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g r a p h i c a l a b s t r a c t
This study provides an overview of intra
ocular pressure (IOP) changes due to surgery and anesthesia. Intubation and pneumoperitoneum with CO2 are
associated with increased IOP. Trendelenburg, prone, and lateral decubitus positions are associated with increased IOP. Propofol-based total intravenous
anesthesia (TIVA) attenuates elevated IOP, and may reduce postoperative visual loss.
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Attenuation of an increase in intraocular pressure (IOP) is crucial to preventing devastating postoperative
visual loss following surgery. IOP is affected by several factors, including the physiologic alteration due to
pneumoperitoneum and patient positioning and differences in anesthetic regimens. This study aimed to
investigate the effects of propofol-based total intravenous anesthesia (TIVA) and volatile anesthesia on
IOP. We searched multiple databases for relevant studies published before October 2019. Randomized
controlled trials comparing the effects of propofol-based TIVA and volatile anesthesia on IOP during sur-
gery were considered eligible for inclusion. Twenty studies comprising 980 patients were included. The
mean IOP was significantly lower in the propofol-based TIVA group after intubation, pneumoperitoneum,
Trendelenburg positioning, and lateral decubitus positioning. Moreover, mean arterial pressure and peak
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Propofol
Trial sequential analysis
inspiratory pressure were also lower after intubation in the propofol-based TIVA group. Trial sequential
analyses for these outcomes were conclusive. Propofol-based TIVA is more effective than volatile anes-
thesia during surgery at attenuating the elevation of IOP and should be considered, especially in at-
risk patients.
� 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction lar Pressure”[Mesh], ‘‘Anesthesia, Intravenous”[Mesh], ‘‘propofol”
Intraocular pressure (IOP) is a crucial parameter in determining
the ocular perfusion pressure (OPP) during surgery. IOP is affected
by several factors, including aqueous humor and choroidal blood
volumes, mean arterial pressure (MAP) [1], extraocular muscle
(EOM) tone controlled by central diencephalic centers [2], hyper-
capnia [3], coughing, straining, and vomiting [4]. In addition, with
the advent of laparoscopic and robotic surgery, the physiologic
change after carbon dioxide (CO2) pneumoperitoneum and Trende-
lenburg positioning also affect IOP [5,6]. An increase in IOP blocks
the retrograde transport of neutrophilic factors from the brain [7],
reduces ocular blood flow [8], leads to optic nerve edema and
ischemia [6,9], and may result in rare but catastrophic postopera-
tive visual loss (POVL) [10].

Anesthetic techniques can help attenuate the increase in IOP in
several ways. Most intravenous and volatile anesthetics decrease
IOP to some extent. The mechanisms underlying such a phe-
nomenon include decreased choroidal blood volume due to
decreased blood pressure [11], decreased ocular wall tension due
to relaxation of the EOM via depression of the central diencephalic
centers [2], decreased formation of aqueous humor, and the facili-
tation of aqueous outflow [12,13]. Depolarizing neuromuscular
blocking agents (NMBAs) has been known to cause an IOP increase
due to fasciculation of the EOM [14], whereas non-depolarizing
NMBAs demonstrated a comparatively lower IOP [15]. Short-
acting opioids, such as fentanyl, alfentanil [16], sufentanil [17],
and remifentanil [18], decrease IOP at induction. Previous studies
investigated the effects of propofol-based total intravenous anes-
thesia (TIVA) and volatile anesthesia (VA) on IOP during surgery,
but the results are inconclusive. Thus, we conducted this meta-
analysis to evaluate themost recent studies and determinewhether
different anesthetic techniques for maintenance influence IOP.

Material and methods

Study design

This meta-analysis of randomized controlled trials (RCTs) aimed
to evaluate the effects of propofol-based TIVA versus VA on IOP in
patients undergoing surgery. This study complies with the Pre-
ferred Reporting Items for Systematic Review and Meta-analysis
(PRISMA) statement [19]. Ethical committee approval was not
required for this meta-analysis.

Eligibility criteria

Patients aged �18 years scheduled for elective surgery were
considered eligible for this study. We excluded patients who
underwent previous eye surgery or had a medical history of glau-
coma, uncontrolled hypertension, chronic obstructive lung disease,
a known allergy to anesthetics, or a history taking medications
known to alter IOP.

Search strategy

PubMed, EMBASE, Cochrane Library, and Scopus databases were
searched through October 2019. MeSH terms including ‘‘Intraocu-
[Mesh], ‘‘Anesthesia, Inhalation”[Mesh], ‘‘desflurane”[Mesh],
‘‘sevoflurane”[Mesh], ‘‘isoflurane”[Mesh], ‘‘enflurane”[Mesh],
‘‘halothane”[Mesh] and ‘‘Balanced Anesthesia”[Mesh] were used
in combination with plain text to search PubMed. Similar strate-
gies were applied to search the other databases. A detailed descrip-
tion of the search strategies is provided in Supplement 1. The
reference lists of the included studies were manually searched to
identify additional studies.

Study selection

All studies were selected by two independent reviewers (C.Y.
Chang and Y.J. Chien) according to the following criteria, with all
conditions being met: (a) study of RCTs involving adult patients
undergoing elective surgery; (b) study including clinical outcomes
of interest, i.e., IOP. We did not exclude studies by date, region, or
language. A third reviewer (M.Y. Wu) provided consensus or dis-
cussion in cases of disagreement.

Risk of bias assessment

The methodological quality of the RCTs was assessed using RoB
2, a revised tool for assessing risk of bias in randomized trials [20].
Two reviewers (C.Y. Chang and Y.J. Chien) independently evaluated
the methodological quality of the included studies. Disagreements
were resolved through consensus or discussion with a third
reviewer (M.Y. Wu).

Data collection

Data sets were extracted by two independent reviewers (C.Y.
Chang and Y.J. Chien) from each eligible study. The required infor-
mation included the first author’s name, publication year, surgery
type, age, sex, regimen for anesthesia induction and maintenance,
outcomes of interest, and the protocol for measuring IOP. In cir-
cumstances in which the data were insufficient for meta-
analysis, efforts were made to contact the authors of the original
articles for additional information.

Statistics

The efficacy was estimated for each study by the mean differ-
ence and its 95% confidence interval (CI). The weighted mean dif-
ference (WMD) and 95% CI were calculated using the inverse
variance method with a random-effects model (DerSimonian-
Laird estimator [21]). Statistical heterogeneity was assessed by
the Cochran Q statistic and quantified by the I2 statistic. A sub-
group analysis was conducted to examine whether different intra-
venous anesthetics used for induction in the volatile anesthesia
group could have confounded the IOP or MAP after induction and
intubation. A sensitivity analysis using influence analysis (leave-
one-out method) and replacing one outcome measurement with
another after the same event but for a different duration (e.g., out-
come of interest measured at 5 and 60 min after lateral decubitus
positioning [LDP]) was conducted to test the robustness of the
results. Trial sequential analysis (TSA) was conducted to estimate
the information size required for a conclusive meta-analysis and
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evaluate whether the results were subject to type I error due to an
insufficient number of included studies [22]. In the TSA, type I error
was set at 5%, power was set at 80%, and a heterogeneity adjust-
ment factor was incorporated into the estimation of the required
information size (RIS). Cohen’s d was calculated in the outcomes
with significant intergroup differences yielded from the meta-
analysis. Number-needed-to-treat (NNT) was obtained from
Cohen’s d using Furukawa’s method with the control event rate
set at 20% [23]. The data synthesis and subgroup analysis were per-
formed using Review Manager software (version 5.3; The Nordic
Cochrane Centre, The Cochrane Collaboration, Copenhagen, Den-
mark). The sensitivity analysis was performed using R version
3.6.1 with the ‘‘meta” package. The TSA was conducted using TSA
software (version 0.9.5.10 Beta). P values <0.05 were considered
statistically significant.
Results

Study selection

A total of 348 studies were identified from four major data-
bases, including PubMed (n = 49), EMBASE (n = 134), Cochrane
(n = 52), and Scopus (n = 113). One additional record was identified
through a Google search. After the removal of 179 duplicates, the
remaining studies were screened for eligibility. One hundred and
forty-one studies were excluded due to being irrelevant, animal
studies, conference abstracts, or other reasons listed in Fig. 1. As
a result, 29 studies were subjected to full-text review. However,
one article was excluded because it did not compare propofol-
based TIVA with VA, while another 8 articles were excluded
because the full text could not be retrieved. Finally, 20 studies
comprising 980 patients were included in the qualitative synthesis.
Four studies [24–27] were not included in the further quantitative
analysis due to insufficient information despite direct contact of
the authors, leaving 16 studies included in the meta-analysis.
The detailed PRISMA flow diagram is shown in Fig. 1.
Fig. 1. PRISMA fl
Study characteristics

Eight studies enrolled patients undergoing laparoscopic sur-
gery, including lower abdominal surgery [28], colorectal surgery
[29], radical prostatectomy [30], cholecystectomy [31,32], pelvic
surgery [32], and gynecological surgery [25,33,34]. Six studies
enrolled patients undergoing ophthalmic surgery, including catar-
act surgery [24,35,36], anterior segment surgery [37], a variety of
ophthalmic surgeries [38], and unspecified ophthalmic surgery
[39]. Two studies enrolled patients undergoing spine surgery in
the prone position [40,41]. Two studies enrolled patients undergo-
ing orthopedic surgery, thoracic surgery, and nephrectomy requir-
ing LDP [42,43]. One study enrolled patients undergoing open
gynecological or urological surgery [27]. One study enrolled
patients undergoing unspecified non-ophthalmic surgery [26].
Overall, the mean patient age ranged from 30.9 [25] to 74.5 [36]
years. In studies in which the patients underwent ophthalmic sur-
gery, the mean age ranged from 56.5 [24] to 74.5 [36] years, while
in studies in which the patients underwent laparoscopic surgery,
the mean age ranged from 30.9 [25] to 64.9 [30] years. IOP was
measured with/without topical anesthetics. In ophthalmic surgery,
IOP was measured only in the non-operated eye in five studies
[24,35–37,39] and was measured in both eyes before the surgical
procedures and in the non-operated eye at the end of surgery in
one study [38]. In non-ophthalmic surgery, IOP was measured in
both eyes in seven studies [28,29,31,32,40,42,43], while the rest
did not specify which eye was measured. All studies used an endo-
tracheal tube for intubation except for one that used a laryngeal
mask airway [36] and one that did not specify [26]. Sevoflurane
was used for maintenance in the VA group in seven studies
[27,28,30,34,35,41,43], desflurane in six studies [26,29,31–33,42],
isoflurane in seven studies [24–26,36,37,39,40], and enflurane in
one study [38]. Depolarizing NMBA was only used in two studies
to facilitate endotracheal intubation [34,39], while non-
depolarizing NMBA was used in the rest of the studies. The Hwang
et al. study [32] enrolled patients undergoing surgery involving
ow diagram.
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two different intraoperative positions, Trendelenburg and reverse
Trendelenburg, which may have distinct effects on IOP. Accord-
ingly, the Hwang et al. study was considered two individual studies
for the further analysis and discussion (denoted as Hwang 2013-T
and Hwang 2013-RT, respectively). A brief summary of the study
characteristics is shown in Table 1.
Risk of bias

Six studies were considered as having a low risk of bias. Some
concerns for bias were raised in 13 studies due to insufficient infor-
mation for judgment regarding the blinding of the outcome asses-
sors, which could possibly (although unlikely) influence the
intergroup outcome assessment. The Mirkheshti [40] study was
considered as having a high risk of bias in that the baseline demo-
graphics showed significant intergroup differences in IOP (16 ± 3 in
the isoflurane group versus 18 ± 5 in the propofol-based TIVA
group, P = 0.02) and sex (66.7% male in the isoflurane group versus
26.7% male in the propofol-based TIVA group, P = 0.002), suggest-
ing a problem with the randomization process. The risk of bias
graph and summary are shown in Fig. 2.
Intraocular pressure

IOP values were reported in six studies (n = 242) after induction,
six studies (n = 214) after intubation, three studies (n = 172) after
CO2 pneumoperitoneum, five studies (n = 264) after Trendelenburg
positioning, two studies (n = 74) after LDP, and two studies (n = 84)
after prone positioning. The pooled effect estimate showed a sig-
nificantly lower IOP in the propofol-based TIVA group versus the
volatile group after intubation (WMD, �1.87; 95% CI, �3.32 to
�0.42; P = 0.01), after CO2 pneumoperitoneum (WMD, �2.83;
95% CI, �3.27 to �2.38; P < 0.01), after Trendelenburg positioning
(WMD, �4.23; 95% CI, �4.70 to �3.75; P < 0.01), and after LDP
(WMD, �1.95; 95% CI, �3.15 to �0.75; P < 0.01). In the induction
and prone positions, the pooled effect estimate showed no signifi-
cant difference in IOP (Fig. 3). A sensitivity analysis was also per-
formed with exclusion of the Mirkheshti et al. study [40] because
the baseline IOP in the propofol-based TIVA group was significantly
higher than that in the volatile-based anesthesia group. The pooled
effect estimate after induction remained non-significant after the
exclusion of this study (WMD, �0.98; 95% CI, �2.65 to 0.68;
P = 0.25).

In the TSA of induction, the cumulative Z-curve surpassed the
traditional boundary for statistical significance after the Schafer
et al. study [35] and the Sugata et al. study [41] but fell within
the traditional boundaries thereafter. The adjusted boundary for
the significance threshold was ignored due to too little information
use (1.95%). In the TSA of intubation, the cumulative Z-curve sur-
passed the upper sequential monitoring boundary for the adjusted
statistical significance threshold (TSA-adjusted CI, �3.55 to �0.19;
calculated Cohen’s d, �0.406; NNT, 7.60). In the TSA of LDP, the
cumulative Z-curve reached the RIS and surpassed the traditional
significance boundary (TSA-adjusted CI, �3.80 to �0.10; calculated
Cohen’s d, �0.535; NNT, 5.57). In the TSA of CO2 pneumoperi-
toneum and Trendelenburg positioning, the estimated RIS was
exceeded by the first information; thus, the sequential monitoring
boundaries were not renderable. The cumulative Z-curve sur-
passed the traditional significance boundary (calculated Cohen’s
d, �0.862; and NNT, 3.24 in CO2 pneumoperitoneum; calculated
Cohen’s d, �1.168; and NNT, 2.33 in Trendelenburg positioning).
In the TSA of the prone position, the estimated RIS was not reached
by the cumulative Z-curve and the cumulative Z-curve did not sur-
pass the traditional boundary (TSA-adjusted CI was �6.04 to 2.81)
(Suppl. Fig. S2).
In the propofol-TIVA group, propofol was used for induction in
all studies. However, in the VA group, etomidate was used in two
studies [36,37], thiopental in three [29,38,42], and propofol in
one [43] for induction. The subgroup analysis showed that IOP
after intubation in the propofol-TIVA group was significantly lower
than that in the VA group with thiopental as the induction agent
(WMD, �2.94; 95% CI, �4.42 to �1.46; P < 0.01). However, IOP
was not significantly different in the propofol-TIVA group versus
the VA group with etomidate (WMD, �0.39; 95% CI, �3.62 to
2.85; P = 0.82) and propofol (WMD, �2.00; 95% CI, �5.31 to 1.31;
P = 0.24) as the induction agent (Suppl. Fig. S3).

Ocular perfusion pressure

Only two studies reported ocular perfusion pressure (OPP) mea-
sured after intubation and LDP. The pooled effect estimate showed
no significant difference after intubation (WMD, �3.39; 95% CI,
�8.85 to 2.07; P = 0.22) and LDP (WMD, �1.36; 95% CI, �8.79 to
6.07; P = 0.72) (Fig. 4). In the TSA of intubation, the cumulative
Z-curve did not reach the estimated RIS and did not surpass the
traditional boundary for statistical significance or the sequential
monitoring boundary for the adjusted significance threshold
(TSA-adjusted CI, �17.23 to 10.44). In the TSA of LDP, the cumula-
tive Z-curve did not surpass the traditional boundary for statistical
significance. The sequential monitoring boundary for the adjusted
significance threshold was ignored due to too little information
used (1.64%) (Suppl. Fig. S4). In the sensitivity analysis, we
replaced the OPP measured at 5 min after the adoption of LDP with
that measured at 1 h after LDP reported in the Yamada et al. [43]
study to evaluate if the effect of the propofol-based TIVA and the
volatile-based anesthesia on OPP was influenced by the duration
of the positional change. The intergroup difference in the pooled
effect estimate remained non-significant (WMD, 2.56; 95% CI,
�2.64 to 7.75; P = 0.33).

End-tidal CO2

End-tidal CO2 was investigated in four studies (n = 178) after
induction, four (n = 152) after intubation, four (n = 204) after pneu-
moperitoneum, three (n = 172) after Trendelenburg positioning,
and two (n = 74) after LDP. The pooled effect estimate showed
no significant difference in IOP after induction (WMD, 0.83; 95%
CI, �0.39 to 2.05; P = 0.18), after intubation (WMD, �0.02; 95%
CI, �0.55 to 0.52; P = 0.96), after pneumoperitoneum (WMD,
�0.48; 95% CI, �1.22 to 0.25; P = 0.20), after Trendelenburg posi-
tioning (WMD, �0.34; 95% CI, �1.00 to 0.32; P = 0.32), and after
LDP (WMD, �1.82; 95% CI, �5.07 to 1.43; P = 0.27) (Fig. 5).

In the TSA, the cumulative Z-curve did not reach the estimated
RIS and did not surpass the sequential monitoring boundary for the
adjusted significance threshold after induction (TSA-adjusted CI,
�1.92 to 3.58), after pneumoperitoneum (TSA-adjusted CI, �2.29
to 1.32), after Trendelenburg positioning (TSA-adjusted CI, �3.03
to 2.36), and after LDP (TSA-adjusted CI, �15.09 to 11.44). In the
TSA of intubation, the cumulative Z-curve did not surpass the tra-
ditional significance boundary, and the sequential monitoring
boundary for adjusted significance threshold was ignored due to
too little information used (0.07%) (Suppl. Fig. S5).

Peak inspiratory pressure

Peak inspiratory pressure (PIP) was analyzed in four studies
(n = 202) after induction, two (n = 92) after intubation, two
(n = 106) after pneumoperitoneum, and four (n = 198) after Tren-
delenburg positioning. The pooled effect estimate showed no sig-
nificant intergroup difference in IOP after induction (WMD, 0.07;
95% CI, �0.33 to 0.47; P = 0.74), after pneumoperitoneum (WMD,



Table 1
Study characteristics.

Study Surgery Position Number VA Age Sex Regimen Airway Tonometer

P-
TIVA
(n)

VA (n) P-TIVA VA M
(n)

F
(n)

P-TIVA VA

Kim 2019 Arthroscopic
shoulder surgery

Lateral decubitus 23 23 Desflurane 59.22(7.70) 59.17(8.50) 21 25 Induction: propofol 1.5–
2.5 mg/kg, remifentanil
continuous infusion and
rocuronium 1 mg/kg.

Maintenance: continuous
infusion of 2% propofol and
remifentanil. Propofol was
administered via a TCI system
with Cet 2.5–5 mg/ml.

Induction: thiopental
5–6 mg/kg,
remifentanil
continuous infusion
and rocuronium
1 mg/kg.

Maintenance:
Desflurane 5–8 vol%
and continuous
infusion of
remifentanil using a
TCI system with Cet
3–6 ng/ml.

ETT Tono-Pen� AVIA,
Reichert
Technologies,
Depew, NY, USA

Kaur 2018 Lower abdominal
laparoscopic surgery

25�–30�
Trendelenburg
position

30 30 Sevoflurane 30.53(11.05) 31.87(11.81) 29 31 Induction: propofol 1.5 mg/kg,
fentanyl 2 mg, midazolam
1 mg, atracurium 0.5 mg/kg.

Maintenance: propofol
infusion 5–10 mg/kg/h

Induction: propofol
1.5 mg/kg, fentanyl
2 mg, midazolam
1 mg, atracurium
0.5 mg/kg.

Maintenance:
sevoflurane 1–4 vol%

ETT Schiotz
tonometer

Seo 2018 Laparoscopic
anterior resection of
the sigmoid colon;
laparoscopic low
anterior resection of
the rectum

Supine-
Trendelenburg (30�)
with right tilt (10�–
15�)-reverse
Trendelenburg
(20�–25�) with right
tilt-Trendelenburg
with right tilt

23 23 Desflurane 58.43(7.39) 59.61(9.67) 30 16 Induction: propofol 1.5–
2.5 mg/kg, rocuronium 1 mg/
kg.

Maintenance: propofol TCI
(Cet: 2.5–5 mg/mL),
remifentanil TCI (Cet:3–6 ng/
mL).

Induction: thiopental
5–6 mg/kg,
rocuronium 1 mg/kg.

Maintenance:
desflurane 5–8 vol%,
remifentanil TCI
(Cet:3–6 ng/mL).

ETT Tono Pen� AVIA,
Reichert
Technologies,
Depew, NY, USA

Mirkheshti 2017 Lumbar disc
herniation surgery

Prone 30 30 Isoflurane 46.5(12) 47.3(9) 28 32 Induction: thiopental 5 mg/kg,
fentanyl 2 lg/kg, midazolam
0.02 mg/kg, atracurium
0.5 mg/kg.

Maintenance: propofol 100–
200 lg/kg/min

Induction: thiopental
5 mg/kg, fentanyl
2 lg/kg, midazolam
0.02 mg/kg,
atracurium 0.5 mg/
kg.

Maintenance:
isoflurane 1%.

ETT Tono-Pen AVIA,
Reichert, USA

Yamada 2016 Sevoflurane group:
lung operation, hip
replacement,
femoral plate
removal
Propofol group: lung
operation,
nephrectomy

Lateral decubitus 14 14 Sevoflurane 66.1(7.5) 63.5(16) 13 15 Induction: propofol TCI (Cet:
3.0–5.0 lg/ml), remifentanil
0.2–0.5 lg/kg/min,
vecuronium (0.12–0.15 mg/kg)
or rocuronium (0.65–0.9 mg/
kg).

Maintenance: propofol TCI
(Cet: 2.8–4 lg/ml), fentanyl
50–100 lg bolus and/or
remifentanil 0.1–0.3 lg/kg/
min infusion as needed.

Induction: 1.8–
2.5 mg/kg propofol
bolus, remifentanil
0.2–0.5 lg/kg/min,
vecuronium (0.12–
0.15 mg/kg) or
rocuronium (0.65–
0.9 mg/kg).

Maintenance:
sevoflurane 1.5–
2.0 vol%, fentanyl 50–
100 lg bolus and/or

ETT Tono-Pen� XL
Applanation
tonometer
(Reichert, Depew,
NY, USA)

(continued on next page)
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Table 1 (continued)

Study Surgery Position Number VA Age Sex Regimen Airway Tonometer

P-
TIVA
(n)

VA (n) P-TIVA VA M
(n)

F
(n)

P-TIVA VA

remifentanil 0.1–
0.3 lg/kg/min
infusion as needed.

Montazeri 2015 Cataract surgery – 67 67 Isoflurane With
remifentanil:
58.7(13.4)
With normal
saline: 62.7
(7.1)

With
remifentanil:
54.2(12.3)
With normal
saline: 60.6
(13.9)

50 84 Induction: thiopental 5 mg/kg,
remifentanil 1 lg/kg,
atracurium 0.5 mg/kg.

Maintenance: propofol 100 lg/
kg/min with either
remifentanil 0.1 lg/kg/min or
normal saline.

Induction: thiopental
5 mg/kg, remifentanil
1 lg/kg, atracurium
0.5 mg/kg.

Maintenance:
isoflurane with either
remifentanil 0.1 lg/
kg/min or normal
saline.

ETT Handheld
applanation
tonometer

Yoo 2014 Robot-assisted
laparoscopic radical
prostatectomy

30� Trendelenburg
position

33 33 Sevoflurane 64.7(8.3) 65.1(6.7) – – Propofol TCI (Cet: 2–5 lg/ml)
and remifentanil TCI (Cet: 2–
5 ng/ml) for induction and
maintenance. Rocuronium
0.6 mg/kg for intubation,
rocuronium 0.15 mg/kg during
maintenance as needed.

Induction: propofol
1.5 mg/kg bolus,
remifentanil,
rocuronium 0.6 mg/
kg.

Maintenance:
sevoflurane 1.5–
2.5 vol%, remifentanil
TCI (Cet: 2–5 ng/ml),
rocuronium 0.15 mg/
kg as needed.

ETT Tono-Pen� XL,
Medtronic,
Jacksonville, FL,
USA

Asuman 2013 Laparoscopic
cholecystectomy

15� reverse
Trendelenburg

14 18 Desflurane 49.57(9.93) 46.33(11.32) 11 21 Induction: propofol 2 mg/kg,
rocuronium 0.6 mg/kg.

Maintenance: propofol
infusion 5–10 mg/kg/h,
fentanyl 0.5–1 lg/kg as
needed

Induction: thiopental
5 mg/kg, rocuronium
0.6 mg/kg.

Maintenance:
desflurane 3–6 vol%,
fentanyl 0.5–1 lg/kg
as needed

ETT Shioetz
tonometer

Hwang 2013-RT Laparoscopic
cholecystectomy

20� reverse
Trendelenburg
position

25 25 Desflurane 51(14) 54(15) – – Induction: propofol TCI (Cet:
4 mg/mL), alfentanil 6 mg/kg,
rocuronium 0.6 mg/kg.

Maintenance: propofol TCI
(Cet: 2–4 mg/mL).

Induction: thiopental
5 mg/kg, alfentanil
6 mg/kg, rocuronium
0.6 mg/kg.

Maintenance:
desflurane 4–8 vol%.

ETT Tono-penXL
(Medtronicsolan,
Jacksonville, FL)

Hwang 2013-T Pelvic laparoscopy 20� Trendelenburg
position

25 25 Desflurane 42(11) 41(8) – – Induction: propofol TCI (Cet:
4 mg/mL), alfentanil 6 mg/kg,
rocuronium 0.6 mg/kg.

Maintenance: propofol TCI
(Cet: 2–4 mg/mL).

Induction: thiopental
5 mg/kg, alfentanil
6 mg/kg, rocuronium
0.6 mg/kg.

Maintenance:
desflurane 4–8 vol%.

ETT Tono-penXL
(Medtronicsolan,
Jacksonville, FL)

Sugata 2012 Prone spine surgery Prone 12 12 Sevoflurane 68(12) 69(10) 14 10 Induction: TCI doses of
propofol and remifentanil 0.2–
0.3 mg/kg/min, vecuronium or
rocuronium to facilitate
intubation.

Maintenance: TCI of propofol,
fentanyl, and remifentanil
0.15–0.2 mg/kg/min.

Induction: propofol
1.5–2.5 mg/kg,
remifentanil 0.2–
0.3 mg/kg/min,
vecuronium or
rocuronium to
facilitate intubation.

Maintenance:

ETT Tonopen XL
hand-held
tonometer
(Medtronic
SOLAN,
Jacksonville, FL)
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Table 1 (continued)

Study Surgery Position Number VA Age Sex Regimen Airway Tonometer

P-
TIVA
(n)

VA (n) P-TIVA VA M
(n)

F
(n)

P-TIVA VA

sevoflurane
(concentration no
specified), fentanyl,
and remifentanil
0.15–0.2 mg/kg/min

Park 2006 Laparoscopic
gynecological
surgery

10� Trendelenburg
position

21 21 Desflurane 42.0(11.1) 40.6(8.3) 0 42 Induction: propofol TCI (Cet:
4 lg/ml), alfentanil 6 lg/kg,
rocuronium 0.6 mg/kg.

Maintenance: propofol TCI
(Cet: 2.5–4 lg/ml)

Induction: thiopental
5 mg/kg, alfentanil
6 lg/kg, rocuronium
0.6 mg/kg.

Maintenance:
desflurane 4–8 vol%.

ETT Tono-penRXL,
Medtronicsolan,
Jacksonville, FL,
USA).

Son 2005 Laparoscopic
hysterectomy

15�–20�
Trendelenburg

15 16 Sevoflurane 42.7(6.1) 44.3(7.6) – – Induction: propofol TCI (Cet:
5 lg/ml), fentanyl 1.5 lg/kg,
succinylcholine 1 mg/kg.

Maintenance: propofol TCI
(Cet: 3–4.5 lg/ml),
vecuronium

Induction: thiopental
5 mg/kg, fentanyl
1.5 mg/kg,
succinylcholine 1 mg/
kg.

Maintenance:
sevoflurane (1.5–
3 vol%), vecuronium

ETT Tono-pen
tonometer (Tono-
pen XLR, Mentor
O & O inc, USA)
after one dose of
0.5%
proparacaine
hydrochloride

Mowafi 2003 Gynecologic
laparoscopy

15�–20�
Trendelenburg
position

20 20 Isoflurane 30(7.1) 31.8(6.0) – – Induction: propofol 2.5 mg/kg,
fentanyl 2 lg/kg, atracurium
0.5 mg/kg.

Maintenance: propofol
infusion 5–10 mg/kg/hr,
atracurium 0.15 mg/kg as
needed.

Induction: thiopental
5 mg/kg, fentanyl
2 lg/kg, atracurium
0.5 mg/kg.

Maintenance:
isoflurane 1–2 vol%,
atracurium 0.15 mg/
kg as needed.

ETT Schioetz
tonometer

Sator-Katzenschlager
2002

Elective
gynaecological or
urological
procedures

– 16 17 Sevoflurane – – – – Induction: propofol 2 mg/kg,
fentanyl 2 lg/kg, vecuronium
0.1 mg/kg.

Maintenance: propofol
infusion 6–8 mg/kg/hr.

Induction: propofol
2 mg/kg, fentanyl
2 lg/kg, vecuronium
0.1 mg/kg.

Maintenance:
sevoflurane 1.5–
2.5 vol%.

ETT Hand-held
Perkins
applanation
tonometer.

Schafer 2002 Cataract surgery – 20 20 Sevoflurane 71(14) 75(11) 9 31 Induction: propofol 1.5–
2.0 mg/kg bolus, remifentanil
10 mg/kg/h over 2 mins,
mivacurium 0.12 mg/kg.

Maintenance: propofol 3.0–
7.0 mg/kg/h, remifentanil
10 mg/kg/hr.

Induction: propofol
1.5–2.0 mg/kg bolus,
remifentanil 10 mg/
kg/h over 2 mins,
mivacurium 0.12 mg/
kg.

Maintenance:
sevoflurane 0.7–
1.2 vol%, remifentanil
10 mg/kg/hr.

ETT Draeger handheld
applanation
tonometer,
Moeller-Wedel
Inc., 22,668
Wedel, Germany

(continued on next page)
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Table 1 (continued)

Study Surgery Position Number VA Age Sex Regimen Airway Tonometer

P-
TIVA
(n)

VA (n) P-TIVA VA M
(n)

F
(n)

P-TIVA VA

Sator 1998 Elective non-
ophthalmic surgery

– 16 Isoflurane:
16
Desflurane:
16

Isoflurane,
desflurane

– – – – Induction: thiopental 3–5 mg/
kg, vecuronium 0.1 mg/kg,
fentanyl 2–4 lg/kg.
Maintenance: propofol 4–
8 mg/kg/hr

Induction: thiopental
3–5 mg/kg,
vecuronium 0.1 mg/
kg, fentanyl 2–4 lg/
kg.

Maintenance: 1 MAC
of isoflurane or
desflurane

Unspecified Hand-held
applanation
tonometer
(Perkins)

Moffat 1995 Cataract surgery – 20 20 Isoflurane 72(range 60–
86)

77(range 64–
88)

– – Anesthesia was induced and
maintained with propofol
using a computer-controlled
infusion device (target plasma
concentration 6 lg/ml –> 4 lg/
ml).

Induction: etomidate
0.25 mg/kg,
vecuronium
0.075 mg/kg.

Maintenance:
isoflurane 0.5–1 vol%

LMA Perkins
tonometer

Polarz 1995 Ophthalmic surgery – 20 20 Isoflurane 73.3(7.2) 74.2(8.1) 13 27 Induction: propofol 1.5 mg/kg
bolus, alfentanil 15 lg/kg
bolus, succinylcholine 1 mg/
kg.

Maintenance: propofol 6 mg/
kg/h, alfentanil 15 lg/kg/h,
vecuronium 0.07 mg/kg.

Induction: thiopental
4 mg/kg, alfentanil
15 pg/kg,
succinylcholine 1 mg/
kg.

Maintenance:
isoflurane 0.5–0.8 vol
%, vecuronium
0.07 mg/kg.

ETT Möller-Wedel
applanation
tonometer on
health eyes

Mets 1992 Anterior segment
surgery

– 20 20 Isoflurane 67.6(8) 70.1(7.1) 18 22 Induction: propofol
(2.05 ± 1.07 mg/kg),
vecuronium 0.1 mg/kg.

Maintenance: propofol 90 lg/
kg/min, vecuronium 0.1 mg/
kg.

Induction: etomidate
(0.23 ± 0.09 mg/kg),
alfentanil 15 lg/kg,
vecuronium 0.1 mg/
kg.

Maintenance:
isoflurane 0.5%,
vecuronium 0.1 mg/
kg.

ETT Schiotz
tonometer

Guedes 1988 Cataract extraction,
strabismus,
dacryocystectomy,
secondary
implantation,
detachment of the
retina, vitrectomy,
trabeculectomy

– 15 15 Enflurane 73.6(21) 71.6(0.2) 16 14 Induction: propofol
(1.8 ± 0.39 mg/kg) bolus,
vecuronium (unspecified
dose).

Maintenance: propofol
continuous infusion
(5.2 ± 1.55 mg/kg/hr)

Induction: thiopental
6.8 ± 1.16 mg/kg,
vecuronium
(unspecified dose).

Maintenance:
enflurane
1.1 ± 0.39 vol%

ETT Perkins
tonometer

Age is presented as mean (SD).
P-TIVA: propofol-based total intravenous anesthesia; VA: volatile anesthesia; M: male; F: female; TCI: target-controlled infusion; Cet: target effect-site concentration; IOP: intraocular pressure; ETT: endotracheal tube; LMA:
laryngeal mask airway.
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Fig. 2. Risk of bias graph and summary.
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�0.13; 95% CI, �0.92 to 0.65; P = 0.74), and after Trendelenburg
positioning (WMD, �0.05; 95% CI, �1.22 to 1.11; P = 0.93). How-
ever, after intubation, PIP was significantly lower in the propofol-
based TIVA group (WMD, �1.32; 95% CI, �2.53 to �0.29;
P = 0.01) (Fig. 6).

In the TSA, the estimated RIS was not reached by the cumulative
Z-curve and the cumulative Z-curve did not surpass the traditional
boundary for statistical significance after induction, after pneu-
moperitoneum, and after Trendelenburg positioning. In these three
situations, the sequential monitoring boundary for the adjusted
significance threshold was ignored due to too little information
used (1.49%, 1.35%, and 0.09%). After intubation, the estimated
RIS was 115 and was not reached by the cumulative Z-curve
(92). Nonetheless, the cumulative Z-curve surpassed the upper
sequential monitoring boundary for the adjusted significance
threshold after inclusion of the Kim et al. study [42] (TSA-
adjusted CI, �2.51 to �0.14; calculated Cohen’s d, �0.490; and
NNT, 6.15) (Suppl. Fig. S6).

Mean arterial pressure

MAP was analyzed in 10 studies (n = 433) after induction, seven
(n = 262) after intubation, four (n = 204) after pneumoperitoneum,
six (n = 285) after Trendelenburg positioning, two (n = 82) after



Fig. 3. Forest plot of intraocular pressure at different timings.
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reverse Trendelenburg positioning, two (n = 74) after LDP, and four
(n = 189) after the resolution of pneumoperitoneum. After intuba-
tion, MAP in the propofol-based TIVA group was significantly lower
than that in the VA group (WMD, �6.61; 95% CI, �10.56 to �2.66;
P < 0.01). However, after pneumoperitoneum, MAP was signifi-
cantly higher in the propofol-based TIVA group (WMD, 0.81; 95%
CI, 0.01 to 1.60; P = 0.05). There was no significant heterogeneity
across studies after intubation and pneumoperitoneum
(Chi2 = 4.92, P = 0.55, I2 = 0%; Chi2 = 0.75, P = 0.86, I2 = 0%). The
pooled effect estimate showed no significant intergroup difference
in IOP after induction (WMD, 0.08; 95% CI, �1.42 to 1.59; P = 0.91),
after Trendelenburg positioning (WMD, 0.37; 95% CI, �2.30 to
3.03; P = 0.79), after reverse Trendelenburg positioning (WMD,
�2.34; 95% CI, �9.00 to 4.32; P = 0.49), after LDP (WMD, �2.62;



Fig. 4. Forest plot of ocular perfusion pressure at different timings.

Fig. 5. Forest plot of end-tidal CO2 at different timings.
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Fig. 6. Forest plot of peak inspiratory pressure at different timings.
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95% CI, �9.07 to 3.83; P = 0.43), and after resolution of pneu-
moperitoneum (WMD, 0.41; 95% CI, �3.03 to 3.86; P = 0.82)
(Fig. 7).

In the TSA of intubation, the cumulative Z-curve reached the
estimated RIS and surpassed the traditional boundary for statistical
significance (TSA-adjusted CI, �10.99 to �2.12; calculated Cohen’s
d, �0.414; and NNT, 7.44). In the TSA of pneumoperitoneum, the
cumulative Z-curve surpassed the traditional boundary for statisti-
cal significance but did not reach the estimated RIS and did not sur-
pass the lower sequential monitoring boundary for the adjusted
significance threshold (TSA-adjusted CI, �0.39 to 2.01; calculated
Cohen’s d, 0.067; and NNT, 51.86). In the TSA of LDP and reverse
Trendelenburg positioning, the cumulative Z-curve did not reach
the estimated RIS and did not surpass the sequential monitoring
boundary for the adjusted significance threshold. In the TSA of
induction, Trendelenburg positioning and pneumoperitoneum res-
olution, the sequential monitoring boundary for the adjusted sig-
nificance threshold was ignored due to too little information
used (0.26%, 0.94%, and 1.53%) (Suppl. Fig. S7).

In the outcome of MAP after induction, propofol was used for
induction in the propofol-TIVA group in all studies, while thiopen-
tal was used in five studies [32–34,38,39] and propofol in four
[28,30,35,41] for induction in the VA group. In the subgroup anal-
ysis, MAP after induction was not significantly different between
the propofol-TIVA group and the VA group with thiopental
(WMD, �1.02; 95% CI, �4.19 to 2.15; P = 0.53) or propofol
(WMD, 0.55; 95% CI, �1.49 to 2.60; P = 0.60) as the induction agent
(Suppl. Fig. S8). In the outcome of MAP after intubation, propofol
was used for induction in the propofol-TIVA group in all studies,
whereas thiopental was used in five studies [29,31,38,39,42] and
propofol in two [35,43] for induction in the VA group. The sub-
group analysis showed that MAP after intubation in the propofol-
TIVA group was significantly lower than that in the VA group with
thiopental as the induction agent (WMD, �7.90; 95% CI, �12.77 to
�3.02; P < 0.01). However, MAP was not significantly different
between the propofol-TIVA group and the VA group with propofol
as the induction agent (WMD, �4.08; 95% CI, �10.87 to 2.72;
P = 0.24) (Suppl. Fig. S9).
Influence analysis

An influence analysis was conducted for each outcome except
those including only two studies. The results of the influence anal-
ysis for all outcomes showed that the re-calculated pooled esti-
mates after the omission of one study at a time were within the
95% CI of the pooled estimate of all studies, indicating the robust-
ness of the results (Suppl. Figs. S10-14).
Discussion

Endotracheal intubation is associated with a marked increase in
IOP, likely attributable to the increase in MAP and subsequent
increase in the choroidal blood flow [44]. Propofol-based TIVA
has been shown to result in lower heart rate and MAP after induc-
tion and intubation than sevoflurane and isoflurane in a previous
study [45], thereby leading to a lower IOP. Different induction
agents may also play an important role in IOP after intubation.



Fig. 7. Forest plot of mean arterial pressure at different timings.
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For example, induction by thiopental was associated with higher
IOP and blood pressure after induction and intubation than were
propofol and etomidate [46–48]. This was compatible with our
subgroup analysis in which we found that IOP and MAP after intu-
bation in the propofol-based TIVA group were significantly lower
than that in the VA group with thiopental as the induction agent.



Fig. 8. Forest plot of all brief conclusions.
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PIP has been shown to increase IOP [49]. The proposed mecha-
nism for the positive correlation between PIP and IOP is that the
increased intrathoracic pressure increases the central venous pres-
sure, which in turn increases the episcleral venous pressure and
blocks the aqueous humor outflow [9,50], leading to an increased
IOP. Propofol and most of the volatile anesthetics are well docu-
mented for their bronchodilation property via inhibiting intracellu-
lar calciummobilization [11]. Clinical studies evaluating the effects
of propofol and sevoflurane on respiratory mechanics during sur-
gery found no significant difference in PIP [51,52]. However, a
recent study demonstrated that the total inspiratory resistance of
desflurane is significantly higher than that of sevoflurane and
isoflurane at a 1.5 minimum alveolar concentration (MAC) [53].
Therefore, we postulated that the significantly lower PIP after intu-
bation observed in the present study was due to desflurane use in
the studies by Seo et al. and Kim et al. [29,42]. Further investiga-
tions are required to confirm our theory.

IOP after pneumoperitoneum and Trendelenburg positioning in
the propofol-based TIVA group was significantly lower than that in
the VA group. The mechanism underlying such a difference was
proposed to be the inhibitory effect of propofol on arginine vaso-
pressin (AVP), which increased during laparoscopic surgery
[54,55] and Trendelenburg positioning [56]. AVP and its synthetic
derivative desmopressin has been shown to increase IOP [57,58].
Propofol inhibits magnocellular neuron excitability in the paraven-
tricular nucleus [59] and supraoptic nucleus [60] via gamma-
aminobutyric acid(A)-mediated inhibitory currents; therefore, it
may attenuate the increase in IOP during pneumoperitoneum
and Trendelenburg positioning. On the contrary, the plasma con-
centration of AVP was not altered by volatile anesthetics [61].

LDP has been shown to increase the IOP of the dependent eye in
both anaesthetized patients and healthy subjects [62,63]. The
increased IOP in LDP is likely due to the increased episcleral venous
pressure and choroidal volume resulting from gravity or a shift of
body fluid and jugular vein compression [63]. In the present study,
we found that IOP after LDP in the propofol-based TIVA groups was
significantly lower than that in the VA group. The mechanism
remains unclear. It was postulated that the reducing effect of
propofol on IOP was greater than the increasing effect of LDP, but
not volatile anesthetics [43]. Further investigations are necessary
to explore this finding.

Our study has some limitations. First, the time elapsed between
the IOP measurement and intubation was mentioned in some stud-
ies [29,31,35–37,39,42] but unclear in others. Moreover, informa-
tion was unavailable regarding the exhaled concentration of the
VA or the MAC after intubation at which the IOP was measured.
As a result, it was unclear to what extent the volatile anesthetics
affected the IOP and may underestimate the effects of VA after
intubation. Second, some of the included studies were not included
in the meta-analysis due to insufficient information. As a result, the
pooled effect may have been shifted in either direction if these
studies had been included in the meta-analysis. Third, our search
strategy was based on the primary outcome, i.e., IOP. Although
the literature was searched comprehensively, it remains possible
that some studies reporting our secondary outcomes were not
included. Consequently, the results of the secondary outcomes in
this study may be subject to type one or type two errors. Finally,
despite attempts to explore possible modulating factors by meta-
regression to account for the intergroup heterogeneity, we were
unable to perform it due to insufficient data.
Conclusions

To the best of our knowledge, this is the first meta-analysis of
RCTs to evaluate the effects of propofol-based TIVA and VA on
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IOP in patients undergoing surgery. We found that IOP, MAP, and
PIP after intubation in the propofol-based TIVA group were signif-
icantly lower than that in the VA group. Moreover, the IOP was also
significantly lower in the propofol-TIVA group after pneumoperi-
toneum, Trendelenburg positioning, and LDP (Fig. 8.). Thus,
propofol-based TIVA should be the regimen of choice during anes-
thesia maintenance, especially in at-risk patients.
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