Perioperative standard oral nutrition supplements versus immunonutrition in patients undergoing colorectal resection in an enhanced recovery (ERAS) protocol: a multicenter randomized clinical trial (SONVI study). Medicine. 2016;95(21):e3704. https://doi. org/10.1097/MD.000000000003704
- 16. Peter JV, Moran JL, Phillips-Hughes J. A metaanalysis of treatment outcomes of early enteral versus early parenteral nutrition in hospitalized patients. Crit Care Med. 2005;33(1):213-20. https://doi. org/10.1097/01.ccm.0000150960.36228.c0
- 17. Zhang M, Chen G, Jin X, Wang J, Yu S. Pre-operative immunonutrition enhances postoperative outcomes and elevates tumor-infiltrating lymphocyte counts in colorectal cancer patients: a meta-analysis of randomized controlled trials. Nutr Cancer. 2024;76(6):499-512. https://doi.org/10.1080/01635581.2024.2344250

- 18. Khan A, Wong J, Riedel B, Laing E, Beaumont A, Kong J, et al. The impact of peri-operative enteral immunonutrition on postoperative complications in gastrointestinal cancer surgery: a metaanalysis. Ann Surg Oncol. 2023;30(6):3619-31. https://doi.org/10. 1245/s10434-023-13265-1
- Page MJ. McKenzie JE. Bossuvt PM. Boutron I. Hoffmann TC. Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https:// doi.org/10.1136/bmi.n71
- 20. Mariette C. Immunonutrition. J Visc Surg. 2015;152(Suppl 1):S14-S17. https://doi.org/10.1016/S1878-7886(15)30005-9
- 21. Borchardt R, Tzizik D. Update on surgical site infections: the new CDC guidelines. J Am Acad Phys Assist. 2018;31:52-4. https://doi. org/10.1097/01.JAA.0000531052.82007.42
- 22. Rahbari NN, Weitz J, Hohenberger W, Heald RJ, Moran B, Ulrich A, et al. Definition and grading of anastomotic leakage following anterior resection of the rectum: a proposal by the International Study Group of Rectal Cancer. Surgery. 2010;147(3):339-51. https://doi. org/10.1016/j.surg.2009.10.012
- 23. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019;366:l4898. https://doi.org/10.1136/bmj.l4898
- Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016;355:i4919. https://doi.org/10.1136/bmj.i4919
- 25. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924-6. https://doi.org/10.1136/bmj.39489. 470347.AD
- Schünemann H, Brożek J, Guyatt G, Oxman A. GRADE Handbook. 2013. Available from: https://gdt.gradepro.org/app/handbook/ handbook.html
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14(1):135. https://doi.org/10.1186/1471-2288-14-135
- Weir CJ, Butcher I, Assi V, Lewis SC, Murray GD, Langhorne P, et al. Dealing with missing standard deviation and mean values in meta-analysis of continuous outcomes: a systematic review. BMC Med Res Methodol. 2018;18(1):25. https://doi.org/10.1186/s1287 4-018-0483-0
- Higgins J, Green S. Identifying and measuring heterogeneity. Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Chichester: The Cochrane Collaboration; 2011. Available from: https://handbook-5-1.cochrane.org/
- Lau J, Ioannidis JPA, Terrin N, Schmid CH, Olkin I. The case of the misleading funnel plot. BMJ. 2006;333(7568):597-600. https:// doi.org/10.1136/bmj.333.7568.597
- Achilli P, Mazzola M, Bertoglio CL, Magistro C, Origi M, Carnevali P, et al. Preoperative immunonutrition in frail patients with colorectal cancer: an intervention to improve postoperative outcomes. Int J Colorectal Dis. 2020;35(1):19-27. https://doi.org/10.1007/s0038 4-019-03438-4
- 32. Banerjee S, Garrison LP, Danel A, Ochoa Gautier JB, Flum DR. Effects of arginine-based immunonutrition on inpatient total costs and hospitalization outcomes for patients undergoing colorectal surgery. Nutrition. 2017;42:106-13. https://doi.org/10.1016/j.nut. 2017.06.002
- 33. Ogilvie J, Mittal R, Sangster W, Parker J, Lim K, Kyriakakis R, et al. Preoperative immuno-nutrition and complications after colorectal surgery: results of a 2-year prospective study. J Surg Res. 2023;289:182-9. https://doi.org/10.1016/j.jss.2023.03.040
- Putrus E, Ooi S, Perry J, Moore J. A retrospective audit to determine the effect of pre-operative immunonutrition on post-operative

- outcomes in patients undergoing elective surgery for colorectal cancer. J Gastroenterol Hepatol. 2015;30(Suppl. 3):163–4. https://doi.org/10.1111/jgh.13096
- Tang G, Pi F, Qiu YH, Wei ZQ. Postoperative parenteral glutamine supplementation improves the short-term outcomes in patients undergoing colorectal cancer surgery: a propensity score matching study. Front Nutr. 2023;10:1040893. https://doi.org/10.3389/ fnut.2023.1040893
- Tesauro M, Guida AM, Siragusa L, Sensi B, Bellato V, Di Daniele N, et al. Preoperative immunonutrition vs. standard dietary advice in normo-nourished patients undergoing fast-track laparoscopic colorectal surgery. J Clin Med. 2021;10(3):413. https://doi.org/10. 3390/jcm10030413
- Sharma A, Deeb AP, Iannuzzi JC, Rickles AS, Monson JRT, Fleming FJ. Tobacco smoking and postoperative outcomes after colorectal surgery. Ann Surg. 2013;258(2):296–300. https://doi.org/10.1097/ SLA.0b013e3182708cc5
- Schiffmann L, Wedermann N, Gock M, Prall F, Klautke G, Fietkau R, et al. Intensified neoadjuvant radiochemotherapy for rectal cancer enhances surgical complications. BMC Surg. 2013;13(1):43. https:// doi.org/10.1186/1471-2482-13-43
- Church A, Zoeller S. Enteral nutrition product formulations: a review of available products and indications for use. Nutr Clin Pract. 2023;38(2):277–300. https://doi.org/10.1002/ncp.10960
- 40. Mohsen G, Stroemer A, Mayr A, Kunsorg A, Stoppe C, Wittmann M, et al. Effects of omega-3 fatty acids on postoperative inflammatory response: a systematic review and meta-analysis. Nutrients. 2023;15(15):3414. https://doi.org/10.3390/nu15153414
- Arends J, Baracos V, Bertz H, Bozzetti F, Calder PC, Deutz NEP, et al. ESPEN expert group recommendations for action against cancer-related malnutrition. Clin Nutr. 2017;36(5):1187–96. https:// doi.org/10.1016/j.clnu.2017.06.017
- 42. Alpers DH. Is glutamine a unique fuel for small intestinal cells? Curr Opin Gastroenterol. 2000;16(2):155.
- Luiking YC, Poeze M, Deutz NE. A randomized-controlled trial of arginine infusion in severe sepsis on microcirculation and metabolism. Clin Nutr. 2020;39(6):1764-73. https://doi.org/10.1016/j. clnu.2019.08.013
- Braga M, Gianotti L, Vignali A, Carlo VD. Preoperative oral arginine and n-3 fatty acid supplementation improves the immunometabolic

- host response and outcome after colorectal resection for cancer. Surgery. 2002;132(5):805–14. https://doi.org/10.1067/msy.2002. 128350
- Cheng Y, Zhang J, Zhang L, Wu J, Zhan Z. Enteral immunonutrition versus enteral nutrition for gastric cancer patients undergoing a total gastrectomy: a systematic review and meta-analysis. BMC Gastroenterol. 2018;18(1):11. https://doi.org/10.1186/s12876-018-0741-y
- Mingliang W, Zhangyan K, Fangfang F, Huizhen W, Yongxiang L. Perioperative immunonutrition in esophageal cancer patients undergoing esophagectomy: the first meta-analysis of randomized clinical trials. Dis Esophagus. 2020;33(4):doz111. https://doi.org/10.1093/dote/doz111
- Gonçalves TJM, Gonçalves SEAB, Nava N, Jorge VC, Okawa AM, Rocha VA, et al. Perioperative immunonutrition in elderly patients undergoing total hip and knee arthroplasty: impact on postoperative outcomes. J Parenter Enteral Nutr. 2021;45(7):1559-66. https://doi.org/10.1002/jpen.2028
- Bjurlin MA, Smith AB, Huang WC. Impact of immunonutrition on radical cystectomy immunoresponse and outcomes; opportunity for peri-operative optimization. Transl Androl Urol. 2018;7(Suppl 6):S760-S762. https://doi.org/10.21037/tau.2018.08.09

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: McKechnie T, Kazi T, Jessani G, Shi V, Sne N, Doumouras A, et al. The use of preoperative enteral immunonutrition in patients undergoing elective colorectal cancer surgery: A systematic review and meta-analysis.

Colorectal Dis. 2025;27:e70061. https://doi.org/10.1111/codi.70061