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Abstract Local field potential oscillations reflect temporally coordinated neuronal ensembles—

coupling distant brain regions, gating processing windows, and providing a reference for spike

timing-based codes. In phase amplitude coupling (PAC), the amplitude of the envelope of a faster

oscillation is larger within a phase window of a slower carrier wave. Here, we characterized PAC,

and the related theta phase-referenced high gamma and beta power (PRP), in the olfactory bulb of

mice learning to discriminate odorants. PAC changes throughout learning, and odorant-elicited

changes in PRP increase for rewarded and decrease for unrewarded odorants. Contextual odorant

identity (is the odorant rewarded?) can be decoded from peak PRP in animals proficient in odorant

discrimination, but not in naı̈ve mice. As the animal learns to discriminate the odorants the

dimensionality of PRP decreases. Therefore, modulation of phase-referenced chunking of

information in the course of learning plays a role in early sensory processing in olfaction.

Introduction
Animals must modulate early sensory processing to optimize navigation of their environment

(Baker et al., 2018; Pakan et al., 2018). This experience-dependent shaping involves an interplay

between sensory input, behavioral state, arousal and motor activity. Neuronal activity, temporally

organized by local field potential (LFP) oscillations, carries distinct information at different phases of

each cycle (Jensen, 2001; Kepecs et al., 2006; Lisman and Jensen, 2013). For example, in the hip-

pocampus different phases of the theta LFP (2–12 Hz) preferentially encode present and future spa-

tial locations, illustrating temporal ‘chunking’ of information (Amemiya and Redish, 2018;

Siegle and Wilson, 2014). Place cell preferred fields are encoded temporally through phase preces-

sion in relation to hippocampal theta oscillations (Buzsaki, 2004; Lisman, 2005; O’Keefe and

Recce, 1993; Skaggs et al., 1996). Additionally, LFP oscillations in different frequency bandwidths

can be related through cross frequency coupling (CFC), which can further enhance information carry-

ing capacity (Canolty and Knight, 2010; Engel et al., 1999; Florin and Baillet, 2015; Fries, 2005).

One example of CFC is PAC, wherein the amplitude of a faster oscillation (e.g. gamma, 35–95

Hz) is related to the phase of a slower oscillation (e.g. theta, 2–12 Hz) (Chrobak and Buzsáki, 1998;

Soltesz et al., 1993). PAC occurs during task engagement in rodent hippocampus (Bragin et al.,

1995; Lisman and Idiart, 1995; Soltesz et al., 1993), rodent orbitofrontal cortex (van Wingerden

et al., 2014), macaque auditory cortex (Márton et al., 2019), human hippocampus (Lega et al.,

2016) and human visual cortex (Daume et al., 2017; Seymour et al., 2017). Interestingly,

van Wingerden et al. (2014) described how theta-gamma PAC strengthens in rat orbitofrontal cor-

tex with learning for trials in which the correct decision was made in the olfactory go no-go task.
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The study of PAC in the earliest sensory processing brain areas is virtually non-existent. The olfac-

tory bulb (OB) is an ideal location to study whether PAC is relevant to sensory processing; its intrinsic

oscillatory activity is linked to odorant signal processing (Doucette et al., 2011; Gschwend et al.,

2012; Li et al., 2015; Smear et al., 2011). The rhythmic activation of olfactory sensory neurons

(OSNs) through breathing generates a theta-frequency (2–12 Hz) respiratory-related LFP in the tar-

get region of the OSNs, the OB, that is coherent with oscillations in downstream processing areas

such as piriform cortex (PC) and hippocampus (Gourévitch et al., 2010; Heck et al., 2019;

Nguyen Chi et al., 2016; Tort et al., 2018). Interestingly, PAC is present in human PC, and the

respiratory phase for presentation of stimuli modulates the ability to retrieve episodic memory

(Zelano et al., 2016). Downstream neural networks receiving olfactory information from the OB

could be tuned to respond to sensory input at certain phases of this theta LFP (Buzsáki, 2010; Jen-

sen, 2001) and could send back modulatory signals during other phases (Kay, 2015; Kepecs et al.,

2006).

Decades of work have characterized LFP activity in the OB in various states of wakefulness

(Adrian, 1950; Chery et al., 2014; Li et al., 2012) and olfactory task engagement

(Gourévitch et al., 2010; Martin and Ravel, 2014). Surprisingly, this LFP signal changes in response

to prior experience (Courtiol and Wilson, 2017; Gire et al., 2013). Work in the go no-go operant

conditioning task where the animal learns to respond to the reinforced odorant for a water reward

has revealed broadband LFP power changes for the rewarded versus the unrewarded odorant with

discrimination learning (Beshel et al., 2007; Martin et al., 2004; Ramirez-Gordillo et al., 2018;

Stopfer and Laurent, 1999). Additionally, changes in the balance of sensory and corticofugal inputs

to OB interneurons can alter timing of beta and gamma oscillatory states, suggesting that informa-

tion transfer from the OB is influenced by top-down signaling (David et al., 2015). Also, these inves-

tigators posited that slower theta oscillations gate temporal windows for sensory and centrifugal

inputs to ascend and descend, respectively, suggesting an important role for PAC in gating informa-

tion transfer. Since PAC exists in the OB in anesthetized (Buonviso et al., 2003) and awake, idle rats

(Rojas-Lı́bano et al., 2014), we wondered whether PAC changes with learning, reflecting unsuper-

vised Bayesian learning or supervised learning through top-down modulation sensory information

(Hiratani and Latham, 2019), and whether encoding this information by the power of high fre-

quency oscillations differs as a function of the phase of the theta LFP.

Here, thirsty mice implanted with tetrodes in the OB learned to associate an odorant with water

reward in the go no-go task, discriminating between two monomolecular odorants (e.g. between

isoamyl acetate vs acetophenone, IAAP) or between a monomolecular odorant and an odorant mix-

ture (between ethyl acetate and a mixture of ethyl acetate and propyl acetate, EAPA). LFP was ana-

lyzed over task learning for changes in PAC and for the ability of theta phase-referenced high

frequency oscillatory power—termed phase referenced power (PRP) hereafter—to encode for the

perceived contextual identity of the odorant.

We demonstrate that the strength of PAC, quantified as the modulation index (Tort et al., 2010),

changes for the rewarded odorant (S+) as the animals learn. Interestingly, the variance of the angle

of theta with the strongest gamma oscillation (peak angle) increases for the unrewarded odorant (S-)

over the course of learning. These changes in PAC raised the question whether a downstream

observer focused on high frequency oscillations at different theta phases would find a difference in

stimulus prediction with learning. We found that the ability to decode stimulus identity by PRP

improves with task proficiency and the dimensionality, a measure of separable representation within

signals, decreased as the animal learned to differentiate the odorants, suggesting that a stable and

unambiguous representation of odor identity arises in PRP after learning.

Results
The experiments were designed to study encoding of odorant identity by cross-frequency coupling.

We report data obtained in two different sets of experiments that we name Exp1 and Exp2. As

shown in Supplementary file 1-Table S1 the two experiments differed in electrode locations, mouse

genotype, device implantation (tetrode vs. optetrode), and odorant pairs used (see also

Materials and methods). Mice learned to discriminate between rewarded (S+) and unrewarded odor-

ants (S-) presented in pseudorandomized order in the go no-go olfactory task (Figure 1A–C). The

dataset is comprised of 119 recording sessions in 30 mice. The odorant pairs tested were different
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volatile compounds (or mixtures) whose nomenclature addresses the odorant names and the experi-

mental set (e.g. IAAPexp1, see Supplementary file 1-Table S1 for the nomenclature).

Supplementary file 1-Table S2 enumerates the total number of sessions per odorant pair, mouse,

and experiment.

Figure 1. Behavioral task and PAC analysis. (A) Behavioral apparatus. Mouse self-initiates trials by breaking a

photodiode beam. Odorants and water are delivered according to the timeline in B and the decision tree in C. (B)

Timeline for a single trial. When the animal enters the port the air flow is diverted by turning the final valve output

to the exhaust and the odorant valve is turned on. At this time the odor builds up to steady-state concentration

flowing away from the animal for 1–1.5 s. At time 0 the final valve air flow is turned towards the odor port for 2.5 s

resulting in odor onset 100 ms after the valve is actuated. In order to trigger water reward for the rewarded

odorant the mouse must lick at least once during each 0.5 s block for four blocks in the response area. If the

stimulus is rewarded and the animal licked appropriately, a water reward is delivered. (C) Decision tree for each

stimulus. Green check mark means the correct decision was made. Red ‘X’ mark indicates an incorrect decision.

Water reward is represented by the water droplet symbol in the case of a hit. (D) PAC data analysis of the LFP. For

each electrode, raw signal collected at 20 kHz (i) is bandpass filtered to 1–100 Hz for broadband LFP (ii) or filtered

into different frequency bands as needed (e.g. theta 6–14 Hz in iii or high gamma 65–95 Hz in v, blue line). Hilbert

transform is used to calculate the theta phase (iv) and the amplitude envelope of higher oscillations such as high

gamma (65–95 Hz) (red line in v). Theta phase and the envelope of the amplitude of high gamma are then used to

calculate the probability for high gamma amplitude at specific phases of theta (PAC, shown in E). (E) Probability

for high gamma amplitude at specific phases of theta. In this example, PAC is strongest at ~100˚ and 270˚. The

coupling strength is quantified by the modulation index, MI. Peak phase (the phase of theta with the highest

amplitude in high gamma) is indicated with a red line and trough phase is indicated with a blue line.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Time course for odorant concentration measured at the odor spout in the olfactometer.

Figure supplement 2. Simulation: PRP wavelet analysis for theta-gamma waves with/without PAC.
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In the go-no go task mice start the trial spontaneously by poking their nose into the odor spout

and licking on the lick port. The odorant is delivered at a random time 1–1.5 s after nose poke (the

time course for odorant concentration is shown in Figure 1—figure supplement 1). The mice must

decide to either lick a waterspout at least once during each 0.5 s bin in the 2 s response area (green

blocks in Figure 1B) to obtain a water reward for the rewarded odorant or refrain from licking for

the unrewarded odorant (Figure 1C). We did not punish for licking for the unrewarded odorant, and

mice refrain because of the effort it takes to lick. Behavioral performance was termed naı̈ve or profi-

cient when their performance estimated in a 20-trial window was �65% for naı̈ve and �80% for pro-

ficient. After three 20-trial blocks of proficient performance, the session was ended; valence was

reversed the next day or another odorant was tested. We recorded the LFP using four tetrodes (16

electrodes) implanted in the OB, and we analyzed the data to determine whether information carried

by cross-frequency coupling can encode for the contextual identity of the odorant for naı̈ve or profi-

cient mice. Importantly, reversal experiments from previous studies where we switched the rewarded

and unrewarded odorants have shown that the power of the LFP in the OB and mitral/tufted cell

spiking encodes for the contextual identity of the odorant (is the odorant

rewarded?) (Doucette et al., 2011; Doucette and Restrepo, 2008; Li et al., 2015; Ramirez-

Gordillo et al., 2018). Therefore, when we refer to identity in this publication we do not mean the

chemical identity of the odorant, we mean whether the odorant is rewarded or unrewarded. Finally,

to evaluate the statistical significance of differences in oscillatory parameters estimated in this study

the estimates were either averaged in the time period of odorant application (0.5 to 2.5 s after

diverting the odorant to the odor delivery spout) or the statistical significance was evaluated for the

entire time course with time points every 0.1 s using a generalized linear model (GLM, see

Materials and methods). Furthermore, we complement testing of statistical significance using p val-

ues with estimation of bootstrapped confidence intervals (Halsey et al., 2015).

Phase amplitude coupling analysis of the LFP recorded in the go no-go
behavioral task
In order to understand whether odorant identity is encoded by cross-frequency coupling in the OB

we characterized PAC, which is a cross-frequency coupling mechanism where high frequency oscilla-

tion bursts take place at specific phases of low frequency theta oscillations (Tort et al., 2010). PAC

has been reported in the OB (Buonviso et al., 2003; Rojas-Lı́bano et al., 2014), but has not been

thoroughly characterized. Figure 1D–E show our approach to quantify the strength of PAC using

the modulation index, a measure of how localized high frequency firing is within the phase of theta

oscillations. Figure 1Di and ii show an example of the extracellular LFP sampled at 20 kHz and fil-

tered between 1–750 Hz. The raw signal (Figure 1Di) was filtered with a 20th order Butterworth filter

into different LFP frequency bands (Figure 1Dii, iii and v) (theta, 6–14 Hz, adapted from

Nguyen Chi et al. (2016); beta, 15–30 Hz; or high gamma, 65–95 Hz). Figure 1Diii and 1DV show

that the filtered theta and high gamma LFP appear to change amplitude in a coordinated manner.

We used PAC analysis (Tort et al., 2010) to evaluate the degree of coupling of the amplitude of the

envelope of the beta or high gamma LFP on the phase of the theta LFP. Figure 1Div shows the

theta phase and the red line in Figure 1Dv shows the envelope for the amplitude of the high gamma

LFP, both calculated with the Hilbert transform as detailed in Tort et al. (2010). Figure 1E shows

the phase amplitude plot of the normalized distribution of high gamma amplitudes in different theta

phase bins. For this example there are two maxima, and the vertical red line corresponds to the

phase of theta at which the gamma amplitude is highest (at ~95 degrees); this is called the ‘peak

phase’. Similarly, the phase with the smallest normalized amplitude is called the ‘trough phase’ (ver-

tical blue line at ~5 degrees). The strength of PAC was estimated as the modulation index (MI), a

measure computed as the Kullback–Leibler (KL) distance to the uniform phase distribution normal-

ized to range from 0 (uniform distribution) to 1 (sharp gamma bursts at a specific theta phase)

(Tort et al., 2010). The MI for the distribution in Figure 1E is 0.018. Figure 1—figure supplement 2

shows the LFP power spectrogram for simulated data with low gamma oscillations that are either

uniformly distributed in the theta phase (MI = 0.0004, Figure 1—figure supplement 2A) or with

gamma bursts at 180 degrees of the theta oscillation (MI = 0.01, Figure 1—figure supplement 2B).

Recordings in hippocampus and cortex yield MI values in the range of 0.005–0.03.
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Peak angle variance for Theta/high gamma phase amplitude coupling
increases for S- when the animals learn to differentiate odorants in the
go-no go task
We proceeded to ask whether the strength of PAC, quantified by MI, and the peak angle change as

the animal learns to differentiate odorants in the go-no go task. Figure 2A–F illustrates theta/high

gamma PAC for all S+ and S- odorant trials in one session for a mouse proficient in differentiating

the odorants. The phase amplitude plots for all the trials are shown in pseudocolor in Figure 2A,

behavioral performance is shown in Figure 2B, and the corresponding normalized phase amplitude

plots are shown in Figure 2C, while the mean average theta LFP is shown for one cycle in

Figure 2D. There is clear (biphasic) theta phase coupling for high gamma amplitude with maxima

at ~120˚ and 270˚ for S+ (Figure 2Ai and red line in 2C). This strong PAC is reflected by an MI with a

mean of 0.02 with small trial to trial variance (Figure 2E, red circles), and small variation in peak

phase (Figure 2F, red polar histogram). In contrast, PAC displays variable strength and phase for S-

in this session (Figure 2Aii, blue line in 2E and blue polar histogram in 2F). For S- the average MI is

smaller and displays large variance ranging from 0 to 0.06 (mean MI 0.014, Figure 2E, blue circles).

The peak angle for S+ takes place slightly above 90 degrees and varies significantly for S-

(Figure 2F). The MI and peak angle variance differ significantly between S+ and S- (MI: ranksum p

value < 0.001, peak angle variance: ranksum p value < 0.05, n = 50 S- trials, 49 S+ trials).

Browsing through PAC data for different sessions, plotted as in the example shown in Figure 2A–

F, raised the question whether PAC changes over the course of learning in the go-no go olfactory

discrimination task—as reported by mean MI and peak angle variance. We noticed that in sessions

where the mouse learned to differentiate the odorants the phase of the peak angle became highly

variable when the animal became proficient. An example is shown in Figure 2—figure supplement

1 where a mouse started the session performing close to 50% correct, and became proficient during

the last portion of the session. The phase of the peak angle is highly variable for the last 20 S- trials.

We proceeded to estimate mean MI and peak angle variance for all mice. The mean MI and peak

angle variance was estimated as the mean in all trials within either the naı̈ve or proficient periods for

S+ and S-, calculated between 0 and 2.5 s after odorant application. Figure 2G illustrates cumulative

histograms for the mean MI (i,iii) and peak angle variance (ii,iv) for theta/beta (i,ii) and theta/high

gamma PAC (iii,iv) for the APEBexp1 odorant for S+ and S- odorants for trial ranges when the mice

were naı̈ve or proficient. The cumulative histograms for mean MI measured per electrode

(Figure 2Gi, iii) show small yet statistically significant changes in PAC strength for both the theta/

beta and theta/high gamma as the animal learns to discriminate between odorants (GLM analysis,

indicates that the differences in mean MI in terms of proficiency and the event type are significant

p<0.001, 896 degrees of freedom, d.f., for theta/beta and theta/high gamma, 16 electrodes per

mouse, 14 mice). In addition, the circles in Figure 2Gi, iii show the per mouse mean MI. A GLM anal-

ysis did not yield significant changes for the per mouse average MI as a function of either event type

or proficiency for theta/beta PAC (p>0.05, 52 d.f., 14 mice). Per mouse average MI was significant

for both event type and proficiency for theta/high gamma PAC (p<0.05, 52 d.f., 14 mice). Finally, for

the APEBexp1 odorant pair we found a substantial decrease in peak angle variance for S+ and an

increase in peak angle variance for S- for both the theta/beta and theta/high gamma PAC

(Figure 2Gii, iv GLM analysis for changes in peak angle variance for both proficiency and event type

yield p<0.001, 892 d.f. for both theta/beta and theta/high gamma, 16 electrodes per mouse, 14

mice). The changes were also statistically significant when a GLM was computed for the average

peak angle variance per mouse (circles in Figure 2Gii, iv, GLM p value < 0.01 for theta/beta and

p<0.001 for theta/high gamma for both event type and proficiency with 52 d.f.,14 mice).

Similar differences between S+ and S- and changes when the animal became proficient were

found for peak angle variance for the other odorant pairs (Supplemental Information and Figure 2—

figure supplement 2). Furthermore, we evaluated the changes in PAC strength quantified as MI and

peak angle variance by analyzing per-experiment mean values (averaged over odorant pairs,

Figure 2H). GLM yielded significant p values for peak angle variance for theta/high gamma PAC for

S+ vs. S- (<0.01, 16 d.f.) and for the interaction between S+ vs. S- and proficiency (p<0.05, 16 d.f.)

(Figure 2Hiv). For a downstream observer focused on the LFP power at the peak of PAC for the

rewarded odorant these changes in peak angle variance may reflect a mechanism by which the unre-

warded stimulus is devalued while the rewarded odorant is valued. To our knowledge, this is the first
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Figure 2. The peak angle variance of PAC changes as the animal learns to discriminate odorants. (A-F) Example of

theta/high gamma phase amplitude coupling for a proficient animal (IAAPexp1 odorant pair). (A) Pseudocolor

plots showing the phase amplitude relationship for S+ (left) and S- (right) for an example go no-go session. PAC

between theta (6–14 Hz) phase and high gamma (65–95 Hz) amplitude was more variable for S- compared to S+.

(B) Behavioral performance for this session. Over 100 trials, this trained animal discriminated between isoamyl

acetate and acetophenone with 95–100% accuracy. A sliding window of 20 trials with a step of one trial was used

to calculate percent correct behavioral performance. (C) Theta phase distribution for high gamma amplitude

(mean ± CI) for S+ (red) and S- (blue). (D) Mean theta LFP (mean ±CI) for one cycle for S+ (red) and S- (blue). (E) MI

per trial for S+ (red) and S- (blue) as a function of trial number. The difference in MI between S+ and S- is

statistically significant (ranksum p value < 0.001, n = 50 s- trials, 49 S+ trials). (F) Polar histograms for high gamma

peak theta angles for S+ (red) and S- (blue). (G) Cumulative histograms showing the differences in mean MI (i,iii)

and peak angle variance (ii,iv) for theta/beta PAC (i,ii) and theta/high gamma PAC (iii,iv) for the APEB odorant in

Exp1 for the S+ and S- odorants for naı̈ve and proficient trial ranges. Peak angle variance for S+ displays a

substantial decrease with learning, while mean MI shows small changes. Changes with learning and between

events for mean MI and peak angle variance are statistically significant (GLM p value < 0.001, 896 d.f. for theta/

beta and theta/high gamma, 16 electrodes per mouse, 14 mice). Blue and red arrows in Giii are MIs derived from

the single-session example in C. (H) Bar graph displaying mean MI (i,iii) and peak angle variance (ii,iv) for naı̈ve

and proficient trial ranges and S+ and S- events for mean values calculated per experiment for theta/beta (i,ii) and

theta/high gamma PAC (iii,iv). GLM yielded significant p values for peak angle variance for theta/high gamma PAC

Figure 2 continued on next page
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demonstration of dynamic cross frequency interactions changing with learning for early processing in

sensory systems.

Peak phase referenced power increases for S+ and decreases for S-
over learning
The existence and evolution of PAC over learning alone do not demonstrate its potential utility to

the animal in its decision-making process. In order to assess whether high frequency LFP power at

the peak of theta oscillations changes as the animal learns we performed wavelet analysis to extract

the power of high gamma (and beta) LFP referenced to specific PAC phases of theta—peak and

trough (as defined in Figure 1E). We term this analysis phase-referenced (high-frequency) power, or

PRP. PRP analysis allows answering the question whether the power of burst high frequency LFP

evaluated at a specific phase for PAC changes as the animal learns to differentiate the odorants in

the go-no go task.

In Figure 3A–C, we show how this PRP analysis was performed. Figure 3A shows Morlet wavelet

LFP power analysis (Chery et al., 2014; David et al., 2015) for a single S+ trial characterized by

strong, persistent theta power during and after odor delivery (related to respiration and olfactory

investigation) accompanied by higher frequency power bursts whose periodicity reflects PAC.

Figure 3B shows the theta (6–14 Hz)-filtered waveform (Figure 3Bi) and the Hilbert-extracted phase

(Figure 3Bii; Tort et al., 2010) co-registered to the one-second epoch extracted from the wavelet

LFP power plot shown in Figure 3Aii. We proceeded to extract the value of the power (in decibels)

referenced to the peak or the trough of PAC measured in S+ trials (peak and trough are defined in

Figure 1E). The red line in Figure 3Ci shows a clear odor-induced increase in the peak-referenced

wavelet power for high gamma/theta PAC in this single trial example (Figure 3Ci, red line). In con-

trast, there was little change in power referenced to the trough of PAC (Figure 3Ci, blue line).

Figure 3Cii shows the time course for the average peak (red) and trough (blue) PRP calculated for

all trials in this go-no go session for a mouse that was performing proficiently in differentiation of the

two odorants.

In order to assess whether PRP changes with learning we performed this analysis for all sessions

for naı̈ve and proficient periods. Figure 3D shows cumulative histograms for the peak and trough

PRP for all mice for the odor period for all go-no go sessions with the IAAPexp2 odorant pair for

theta/high gamma PAC. Over the course of learning, peak-related high gamma power increases for

S+ and decreases for S- (Figure 3D top). In contrast, the changes elicited by learning in trough PRP

are smaller (Figure 3D bottom). The differences were statistically significant between peak and

trough, S+ and S- and naı̈ve and proficient (GLM p values < 0.001, 1016 d.f.). The summary of PRP

for peak and trough for theta/high gamma PAC for the odor period are shown for all odorant pairs

in Figure 3E (peak PRP) and 3F (trough PRP). For all odorant pairs peak PRP increases for S+ over

learning and decreases for S-. Trough PRP is weaker yet follows the same trend as the animal learns

to discriminate the odorant as peak PRP (GLM p value < 0.001, 6386 d.f. for S+ vs. S-, peak vs.

trough, naı̈ve vs. proficient). In addition, the learning-induced changes in PRP are larger for Exp2

(GLM p value < 0.001 for experiment, 6386 d.f.). Similar changes were found for PRP for theta/beta

PAC, but there was no difference between peak and trough (not shown).

Finally, we found that theta peak phase-referenced power decreases for S- and increases for S+

regardless of the chemical identity of the odorant. Figure 4A shows that after the valence of the

odorant is reversed the animal learns to respond to the new rewarded odorant. We asked the

Figure 2 continued

for S+ vs. S- (<0.01, 16 d.f.) and for the interaction between S+ vs. S- and proficiency (p<0.05, 16 d.f.). GLM yielded

significant p values for peak angle variance for theta/beta PAC for S+ vs. S- and experiment and for the interaction

between S+ vs. S- and experiment (<0.01, 16 d.f.). For mean MI theta/high gamma PAC GLM yields significant

difference for experiments (p<0.01, 16 d.f.). Finally, there are no significant effects for mean MI for theta/beta PAC

(p>0.05, 16 d.f.) and no post hoc tests yield significant differences (p>pFDR).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Example of PAC changes over learning in one session.

Figure supplement 2. Modulation index and peak angle variance shown for each odorant pair.

Losacco et al. eLife 2020;9:e52583. DOI: https://doi.org/10.7554/eLife.52583 7 of 28

Research article Neuroscience

https://doi.org/10.7554/eLife.52583


question whether odorant-induced changes in peak PRP would change when odorant valence was

reversed. Figure 4B and C show that in proficient mice peak PRP increases when the mouse

responds to the rewarded odorant regardless of the chemical identity of the odorant, and PRP

decreases when the mouse responds to the unrewarded odorant. GLM analysis yields significant

changes for odorant, reversal and the interaction of reversal and odorant (p<0.001, 1051 d.f.). These

data show that as the animal learns to differentiate between odorants in the go-no go task there is

Figure 3. PRP increases for S+ and decreases for S- over learning. (A) Example wavelet broadband LFP

spectrogram for one S+ trial. Right: Pseudocolor scale for LFP power (in dB). Black bar represents the odor

stimulation epoch (2.5 s). i: Full trial length demonstrating pre-odor baseline LFP, odor driven LFP, and reward

epoch. ii: One-second epoch during odor stimulation. (B) i: Theta waveform (6–14 Hz) during odor stimulation. ii:

Theta phase, extracted with Hilbert transform. (C) i: Single trial wavelet power referenced to either peak (108˚, red)

or trough (0˚, blue) of the high gamma amplitude distribution along the theta phase. ii: PRP (± CI) averaged across

the entire session for S+ and S-. Peak PRP for S+ displays the largest odor-induced increase in power that is

sustained after the end of odor stimulation. (D) The thin lines are cumulative histograms for PRP for the LFP

recorded in each electrode averaged for theta/high gamma for all proficient or naı̈ve trials for mice performing to

differentiate odorants in the IAAPexp2 odorant pair. i and ii are peak PRP and iii and iv are trough PRP. i and iii are

S+; ii and iv are S-. As the animals learn the task, peak PRP (i and ii) increases for S+ and decreases for S-, whereas

trough PRP (iii and iv) is relatively stable. The differences were statistically significant between peak and trough, S+

and S- and naı̈ve and proficient (GLM p values < 0.001, 1016 d.f.). Circles are per mouse averages for PRP. (E–F)

Odor-induced changes in high gamma PRP averages for all odorant pairs evaluated per electrode during the odor

delivery epoch (0.5–2.5 s). Peak PRP (E) increases for S+ and decreases for S- when the mice become proficient.

Trough PRP changes (F) are markedly weaker, yet they follow a similar trend (GLM p value < 0.001, 6386 d.f. for S+

vs. S-, peak vs. trough, naı̈ve vs. proficient). In addition, the learning-induced changes in PRP are larger in Exp2

(GLM p value < 0.001 for experiment, 6386 d.f.).
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an increase in rewarded odorant-induced peak PRP and a decrease in unrewarded-odorant peak

PRP.

Linear discriminant analysis classifies stimuli using PRP
The finding that LFP power referenced to the peak of the theta oscillation increases for S+ and

decreases for S- when the animal learns to differentiate the odors (naı̈ve vs. proficient) raises the

question whether a downstream reader evaluating peak power could decode which stimulus is pre-

sented. To assess decoding of olfactory stimuli using PRP, a linear discriminant analysis (LDA) was

used to set a decision boundary hyper-plane between binary stimulus classes (S+ versus S-)

(Vizcay et al., 2015) using PRP data referenced to the peak (or the trough) of theta/beta or theta/

high gamma PAC. LDA was trained with PRP from each electrode for each mouse (16 electrodes per

mouse) for all trials except one (the training dataset) and then the missing trial (test data) was classi-

fied as S+ or S- using the PRP data from that trial. This was performed separately for trials where the

mouse was naı̈ve or proficient to odorant discrimination, for each 0.1 s time point throughout the

trial and was repeated for all trials. As a control we shuffled the identity of trials in the training set.

In addition, we performed a complementary principal component analysis (PCA) of the PRP to visual-

ize the odor-induced divergence in the time course of the first principal component (PC1).

Figure 5A shows for theta/beta (i and ii) and theta/high gamma (iii and iv) the time course for

PC1 calculated for S+ and S- odorants for naı̈ve (i and iii) and proficient (ii and iv) mice calculated

with the PRP for 16 electrodes for one example odorant pair (APEBexp1). In the naı̈ve state PC1

diverged between S+ and S- shortly after water reinforcement for peak and trough theta/beta PRP

Figure 4. Peak theta-phase referenced power switches when odorant valence is reversed. (A) Behavioral

performance in three go-no go sessions for a mouse learning to differentiate the IAAPexp1 odorant pair. In the

first session the rewarded odorant (S+) was isoamyl acetate (IA) and the unrewarded odorant (S-) was

acetophenone (AP). In the other two sessions the valence of the odorant was reversed. Blue:�65% percent correct

performance (naı̈ve) and red:�80% (proficient). (B–C) Theta/beta (B) and theta/high gamma (C) peak PRP,

calculated for trials when the mouse is proficient, switches when odorant valence is reversed. The data are shown

for three odor pairs: EAPAexp1 (11 mice), EAPAexp2 (nine mice), IAAPexp2 (three mice). GLM analysis yields

significant changes for odorant, reversal and the interaction of reversal and odorant (p<0.001, 1051 d.f.). Asterisks

denote post hoc significant differences (p<pFDR = 0.04).
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Figure 5. Linear discriminant analysis classifies stimuli using peak PRP. (A–B) PCA (in panel A) and linear

discriminant analysis (LDA; in panel B) of averaged PRP data for one example odorant pair, APEBexp1. (A) PCA of

PRP data from naı̈ve (i,iii) to proficient (ii,iv)—(i,ii): theta/beta, (iii,iv): theta/high gamma. Both PRPs for S+ and S-

are discriminable with learning. (B) Decoding performance for the LDA of PRP data over learning (i,iii: naı̈ve, ii,iv:

proficient). i,ii: theta/beta, iii,iv: theta/high gamma. In the proficient state, LDA can decode stimulus identity using

both PRPs (theta/beta PRP GLM naı̈ve-proficient p value < 0.001, 104 d.f.; theta/high gamma PRP GLM naı̈ve-

proficient p value < 0.001, 104 d.f.). Peak and trough carry similar information for theta/beta; both peak- and

trough-referenced beta power can be used to decode stimulus identity with learning. In theta/high gamma, peak

PRP is significantly better at decoding the stimulus identity than trough PRP (GLM p value < 0.001, 104 d.f.), which

is still better than shuffled data. (C) Area under the curve (AUC) for peak versus trough PRP over task learning (i,iii:

naı̈ve, ii,iv: proficient) for all odorant pairs and experiments. i,ii: Theta/beta PRP. iii,iv: For theta/high gamma PRP

GLM statistics show that peak AUC is significantly higher than trough (p value < 0.001 for six odorant pairs, 184 d.

f.) and that there are significant changes over learning (p value < 0.001 for six odorant pairs, 184 d.f.). These data

suggest that peak PRP decodes stimulus identity better than trough PRP. (D) Average peak AUC (±CI) for all

odorant pairs for theta/beta and theta/high gamma PRP for proficient mice for the two experimental settings. The

learning-induced changes in PRP are larger in Exp2 (GLM p value < 0.05 for experiment, 102 d.f., *post hoc

p<pFDR = 0.03). (E) Decoding performance for the LDA of PRP data for proficient mice calculated for the different

behavioral outcomes of the go-no go task (Hit: red, Miss: cyan, CR: blue, FA: magenta, shuffled: black). i: Theta/

beta PRP, ii: Theta/high gamma PRP. A GLM analysis indicates that there are significant differences between all

behavioral outcomes except for Hit vs. CR for theta/high gamma (p<0.001 for all outcome pairs, except for Hit vs

CR for theta/beta PRP that has p<0.01 and Hit vs. CR for theta/high gamma that has p>0.05, 2110 d.f.). There is no

significant difference between experiments (GLM p>0.05, 2110 d.f.). The lines in A,B and E are bounded by the

bootstrapped 95% CI..

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Simulated LDA performance data illustrating AUC zero and one.
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(Figure 5Ai) and for peak theta/high gamma PRP (Figure 5Aiii, with a smaller change for trough).

However, when the animal became proficient PC1 diverged between S+ and S- shortly after odorant

addition for theta/beta PRP (Figure 5Aii) and theta/high gamma PRP (Figure 5Aiv). This analysis

suggests that for the proficient animal PRP LFP carries information on the rewarded odorant.

In order to quantify the accuracy for decoding odorant identity using PRP LFP we performed LDA

analysis (Figure 5B). For naı̈ve animals the LDA could not classify stimulus identity using peak or

trough PRP for either theta/beta (Figure 5Bi) or theta/high gamma (Figure 5Biii). In contrast, when

the animal was proficient the precision of the LDA classifier increased shortly after odorant applica-

tion from chance to values above 70%, significantly higher than the 95% confidence interval of the

LDA performed with shuffled trials for both theta/beta (Figure 5Bii) and theta/gamma

(Figure 5Biv) (GLM analysis p value for learning <0.001, 104 d.f.). For theta/beta, both peak and

trough PRP LDA performed significantly better than shuffled data for proficient mice (Figure 5Bii,

GLM p value < 0.001, 104 d.f.). However, for theta/high gamma in proficient animals (Figure 5Biv,

bottom) LDA discriminated the identity of the stimulus more effectively using peak PRP (GLM p

value < 0.001, 104 d.f.).

The difference in LDA performance between peak and trough PRP was further evaluated by cal-

culating the area under the curve (AUC) for LDA performance during the odor application window

(0.5–2.5 s after odorant valve opening). AUC is a statistical method to quantify differences between

the distributions of values of two variables (Green and Swets, 1988). The AUC was normalized and

it ranged from zero (random decoding at 50%, Figure 5—figure supplement 1Ai) to 1 (100%

decoding during the odor period, Figure 5—figure supplement 1Aii). AUC is plotted for all odor-

ant pairs for peak and trough PRP in Figure 5C for theta/beta (i and ii) and theta/high gamma (iii

and iv) for naı̈ve (i,iii) and proficient (ii,iv) conditions. In the proficient state, AUC for peak PRP LDA

for high gamma was significantly higher than AUC for trough PRP LDA (Figure 5Civ, GLM for AUC

peak vs. trough p value < 0.001, 104 d.f.). AUC for beta PRP LDA did not differ between peak and

trough (Figure 5Cii). Furthermore, Figure 5D shows that the AUC was larger for Exp2 (GLM p

value < 0.001 for experiment, 6386 d.f.).

Finally, we asked the question whether decoding performance differs when mice make mistakes

in the go-no go task. If PRP encodes for the chemical identity of the odorant we would expect that

decoding performance would be similar between Hit/Miss and CR/FA during the first second of the

trial when the animal keeps their head in the odor port. If PRP encodes for contextual odorant iden-

tity decoding performance would differ between correct responses (Hit and CR) and mistakes (Miss,

FA) shortly after the animal detects the odorant. Figure 5E shows the results of the per trial analysis

of decoding performance for LDA with theta/beta PRP (i) and theta/high gamma PRP (ii) sorted by

behavioral outcome. Interestingly, shortly after addition of the odorant there is a divergence in

decoding performance between trials with correct decision (Hit, CR) and mistakes (Miss, FA). Shortly

after addition of the odorant decoding performance for FA drops below 50% (it tends to encode for

the opposite odor), and for Miss trials the decoder performs like the shuffled trials. Decoder perfor-

mance increases above 50% for both FA and Miss towards the end of the trial. Taken together with

the shift of PRP in the reversal experiments (Figure 4) the difference in LDA encoding between cor-

rect trials and mistakes is further evidence that PRP encodes for the contextual identity of the odor-

ant (as opposed to the chemical identity). A GLM analysis indicates that there are significant

differences between all behavioral outcomes except for Hit vs. CR for theta/high gamma (p<0.001

for all outcome pairs, except for Hit vs CR for theta/beta PRP that has p<0.01 and Hit vs. CR for

theta/high gamma that has p>0.05, 2110 d.f.). There is no significant difference between experi-

ments (GLM p>0.05, 2110 d.f.).

To our knowledge, this is the first demonstration of high gamma phase-referenced LFP power

developing differential information carrying capacity in early sensory systems with learning.

Decision-making takes place at the same time for peak PRP LDA and
licks
After learning that using peak PRP LDA can decode stimulus identity, we wondered how decision-

making times estimated based on either the behavioral response of the animal in the go-no go task

(licks) or classification of the stimulus by PRP LDA relate to each other. In addition, we asked whether

the decision-making time calculated with peak PRP LDA differed from decision-making time esti-

mated using trough PRP LDA. Decision-making time was defined as the time when there is a
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statistically significant difference between S+ and S- in odorant classification (estimated separately

for licks and LDA).

Figure 6A–B show examples of licks by a mouse in the go-no go task for the EAPAexp2 odorant

pair. Figure 6A shows the licks detected at the waterspout for 25 S+ trials when the animal was per-

forming proficiently while Figure 6B shows the lick traces for 25 S- trials in the same session. As in

previous studies (Doucette and Restrepo, 2008), we estimated the p value for lick decision-making

by computing in each 0.1 s time bin the ranksum test for the difference between licks (scored 0 for

no lick vs. one for lick). An example of the time course of the p value for licks for mice performing

the go-no go task for EAPAexp2 is shown by the green line in Figure 6Ci. The p value drops below

0.05 ~ 250 msec after odorant addition. We defined the lick decision-making time as the time point

when the p value for difference in licks between S+ and S- falls and stays below 0.05 after odor

application.

LDA decision-making time was estimated in a similar manner by computing the p value for a rank-

sum test for the difference between predictions (scored one for correct prediction vs. 0 for incorrect

prediction) for PRP LDA decisions evaluated after pooling data for all mice for each odor pair. As

explained under supplemental information (Figure 6—figure supplement 1) pooled animal data

were used as opposed to per animal PRP LDA because this resulted in consistent estimation of ear-

lier decision-making times. Examples of the time courses of the p values for PRP LDA performing

the go-no go task for EAPAexp2 are displayed in Figure 6Ci for theta/high gamma PAC (red line:

peak, blue line: trough). Before odorant presentation the p value fluctuates and sometimes falls

Figure 6. Decision-making time does not differ between licks and peak PRP LDA decoding of odorant identity. (A)

Lick time course for 25 S+ trials in one session of EAPAexp2 for one proficient mouse. Horizontal black bar

indicates odor delivery epoch for all time course subpanels. (B) Lick time course for 25 S- trials in the same session

as in A. Mouse refrains from licking in the presence of the unrewarded odorant. (C) i: p value time courses for

difference between S+ and S- for licks and peak PRP LDA predictions. ii and iii: decoding performance for PRP

LDA. Decision making times for both licks and PRP LDA were calculated using data pooled for all mice performing

odorant discrimination with the EAPAexp2 odorant pair. i: p value for the ranksum test compares the time-course

for decision-making using licks for S+ vs. S- (green) or LDA prediction of odorant identity with peak (red) or trough

(blue) PRP. This example illustrates that that peak PRP LDA prediction and lick divergence perform similarly, while

LDA prediction with trough PRP is significantly slower in stimulus decoding. Horizontal red line indicates p=0.05. ii

and iii: LDA decoding performance appears to be faster and more accurate using peak PRP (ii) vs. trough PRP (iii).

(D) Decision times for licks and for pooled animal peak theta/beta and theta/high gamma PRP LDA in naı̈ve (i) and

proficient (ii) mice. Decision times were significantly reduced with task learning (GLM p value < 0.001, 44 d.f.).

Decision times for lick vs. PRP LDA and theta/beta vs. theta/high gamma did not differ (GLM p values > 0.05, 44 d.

f.).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Decision times are faster for peak PRP LFP LDA computed when data are pooled across

mice.
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below 0.05 transiently, while after odor presentation the p values for peak PRP fall below 0.05

sharply and continuously at approximately the same time as lick p value (~250 msec). Trough PRP p

value for LDA decoding performance drops below 0.05 later (~950 msec) and the p values are higher

than peak p values (compare red and blue lines in Figure 6Ci). Thus, in this example lick decision-

making time is similar for licks and peak PRP LDA, and is slower for trough PRP LDA.

We proceeded to calculate decision-making times for licks and peak PRP LDA for all odorant

pairs. Decision-making times for LDA decoding performance via peak PRP and lick for all odorant

pairs for pooled mouse data are shown in Figure 6D for naı̈ve (Figure 6Di) an proficient

(Figure 6Dii) mice. Decision times were reduced significantly with task learning (GLM p value < 0.001,

44 d.f.). However, decision-making times did not differ between lick and peak PRP LDA (GLM p

value > 0.05, 44 d.f.).

Dimensionality of PRP LFP space decreases when the animal learns to
discriminate the odorants
Figure 7A shows the change in the scatter pattern of the first two principal components (PCs) of the

theta/high gamma peak PRP calculated for pooled data from all mice as the animals learn to differ-

entiate the two odorants for the EAPAexp1 odorant pair. Figure 7Ai shows that when the mice are

naı̈ve S+ (red) and S- (blue) points are mixed in the 2D PC space before and during odorant applica-

tion. In contrast, Figure 7Aii shows that the 2D PC patterns become clearly separable when the ani-

mals are proficient. There appears to be a change in the geometrical arrangement of the points in

principal component space suggesting that there is a change in dimensionality as the animal learns

to differentiate the odorants (Litwin-Kumar et al., 2017).

In order to provide a more nuanced analysis of whether the number of independent signals in the

PRP LFP data measured by the 16 electrodes changes as the animals learn to discriminate between

odorants we calculated a quantitative measure that characterizes dimensionality in the PRP LFP

space (see Materials and methods). The 16 electrodes are closely spaced (12.5 mm diameter electro-

des in the same tetrode are directly abutted against each other and tetrodes are separated by 100–

200 mm in both preparations: Exp1 with optetrodes and Exp2 with tetrodes). Because of this close

proximity the extracellular field potentials would not be expected to differ greatly (Gold et al.,

2006) and therefore the dimensionality of the PRP LFP space would be expected to be close to one.

Interestingly, when the dimensionality was calculated on a per mouse basis where the maximum

dimensionality (M) is 16 we found that the average dimensionality for theta/high gamma PRP LFP for

electrodes in Exp2 was indeed close to one, but it was significantly higher (2-4) in Exp1, with the

highest dimensionality for PRP LFP trough (Figure 7—figure supplement 1Ai, GLM p value < 0.001

for peak vs. trough and Exp1 vs. Exp2, 379 d.f.). We found similar differences in dimensionality

between Exp1 and Exp2 for theta/beta PRP LFP, but in this case there was no difference between

peak and trough dimensionality (Figure 7—figure supplement 1Aii, GLM p value < 0.001 for Exp1

vs. Exp2 and >0.05 for peak vs. trough, 379 d.f.). This indicates that even when measured using elec-

trodes located within 100–200 mm the LFP carries information on multiple independent components.

Interestingly, the dimensionality for peak PRP LFP for theta/high gamma calculated on a per

mouse basis decreased after addition of the odorant for both experiments and the decrease in

dimensionality was larger for proficient mice. Examples of the dimensionality time course for peak

PRP LFP for theta/high gamma calculated on a per mouse basis are shown for two odorant pairs in

Figure 7—figure supplement 1Bi (Exp1) and Figure 7—figure supplement 1Bii (Exp2). A GLM

analysis of the dimensionality for peak PRP LFP calculated on a per mouse basis for all odorant pairs

indicates that there are significant differences in theta/high gamma peak PRP LFP dimensionality for

proficient vs. naı̈ve, time course, experiments, and for interactions of these factors (except for the

interaction of experiments x proficient vs. naı̈ve) (GLM p values < 0.001, 6098 d.f.). For theta/beta

peak PRP LFP dimensionality we found similar results with the exception that there was no difference

between peak and trough (Figure 7—figure supplement 1Ci and Cii, GLM p values < 0.001, 6098

d.f.).

Finally, when the dimensionality for peak PRP LFP was calculated for LFPs recorded from all mice

the difference in the decrease in dimensionality between naı̈ve and proficient became more evident.

Time courses for pooled mouse peak PRP LFP dimensionality for theta/high gamma are shown in

Figure 7B for Exp1 (7Bi) and Exp2 (7Bii). Peak theta/high gamma PRP LFP dimensionality decreases

markedly when the odorant is delivered for both Exp1 and Exp2 for proficient mice and this
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decrease is larger for proficient compared to naı̈ve mice (compare naı̈ve vs. proficient in

Figure 7Bi and ii). A GLM analysis indicates that there are significant differences for time course,

proficient vs. naı̈ve, experiments and peak vs. trough, and for interactions of these factors (GLM p

values < 0.001, 1688 d.f.). For theta/beta peak PRP LFP dimensionality for pooled mice we found

similar results (Figure 7Ci and 7Cii), but there was no difference between peak and trough. GLM

analysis found statistically significant differences for time course, and proficient vs. naı̈ve, and for

interaction of these factors (GLM p values < 0.001, 1688 d.f.), and a statistically significant difference

Figure 7. Dimensionality changes with learning and during the time course of the trial. (A) Scatter plot showing

the first two principal components for twenty trials of a PCA for peak theta/high gamma PRP recorded in mice

learning to differentiate the odorants in the EAPAexp1 odorant pair. The input to the PCA was the peak PRP

recorded in 16 electrodes pooled for all mice. Principal components are intermingled between S+ (red) and S-

(blue) trials in the naı̈ve state (left) in pre-odor and odor-delivery epochs, yet they separate during odor delivery

upon task acquisition (right). i. Naı̈ve animals. ii. Proficient animals. (B) Within-trial peak (red) and trough (blue)

theta/high gamma PRP dimensionality time course for data pooled across mice is shown for Exp1 (i) and Exp2 (ii),

normalized to pre-trial dimensionality. A GLM analysis indicates that there are significant differences for time

course, proficient vs. naı̈ve, experiments and peak vs. trough, and for pair interactions of these factors (GLM p

values < 0.001, 1688 d.f.). (C) Within-trial peak (red) and trough (blue) theta/beta PRP dimensionality time course

for data pooled across mice is shown for Exp1 (i) and Exp2 (ii), normalized to pre-trial dimensionality. GLM analysis

found statistically significant differences for time course, and proficient vs. naı̈ve, and for interaction of these

factors (GLM p values < 0.001, 1688 d.f.), and there was a statistically significant difference between experiments

(GLM p value < 0.01, 1688 d.f.). However, there was no difference between peak and trough (GLM p value > 0.05,

1688 d.f).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. PRP dimensionality estimated per mouse.
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between experiments (GLM p value < 0.01, 1688 d.f.). However, was no difference between peak

and trough (GLM p value > 0.05, 1688 d.f). Therefore, for both the per animal and the pooled animal

PRP LFP space there is a decrease in dimensionality as the animal learns to discriminate between

odorants, but this difference is more evident for the pooled animal data. This is evidence for a

learned tightening of dimensionality for the odor representation manifold (defined as the indepen-

dent neural components representing the odor).

Discussion
We asked whether information carried by high frequency oscillations in brain regions involved in

early sensory processing changes when observed at different phases of theta frequency oscillations.

Specifically, we asked whether information on contextual odorant identity conveyed by LFP power

of high gamma and beta frequency oscillations of the OB differs when the downstream observer fil-

ters the input through different theta LFP phase windows. We focused on the OB where it has been

suggested that amplitude modulation may be used by higher-order processing centers such as PC

to decode stimulus identity (Freeman and Schneider, 1982; Heck et al., 2019). We found that iden-

tity could not be decoded from beta or high gamma OB LFP power when the mouse was naı̈ve to

the identity of the reinforced odorant (left panels in Figure 5B). However, the contextual identity of

the odorant could be decoded from the PRP after the animal learned to discriminate between the

odorants (right panels in Figure 5B). Furthermore, decoding was more accurate when the high

gamma LFP power was observed at the peak of the theta oscillation, but it was similar at both the

peak and trough phases for beta LFP oscillations. LDA correctly identified the stimulus with a time

course for decision-making similar to the behavioral readout (licking on the water-delivery spout,

Figure 6). Thus, stimulus representation by theta phase-referenced beta and high gamma oscilla-

tions of the OB evolves over the course of learning. Importantly, our findings were replicated in two

different experiments (Exp1 and Exp2) differing in genotype, electrode location, device implanted

(tetrode or electrode) and odorant pairs used (see Supplementary file 1-Table S1). We did find dif-

ferences in measured parameters between experiments, and these are likely due to methodological

differences between Exp1 and Exp2 such as electrode location and genotype. Regardless of the rea-

son for differences between experiments it is important for this study that the findings on PRP are

found for both experiments under substantially different experimental conditions. To our knowledge

this is the first demonstration that decoding of stimulus identity from theta phase-referenced high

gamma oscillations, reflecting synchronized neuronal firing, changes with learning in brain areas

involved in early sensory processing.

The importance of PAC in information processing is based on the notion that different informa-

tion is carried at different phases of the slow carrier oscillation. This discretization of information is a

potential mechanism for encoding short-term memories (Lisman and Idiart, 1995) and more broadly

as a neural communication protocol, the theta-gamma neural code (Hopfield, 1995; Lisman and

Jensen, 2013). Circuit activation at theta frequency was discovered to be essential for long-term

potentiation in the rabbit hippocampus (Bliss and Lomo, 1973), arguing that neural information

transfer may go beyond mean rate codes and involve spike timing with respect to oscillatory time-

keepers. Subsequent studies indicated that temporal windows set by theta cycles allow for local cir-

cuit interactions and a considerable degree of computational independence in subdivisions of the

entorhinal cortex-hippocampal loop (Mizuseki et al., 2009). For CA1, it was hypothesized that theta

partitions the encoding of new information versus the retrieval of stored information

(Hasselmo et al., 2002). Indeed, optogenetic recruitment of fast spiking inhibition in CA1 delivered

at specific theta phases altered murine performance in a spatial navigation task (Siegle and Wilson,

2014). When the mice were encoding a location, triggering of inhibition of CA1 at theta peaks

improved performance, whereas inhibition at theta troughs improved performance during the

retrieval phase. Recently, age related cognitive decline in working memory in humans was reversed

temporarily via transcranial alternating-current stimulation frequency-tuned to the endogenous theta

peak frequency of each individual’s frontotemporal network (Reinhart and Nguyen, 2019). It

appears that working memory is undergirded by theta-gamma PAC and that inter-regional commu-

nication is facilitated by theta phase coherence (Daume et al., 2017; Reinhart and Nguyen, 2019).

Thus, the theta LFP which has been cited as one of the most global oscillations in the brain acts as a
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timekeeper (Siegle and Wilson, 2014) that is coherent across numerous cortical and subcortical

structures arguing for its role in transfer of discrete chunks of information (Buzsáki, 2002).

Here we asked whether odor identity information was carried at different phases of theta. Our

study of PAC in the OB involved learning of odor discrimination in the go no-go task. In orbitofrontal

cortex, Van Wingerden et al. (van Wingerden et al., 2014) showed that this task elicited strongest

theta/gamma PAC during odor sampling preceding correct decision-making, which they attributed

to temporal coordination between cell assemblies responsible for stimulus representation and

reward association. The OB circuit is characterized by beta and gamma oscillations nested in a

slower theta carrier wave pertaining to respiration (Buonviso et al., 2003; Heck et al., 2019;

Kay, 2005; Kepecs et al., 2006; Rebello et al., 2014; Rojas-Lı́bano et al., 2014). However, Granger

directionality analysis shows that the theta oscillation in the OB is also influenced by hippocampal

slow oscillations indicating that the origin of OB slow carrier oscillations is complex, involving both

respiration and centrifugal input from downstream brain regions whose relative contribution likely

changes under different behavioral states (Nguyen Chi et al., 2016). Cyclical activation of OSNs

through respiration (Adrian, 1950; Bressler, 1988; Rosero and Aylwin, 2011; Zhuang et al., 2019)

provides input to mitral/tufted (M/T) cells, and coordinated activity by M/T cells in the OB caused by

mitral cell-granule cell reciprocal dendrodendritic interactions establishes gamma oscillations

(Arnson and Strowbridge, 2017; Osinski and Kay, 2016; Pouille and Schoppa, 2018;

Schoppa, 2006; Stopfer et al., 1997) (see review by Heck et al., 2019). Gamma LFP is thought to

represent the stimulus identity (Bathellier et al., 2006; Beshel et al., 2007; Li and Cleland, 2017;

Rojas-Lı́bano and Kay, 2008) and beta LFP oscillations (15–35 Hz) have been linked to learned

reward (Martin et al., 2006). However, the classification of these two bandwidths as carrying learn-

ing vs. odor identity information is not always appropriate, and Frederick et al. (2016) proposed

that they represent different cognitive states that vary depending on particular behavioral demands.

PAC is present in the OB (Buonviso et al., 2003; Rojas-Lı́bano et al., 2014) and it may be of great

albeit relatively unexplored utility. We contributed to the understanding of which information is car-

ried by different frequency oscillations by asking whether the high gamma and beta oscillations carry

different information when they are observed within particular phase windows of the theta carrier

wave (Figure 5). We hypothesized that PAC may be used to convey olfactory stimulus information

to theta phase-synchronized downstream regions like PC (Kepecs et al., 2006; Lisman and Buzsáki,

2008).

We demonstrate that PAC changes in the OB during associative learning (Figure 2). Peak angle

variance increased for the unrewarded odorants with learning. The theta phase-referenced PRP of

the high gamma and beta LFPs also follows this trend (Figure 3), increasing for S+ and decreasing

with S- over learning. The changes in PRP correlating with learning may reflect contrast enhancement

that facilitates the discrimination between similar stimuli by a downstream observer. Neuronal adap-

tation to facilitate contrast enhancement has been shown at the level of the OSNs (Haney et al.,

2018), the glomerular layer (Cavarretta et al., 2016), and the granule cell layer (Adams et al.,

2019) of the OB. We speculate that the concurrent increase in PRP for S+ and decrease in PRP for

S- reflects adaptational mechanisms in the OB to enhance contrast between similar stimuli with dif-

ferent associated values. Finally, given that there is coordination of oromotor actions through brain-

stem circuits (Moore et al., 2014), and that studies have shown development of coordinated sniffing

and licking as rodents learn to differentiate odorants (Jordan et al., 2018; Lefèvre et al., 2016;

Rosero and Aylwin, 2011) it is likely that the changes found in PRP as the animals learn to differenti-

ate the odorants reflect an interaction with changes in licking and sniffing.

To quantify whether these changes in PAC increased discriminability between odorants using PRP

we asked whether the stimulus that was delivered could be decoded from PRP data. Previous inves-

tigations have decoded olfactory stimuli from spike counts aligned to sniffing in the mouse

(Cury and Uchida, 2010; Gschwend et al., 2012), in the antennal lobe of the locust (Stopfer and

Laurent, 1999), and M/T neural activity assayed through calcium transients in mice (Chu et al.,

2016), but trial classification via PAC remains unexplored. Here, we performed LDA on PRP data to

determine whether a single hyperplane could differentiate between stimuli as the animals learned

the task. Figure 5B indicates that the identity of the stimuli cannot be decoded from PRP recorded

in the naı̈ve mice, but that the stimuli can be decoded when the mice learn to discriminate the odor-

ants. Furthermore, decoding the stimuli from peak high gamma PRP is significantly better than

trough PRP. Thus, decoding of the odorant identity by downstream observer using a phase window
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for the slow carrier oscillation could detect the identity of the odorants after the animal learns to dif-

ferentiate between odors in the go no-go task. Finally, this study contributes to the mounting evi-

dence that the OB is an important locus for learning-related activity changes (Abraham et al., 2014;

Doucette et al., 2011; Doucette and Restrepo, 2008; Koldaeva et al., 2019; Li et al., 2015).

We wondered how timing for decision-making would relate comparing stimulus decoding with

PRP with decision-making estimated from the behavioral readout of the olfactory-driven decision in

the go no-go task (differential licking between the two odorants). The time course for the behavioral

decision, reflected in the graph of p value for differential licks, is overlaid by the p value time course

for peak PRP decoding (Figure 6C, right) with trough PRP lagging behind. Neither beta nor high

gamma peak PRP p values are discriminable from lick p values in terms of decision time in this task.

As shown in Figure 6D, for proficient animals licking differs between odorants within about 0.5 s

from stimulus onset, at the same time that PRP decoding becomes significant. This is slower than

discrimination times for odorant responses recorded in mice performing two alternative forced

choice odorant discrimination or receiving odors passively where discrimination takes place within

the first respiratory cycle (~250 ms) after stimulus onset (Cury and Uchida, 2010; Short and Wacho-

wiak, 2019; Shusterman et al., 2011). However, the 0.5 s decision-making time is consistent with

studies with the go no-go task where there is not a strong motivation for the animal to stop licking

for the unrewarded odorant (Abraham et al., 2004; Doucette and Restrepo, 2008; Jordan et al.,

2018; Rinberg, 2006)—with the exception of rapid detection of optogenetic activation of glomeru-

lar input in the go no-go task (Smear et al., 2011). Thus, we conclude that PRP is an accurate reflec-

tion of decision-making in olfactory discrimination.

Interestingly, in contrast with theta/high gamma PRP where the decoding performance for peak

and through differ substantially, for theta/beta PRP there is no difference in decoding performance

between peak and trough (compare Figure 5Bii and 5Biv). Increases in OB beta LFP for rodents

engaged in odorant discrimination tasks take place after the onset of changes in gamma LFP and it

has been postulated that beta LFP represents systemwide coherent states perhaps conveying cen-

trifugal modulation from downstream brain areas to the OB (David et al., 2015; Frederick et al.,

2016; Kay, 2014). If beta oscillations indeed represent centrifugal feedback our findings suggest

that centrifugal modulation does not differ through phases of the theta oscillation and would there-

fore excerpt modulation on high frequency circuit activity occurring at different theta phases. Here

we show that peak-referenced high gamma oscillation power encodes for the contextual identity of

the odorant (is the odorant rewarded?). What information could be conveyed at other theta phases

is an open question. Perhaps asynchronous M/T firing carries chemical odorant information in the

theta trough.

Finally, we turn to dimensionality. The measurements in the experiments presented here are

inherently low dimensional because: 1) The animal is discriminating between two odors, and the

behavior is constrained by the go no-go task (Gao et al., 2017) and 2) While the number of indepen-

dent degrees of freedom for inputs to the OB is potentially large (~2000 glomeruli), the four tetro-

des are close together and they should sample a small subset of these input dimensions. Indeed,

because the tetrodes are within 200 mm of each other (and electrodes are adjacent within tetrodes),

the LFP recorded from each electrode is likely to be similar, assuming that the cellular milieu around

the electrodes does not separate the inputs (Gold et al., 2006). Interestingly, the dimensionality

measured from the 16 electrodes (four tetrodes) varies between 1 and 6 suggesting that subsets of

electrodes are detecting different signals (Figure 7—figure supplement 1A). However, when the

mice learn to discriminate the dimensionality decreases in the presence of the relevant odorant (Fig-

ure 7 and Figure 7—figure supplement 1B and C), suggesting that population representation is a

modifiable aspect of OB processing. This likely reflects experience-dependent, attention (Canas and

Jones, 2010; Niv et al., 2015). In the naı̈ve state, relevant (rewarded) dimensions are unknown to

the mouse, and a downstream structure sampling from the recorded population would receive

ambiguous signaling in the presence of the rewarded odorant without decoding or reducing the

input information. We find a large decrease in dimensionality post-learning, suggesting that OB now

enhances a relevant and invariant signal to allow for unambiguous odor detection. Attention, guided

by reward prediction error, likely biases/constrains the learning to the relevant dimensions

(Leong et al., 2017)—in this task, odor identity.

The changes in signal processing elicited by learning, habituation, and passive odorant exposure

in the OB, the earliest processing center in the olfactory system, are remarkable. Why is processing
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in this circuit so plastic and influenced by centrifugal input from downstream targets, such as PC,

and from a variety of neuromodulatory centers (Gire et al., 2013; Linster and Cleland, 2016)? Likely

the reason is that this processing center receives massive parallel glomerular input and projects M/T

output of high dimensionality to downstream brain processing areas (Chae et al., 2019). Further-

more, unsupervised learning modifying cellular interactions in the OB would increase dimensionality

(Hiratani and Latham, 2019). Therefore, odors must be identified in the midst of a high dimension-

ality cocktail party (Rokni et al., 2014). Based on the present data showing a large increase in the

accuracy for decoding of contextual odor identity from the PRP as the animal learns to differentiate

the odorants we speculate that when a subset of the degrees of freedom of the sensory input

become behaviorally relevant, centrifugal feedback elicits supervised learning that results in a

decrease in dimensionality of the output from the OB to downstream brain areas. Thus, the fact that

peak theta-referenced high gamma power encodes information on whether the odorant is rewarded

may simply reflect the fact that the transfer of sensory information on the rewarded odorant is being

prioritized in the OB circuit. This would result in more accurate discrimination of the input channels

that are relevant to the current task. Whether (and how) supervised learning-induced OB circuit plas-

ticity results in a decrease in dimensionality of the output remains to be determined.

Materials and methods

Key resources table

Reagent type
Reagent or
resource Source Identifier

Additional
information

Chemical
compound,
drug

Isoamyl acetate Sigma-Aldrich Cat#123-92-2 Odorant

Chemical
compound,
drug

Ethyl acetate Sigma-Aldrich Cat# 141-78-6 Odorant

Chemical
compound,
drug

Propyl acetate Sigma-Aldrich Cat# 109-60-4 Odorant

Chemical
compound,
drug

Mineral oil Sigma-Aldrich Cat# 8042-47-5 Odorant

Chemical
compound,
drug

Acetophenone Sigma-Aldrich Cat# 98-86-2 Odorant

Chemical
compound,
drug

Ethyl benzoate Sigma-Aldrich Cat# 93-89-0 Odorant

Other Nickel-chrome
wire

Sandvik Cat#PX000002 Tetrode
fabrication

Other 16 Channel
Electrode
Interface Board

Neuralynx EIB-16 Tetrode
fabrication

Other LFP Data GigaDB http://doi.org/
10.5524/100699

Losacco et al., 2020

Software,
algorithm

Analysis code This paper Available on
github and
by request

https://github.com/
restrepd/drgMaster

Strain,
strain
background

Mouse: C57BL/6J Jackson Lab RRID:
IMSR_JAX:000664

Male mice

Strain, strain
background

Mouse:
Tg(Dbh-cre)
KH212Gsat/
Mmucd

Mutant Mouse
Resource and
Research Center

032081-UCD,
RRID:MMRRC

All sexes used

Continued on next page
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Continued

Reagent type
Reagent or
resource Source Identifier

Additional
information

Strain, strain
background

Mouse: eNpHR3.0,
129S-Gt(ROSA)
26Sortm39(CAG-
hop/EYFP) Hze/J

Jackson Lab 014539,
RRID:
SCR_004633

All sexes used

Software,
algorithm

MATLAB_
R2018a

Mathworks RRID:
SCR_001622

Software,
algorithm

Illustrator Adobe RRID:
SCR_010279

Software,
algorithm

Photoshop Adobe RRID:
SCR_014199

Strain, strain background Mouse: OMP-hChR2V In house OMP-hChR2V Li et al., 2014

Animals
The study was performed in two sets of experiments. For the first set of experiments (Exp1), DBH-

eNpHR3.0 mice were used as per Ramirez-Gordillo et al. (2018). These mice express halorhodopsin

in cells expressing Cre under the Dbh promoter (DBH-Cre eNpHR3.0) in LC-NA neurons and were

produced by crossing DBH-Cre mice (032081-UCD, Mutant Mouse Resource and Research Center)

with mice expressing halorhodopsin in a Cre-dependent fashion [eNpHR3.0, 129S Gt(ROSA)

26Sortm39(CAG-hop/EYFP) Hze/J, Jackson labs]. OMP-hChR2V (Li et al., 2014) or C57BL/6 mice

(Jackson stock number: 000664) were used for the second set of experiments (Exp2). All animal pro-

cedures were performed under approval from the Institutional Animal Care and Use Committee

(IACUC) at the University of Colorado Anschutz Medical Campus under guidelines from the National

Institutes of Health. The number of mice used in each experiment is shown in Supplementary file 1-

Table S1.

(Op)tetrode implantation
Surgery was performed under approval from the Institutional Animal Care and Use Committee

(IACUC) at the University of Colorado Anschutz Medical Campus, using aseptic technique. As per

Li et al. (2015), tetrode boards (EIB-16, Neuralynx) with optional fiber optic cannula for photostimu-

lation (optetrodes) were populated with four tetrodes consisting of four 12.5 mm nichrome wires

coated with polyimide (Sandvik RO800). For optetrode fabrication the tetrode boards received the

addition of a fiber optic cannula 105 mm in diameter (Thorlabs FG105UCA) with 1.25 mm OD

ceramic ferrule (Precision Fiber Products) for coupling to a DPSS laser (473 nm, Shanghai Laser and

Optics Century). The optogenetic experiments of Ramirez-Gordillo et al. (2018) are not included in

this study. In the rest of the text we refer to the inserts as (op)tetrode with the understanding that

optetrodes were implanted for Exp1 while optetrodes or tetrodes were implanted for Exp2. Elec-

trode tips were electroplated to 0.2–0.4 MW impedance.

Two-month-old male mice were anesthetized with 5% isoflurane in oxygen. Intraperitoneal keta-

mine/xylazine (100 mg/kg and 10 mg/kg respectively) was then administered along with 100 ml of

2% lidocaine injected subcutaneously over the skull. After the mouse was found to be unresponsive

to a toe pinch, the animal’s head was then secured in the stereotaxic apparatus (Narishige SR-5M-

HT) and the skull was leveled (�50 mm difference DV between bregma and lambda). Gentamycin

ophthalmic ointment was applied to the eyes to maintain hydration. After incising the skin overlaying

the skull, the periosteum was cleared with 15% H2O2. A manipulator (Sutter MP-285) was zeroed at

bregma and midline and the target location for OB implantation was marked with respect to bregma

(Exp1: AP +4.28 mm, ML +0.4 mm, Exp2: AP +4.28 mm, ML +0.5 mm).

A craniotomy performed at this site (Marathon III drill) exposed dura mater which was removed

prior to implantation. Another craniotomy was performed more caudally for implantation of one

ground screw (Plastics1 00–96 � 1/16). The (op)tetrode was positioned above the craniotomy over

the OB while the ground wire was wrapped around the ground screw with the connection coated in

silver paint (SPI Flash-Dry silver conductive paint). After securing the ground screw to the skull, the

(op)tetrodes were lowered into position at the rate of 1 mm/minute (Exp1: AP +4.28 mm, ML +0.4
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mm, DV 0.53 mm, Exp2: AP +4.28 mm, ML +0.5 mm, DV 1.0 mm). After reaching the target depth,

the optetrode was adhered to the skull with C and B Metabond, followed by Teets ‘Cold Cure’ den-

tal cement. After curing (10 min), the (op)tetrode was detached from the manipulator, the animal

was removed from the stereotax and received subcutaneous injections of carprofen (10 mg/kg) and

buprenorphine (0.05 mg/kg) and recovered on a heating pad kept at 37˚C. The mice were monitored

daily and received additional carprofen injections daily for the first two days postoperatively.

Go-no go behavioral task
Mice were water deprived until they reached 80% normal body mass. Then they were placed into

the Slotnick olfactometer (Bodyak and Slotnick, 1999; Li et al., 2015) chamber where they could

move freely. All mice were first trained to lick the water spout to obtain water in the presence of

odor (1% isoamyl acetate in mineral oil, v/v) in the ‘begin’ task (Slotnick and Restrepo, 2005). Sub-

sequently they learned to discriminate 1% isoamyl acetate (S+) versus mineral oil (S-) in the ‘go no-

go’ task (Doucette et al., 2011; Li et al., 2015), followed by learning to discriminate other odorant

pairs (Supplementary file 1-Table S1). Data were analyzed for the go-no go discrimination task, but

not for the begin task.

Mice self-initiated trials by poking their head into the odor delivery port, breaking a photodiode

beam (Figure 1A). During reinforced odorant delivery (lasting 2.5 s) they must lick a water delivery

spout at least once during each of four 0.5 second-long response areas in order to register the deci-

sion as a Hit (Figure 1B). Licks were detected as electrical connectivity between the water spout and

the ground plate on which they stand (Slotnick and Restrepo, 2005). If the mice licked during a

rewarded odorant trial, they received ~10 ml water reinforcement (Figure 1C). The mice learn to

refrain from licking for the unrewarded odorant due to the unrewarded effort of sustained licking.

For correct rejections mice leave the spout shortly after the last lick that takes place 0.5–1.8 s after

odorant onset (Figure 6B). Performance was evaluated in blocks of 20 trials, with 10 S+ and 10 S- tri-

als presented at random. Animals performed as many as 10 blocks per session. Sessions were termi-

nated when animals demonstrated satiety/disengagement from the task or when they performed at

or above 80% correct discrimination in three or more blocks in a session. For EAPAexp1, IAAPexp2

and EAPAexp2 once criterion was reached, the next session had reversed valence, meaning that the

previous S+ became S- (and the previous S- became S+). This reversal disambiguates the identity of

the odor from its valence. Data were analyzed for all odorant pair sessions, including isoamyl acetate

vs. mineral oil. Data were analyzed within two performance windows: when the animal was perform-

ing below 65% (naı̈ve) or above 80% (proficient). The data were also analyzed in the 65–80% per-

forming window, and the results fell between the naı̈ve and proficient windows (data not shown).

Odor stimulus delivery time was measured with a photoionization detector (miniPID, Aurora Sci-

entific). Figure 1—figure supplement 1 shows the time course for odorant concentration measured

at the odor spout. The time difference between valve opening and detection of odor at the odor

port was between 66–133 ms, depending on which olfactometer was used.

Neural recording
Extracellular potentials from the four tetrodes were captured and digitized at 20 kHz on the

RHD2216 amplifier of the Intan RHD2000 Evaluation System with a 1–750 Hz bandpass filter or

amplified with a 16-channel amplifier (Model 3500; A-M systems; bandpass 1–5000 Hz), and sampled

at 24 kHz by a DT3010 A/D card. Information on behavioral events (valve times, mouse presence at

the odor port) was sent through a digital line from the Slotnick olfactometer to the Intan board. Licks

detected by the Slotnick olfactometer were recorded as an analog signal by the Intan board.

Phase Amplitude Coupling
PAC data were processed using the Hilbert transform method described by Tort et al. (2010).

Briefly, data were bandpass filtered with a 20th order Butterworth filter using Matlab’s filtfilt function

with zero phase shift to extract LFP in the low frequency oscillation used for phase estimation (theta,

2–14 Hz, Figure 1Diii) and the high frequency oscillation used for estimation of the amplitude of the

envelope (either beta, 15–30 Hz, or high gamma, 65–95 Hz, Figure 1v). Hilbert transform estab-

lished the theta phase (Figure 1Div) and, separately, the envelope for beta or high gamma (red line

in Figure 1Dv). A plot of the distribution of beta/high gamma amplitude in 51 bins of the phase of
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theta (PAC) was plotted to gauge the strength of PAC (Figure 1E). To quantify the strength of PAC

we calculated the MI estimating the KL distance to quantify the difference between the observed

beta/high gamma amplitude distribution along the phase of theta from a uniform distribution. If

PAC is non-existent, MI = 0, meaning the mean amplitude is distributed uniformly over theta phases,

and if PAC is a delta function MI = 1. MI for signals measured in brain areas such as the hippocam-

pus typically fall between 0–0.03 (Tort et al., 2010).

Phase-referenced LFP power
Beyond the mere existence of PAC that has been documented in numerous brain regions, we sought

to evaluate whether the information carried by beta or high gamma power at different theta phases

could be used to discriminate between olfactory stimuli. To accomplish this analysis, we developed

the PRP approach using custom Matlab code. Briefly, PAC was calculated using the approach docu-

mented by Tort et al. (2010), as described above and summarized in Figure 1. Peak and trough

theta phases are defined as the phase for maxima and minima of the PAC distribution measured for

the S+ trials (red plot in Figure 2C). A continuous Morlet wavelet transform was used to estimate

the power for the high frequency oscillations (Buonviso et al., 2003). PRP was estimated as the

power of the high frequency oscillations (beta or high gamma) measured at the peak or trough of

PAC (Figure 5). The Matlab code used for data analysis has been deposited to https://github.com/

restrepd/drgMaster (copy archived at https://github.com/elifesciences-publications/drgMaster-

52583).

PAC/PRP Simulation
To validate our analysis of PAC and PRP, we performed simulations with uncoupled oscillations (no

PAC) with a low frequency cosine oscillation at 8 Hz and a high frequency cosine oscillation at 40 Hz

(Figure 1—figure supplement 2A) or with coupled oscillations where high frequency bursts took

place at 180 degrees for the low frequency cosine oscillation (Figure 1—figure supplement 2B).

The bursts were generated by a cosine oscillation at the high frequency multiplied by gaussians with

a full width half maximum of (1/8 Hz)/2 centered at 180 degrees of the low frequency cosine wave.

Top panels in both S1A and S1B are pseudocolor Morlet wavelet power time courses, while the bot-

tom panels show the PRP of the 40 Hz oscillation. For the case with no PAC (Figure 1—figure sup-

plement 2A), peak and trough PRP are equal. However, for the PAC example (Figure 1—figure

supplement 2B) the peak PRP is significantly higher than trough PRP.

Statistical analysis
Statistical analysis was performed in Matlab. PAC parameters and PRP were calculated separately

per electrode (16 electrodes per mouse) for all electrodes per mouse. Statistical significance for

changes in measured parameters for factors such as learning and odorant identity was estimated

using generalized linear model (GLM) analysis, with post-hoc tests for all data pairs corrected for

multiple comparisons using false discovery rate (Curran-Everett, 2000). The post hoc comparisons

between pairs of data were performed either with a t-test, or a ranksum test, depending on the

result of an Anderson-Darling test of normality. GLM is a general statistical method that includes

regression and analysis of variance. Degrees of freedom and statistical significance have the same

meaning in GLM as in analysis of variance and regression (Agresti, 2015). In addition, as a comple-

mentary assessment of significant differences (Halsey et al., 2015) we display 95% confidence inter-

vals (CIs) shown in the figures as vertical black lines were estimated by bootstrap analysis of the

mean by sampling with replacement 1000 times.

Linear discriminant analysis
Classification of trials using PRP was accomplished via LDA in Matlab whereby PRP for every trial

except one were used to train the LDA, and the missing trial was classified by the LDA prediction.

This was repeated for all trials and was performed separately for peak and trough PRP, and for anal-

ysis where the identity of the odorants was shuffled. LDA and dimensionality analysis were per-

formed either on a per-mouse basis where the input was the PRP recorded from 16 electrodes, or

on pooled mouse data where the input was the PRP recorded from 16 x N electrodes where N is the

number of mice. For pooled mouse analysis a pooled response vector was therefore created by
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concatenating across animals and the number of trials n, was determined by the session with the

lowest number of trials for a single odorant (Chu et al., 2016).

Dimensionality
Following Litwin-Kumar et al. (2017) we defined the dimension of the system (dim) with M inputs

as the square of the sum of the eigenvalues of the covariance matrix of the measured PRP LFP

(pLFP) divided by the sum of each eigenvalue squared:

dim pLFPð Þ ¼
X

M

i¼1

li

 !

2

=
X

M

i¼1

l2
i

 !

where li are the eigenvalues of the covariance matrix of pLFP computed over the distribution of

PRP LFP signals measured in the OB. If the components of pLFP are independent and have the

same variance, all the eigenvalues are equal and dim(pLFP) = M. Conversely, if the pLFP components

are correlated so that the data points are distributed equally in each dimension of an m-dimensional

subspace of the full M-dimensional space, only m eigenvalues will be nonzero and dim(pLFP) = m.
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Buzsáki G. 2002. Theta oscillations in the Hippocampus. Neuron 33:325–340. DOI: https://doi.org/10.1016/
S0896-6273(02)00586-X, PMID: 11832222

Buzsaki G. 2004. Neuronal oscillations in cortical networks. Science 304:1926–1929. DOI: https://doi.org/10.
1126/science.1099745
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Appendix 1

Detailed evaluation of phase amplitude coupling on a per
odorant pair basis
Figure 2—figure supplement 2A and B show the summary of changes with learning for S+

and S- odorants for MI (Ai, Bi) and the peak angle variance (Aii,Bii) for theta/beta (A) and

theta/high gamma (B) for per electrode PAC for all odorant pairs. When evaluated on a per

odorant pair basis theta/beta and theta/high gamma PAC strength, quantified as the MI

calculated for LFPs recorded in each electrode, was stronger for recordings in Exp2 compared

to Exp1, and there was a statistically significant increase in the MI for S+ with learning (naı̈ve

vs. proficient) (GLM analysis p value < 0.001, for event, proficiency and experiment, with the

exception that p<0.01 for proficiency for theta/high gamma, 3255 d.f., number of mice is in

Supplementary file 1-Table S1). Interestingly, there were decreases in peak angle variance for

S+, and/or increases in peak angle variance for S- for theta/high gamma PAC when the

animals became proficient (GLM analysis p values < 0.001 for event type, proficiency and

experiment for both theta/beta and theta/high gamma, 3255 d.f., number of mice is in

Supplementary file 1-Table S1).

Comparison of decision-making times calculated using
pooled animal PRP LDA data vs. per animal data
Figure 6—figure supplement 1B and C show that for both lick (B) and PRP peak LDA (C) the

decision-making time is faster when data are pooled for all mice. Lick decision-making times

were significantly faster with pooled data (GLM p value < 0.01, 21 d.f.) as were decision

making times for peak PRP LDA (GLM p value < 0.01, 21 d.f.). Because pooled animal data

yield faster decision times we did the comparison of decision times in Figure 6 using pooled

animal data.
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