Journal of Advanced Research 24 (2020) 223-238



Contents lists available at ScienceDirect

# Journal of Advanced Research

journal homepage: www.elsevier.com/locate/jare



# Attenuation of increased intraocular pressure with propofol anesthesia: A systematic review with meta-analysis and trial sequential analysis



Chun-Yu Chang<sup>a</sup>, Yung-Jiun Chien<sup>b</sup>, Meng-Yu Wu<sup>c,d,\*</sup>

<sup>a</sup> School of Medicine, Tzu Chi University, Hualien 970, Taiwan

<sup>b</sup> Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan

<sup>c</sup> Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan

<sup>d</sup> Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan

## G R A P H I C A L A B S T R A C T

This study provides an overview of intraocular pressure (IOP) changes due to surgery and anesthesia. Intubation and pneumoperitoneum with  $CO_2$  are associated with increased IOP. Trendelenburg, prone, and lateral decubitus positions are associated with increased IOP. Propofol-based total intravenous anesthesia (TIVA) attenuates elevated IOP, and may reduce postoperative visual loss.

|          |                                      | v   | leighted mean difference | (95% C | D             |          |        |
|----------|--------------------------------------|-----|--------------------------|--------|---------------|----------|--------|
|          |                                      | 4   | -6 0                     | +6     | Favor         | Conclusi | ve NNT |
|          | After induction                      | 242 | -+-                      |        | NS            |          |        |
|          | After intubation                     | 214 |                          |        | Propofol-TIV/ | A 🗸      | 7.60   |
| 4        | After pneumoperitoneum               | 172 | +                        |        | Propofol-TIV/ | A 🗸      | 3.24   |
| 2        | After Trendelenburg position         | 264 | +                        |        | Propofol-TIV/ | A 🗸      | 2.33   |
|          | After lateral decubitus position     | 74  |                          |        | Propofol-TIV/ | A V      | 5.57   |
|          | After prone position                 | 84  |                          |        | NS            |          |        |
|          |                                      |     | -10 0                    | +10    |               |          |        |
| 8        | After intubation                     | 74  |                          |        | NS            |          |        |
| ō        | After lateral decubitus position     | 74  |                          |        | NS            |          |        |
| _        |                                      |     | 6 0                      | +6     |               |          |        |
|          | After induction                      | 178 |                          |        | NS            |          |        |
| 0        | After intubation                     | 152 | +                        |        | NS            |          |        |
| <u>Ч</u> | After pneumoperitoneum               | 204 | -                        |        | NS            |          |        |
| -        | After Trendelenburg position         | 172 | -                        |        | NS            |          |        |
|          | After lateral decubitus position     | 74  |                          |        | NS            |          |        |
| _        |                                      |     | 6 0                      | +6     |               |          |        |
|          | After induction                      | 202 |                          |        | NS            |          |        |
| ₽        | After intubation                     | 92  |                          |        | Propotol-TIV/ | A V      | 6.15   |
| <u>a</u> | After pneumoperitoneum               | 106 | -                        |        | NS            |          |        |
|          | After Trendelenburg position         | 198 |                          |        | NS            |          |        |
| _        |                                      |     | -12 0                    | +12    |               |          |        |
|          | After induction                      | 433 | +                        |        | NS            |          |        |
|          | After intubation                     | 262 |                          |        | Propofol-TIV/ | A 🗸      | 7.44   |
| AP       | After pneumoperitoneum               | 204 | +                        |        | Volatile      |          | 51.86  |
| Σ        | After Trendelenburg position         | 285 |                          |        | NS            |          |        |
|          | After reverse Trendelenburg position | 82  |                          |        | NS            |          |        |
|          | After lateral decubitus position     | 84  |                          |        | NS            |          |        |
|          | After resolution of pneumoperitoneum | 189 |                          |        | NS            |          |        |

## ARTICLE INFO

Article history: Received 17 October 2019 Revised 28 January 2020 Accepted 11 February 2020 Available online 13 February 2020

*Keywords:* Anesthesia Intraocular pressure Meta-analysis

## ABSTRACT

Attenuation of an increase in intraocular pressure (IOP) is crucial to preventing devastating postoperative visual loss following surgery. IOP is affected by several factors, including the physiologic alteration due to pneumoperitoneum and patient positioning and differences in anesthetic regimens. This study aimed to investigate the effects of propofol-based total intravenous anesthesia (TIVA) and volatile anesthesia on IOP. We searched multiple databases for relevant studies published before October 2019. Randomized controlled trials comparing the effects of propofol-based TIVA and volatile anesthesia on IOP during surgery were considered eligible for inclusion. Twenty studies comprising 980 patients were included. The mean IOP was significantly lower in the propofol-based TIVA group after intubation, pneumoperitoneum, Trendelenburg positioning, and lateral decubitus positioning. Moreover, mean arterial pressure and peak

Peer review under responsibility of Cairo University.

\* Corresponding author at: Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan. *E-mail address:* skyshangrila@gmail.com (M.-Y. Wu).

https://doi.org/10.1016/j.jare.2020.02.008

<sup>2090-1232/© 2020</sup> THE AUTHORS. Published by Elsevier BV on behalf of Cairo University.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Propofol Trial sequential analysis inspiratory pressure were also lower after intubation in the propofol-based TIVA group. Trial sequential analyses for these outcomes were conclusive. Propofol-based TIVA is more effective than volatile anesthesia during surgery at attenuating the elevation of IOP and should be considered, especially in atrisk patients.

© 2020 THE AUTHORS. Published by Elsevier BV on behalf of Cairo University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

## Introduction

Intraocular pressure (IOP) is a crucial parameter in determining the ocular perfusion pressure (OPP) during surgery. IOP is affected by several factors, including aqueous humor and choroidal blood volumes, mean arterial pressure (MAP) [1], extraocular muscle (EOM) tone controlled by central diencephalic centers [2], hypercapnia [3], coughing, straining, and vomiting [4]. In addition, with the advent of laparoscopic and robotic surgery, the physiologic change after carbon dioxide (CO<sub>2</sub>) pneumoperitoneum and Trendelenburg positioning also affect IOP [5,6]. An increase in IOP blocks the retrograde transport of neutrophilic factors from the brain [7], reduces ocular blood flow [8], leads to optic nerve edema and ischemia [6,9], and may result in rare but catastrophic postoperative visual loss (POVL) [10].

Anesthetic techniques can help attenuate the increase in IOP in several ways. Most intravenous and volatile anesthetics decrease IOP to some extent. The mechanisms underlying such a phenomenon include decreased choroidal blood volume due to decreased blood pressure [11], decreased ocular wall tension due to relaxation of the EOM via depression of the central diencephalic centers [2], decreased formation of aqueous humor, and the facilitation of aqueous outflow [12,13]. Depolarizing neuromuscular blocking agents (NMBAs) has been known to cause an IOP increase due to fasciculation of the EOM [14], whereas non-depolarizing NMBAs demonstrated a comparatively lower IOP [15]. Shortacting opioids, such as fentanyl, alfentanil [16], sufentanil [17], and remifentanil [18], decrease IOP at induction. Previous studies investigated the effects of propofol-based total intravenous anesthesia (TIVA) and volatile anesthesia (VA) on IOP during surgery, but the results are inconclusive. Thus, we conducted this metaanalysis to evaluate the most recent studies and determine whether different anesthetic techniques for maintenance influence IOP.

## Material and methods

#### Study design

This meta-analysis of randomized controlled trials (RCTs) aimed to evaluate the effects of propofol-based TIVA versus VA on IOP in patients undergoing surgery. This study complies with the Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) statement [19]. Ethical committee approval was not required for this meta-analysis.

## Eligibility criteria

Patients aged  $\geq$ 18 years scheduled for elective surgery were considered eligible for this study. We excluded patients who underwent previous eye surgery or had a medical history of glaucoma, uncontrolled hypertension, chronic obstructive lung disease, a known allergy to anesthetics, or a history taking medications known to alter IOP.

## Search strategy

PubMed, EMBASE, Cochrane Library, and Scopus databases were searched through October 2019. MeSH terms including "Intraocular Pressure"[Mesh], "Anesthesia, Intravenous"[Mesh], "propofol" [Mesh], "Anesthesia, Inhalation"[Mesh], "desflurane"[Mesh], "sevoflurane"[Mesh], "isoflurane"[Mesh], "enflurane"[Mesh], "halothane"[Mesh] and "Balanced Anesthesia"[Mesh] were used in combination with plain text to search PubMed. Similar strategies were applied to search the other databases. A detailed description of the search strategies is provided in Supplement 1. The reference lists of the included studies were manually searched to identify additional studies.

## Study selection

All studies were selected by two independent reviewers (C.Y. Chang and Y.J. Chien) according to the following criteria, with all conditions being met: (a) study of RCTs involving adult patients undergoing elective surgery; (b) study including clinical outcomes of interest, i.e., IOP. We did not exclude studies by date, region, or language. A third reviewer (M.Y. Wu) provided consensus or discussion in cases of disagreement.

## Risk of bias assessment

The methodological quality of the RCTs was assessed using RoB 2, a revised tool for assessing risk of bias in randomized trials [20]. Two reviewers (C.Y. Chang and Y.J. Chien) independently evaluated the methodological quality of the included studies. Disagreements were resolved through consensus or discussion with a third reviewer (M.Y. Wu).

#### Data collection

Data sets were extracted by two independent reviewers (C.Y. Chang and Y.J. Chien) from each eligible study. The required information included the first author's name, publication year, surgery type, age, sex, regimen for anesthesia induction and maintenance, outcomes of interest, and the protocol for measuring IOP. In circumstances in which the data were insufficient for metaanalysis, efforts were made to contact the authors of the original articles for additional information.

## Statistics

The efficacy was estimated for each study by the mean difference and its 95% confidence interval (CI). The weighted mean difference (WMD) and 95% CI were calculated using the inverse variance method with a random-effects model (DerSimonian-Laird estimator [21]). Statistical heterogeneity was assessed by the Cochran Q statistic and quantified by the I<sup>2</sup> statistic. A subgroup analysis was conducted to examine whether different intravenous anesthetics used for induction in the volatile anesthesia group could have confounded the IOP or MAP after induction and intubation. A sensitivity analysis using influence analysis (leaveone-out method) and replacing one outcome measurement with another after the same event but for a different duration (e.g., outcome of interest measured at 5 and 60 min after lateral decubitus positioning [LDP]) was conducted to test the robustness of the results. Trial sequential analysis (TSA) was conducted to estimate the information size required for a conclusive meta-analysis and evaluate whether the results were subject to type I error due to an insufficient number of included studies [22]. In the TSA, type I error was set at 5%, power was set at 80%, and a heterogeneity adjustment factor was incorporated into the estimation of the required information size (RIS). Cohen's d was calculated in the outcomes with significant intergroup differences yielded from the meta-analysis. Number-needed-to-treat (NNT) was obtained from Cohen's d using Furukawa's method with the control event rate set at 20% [23]. The data synthesis and subgroup analysis were performed using Review Manager software (version 5.3; The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen, Denmark). The sensitivity analysis was performed using R version 3.6.1 with the "meta" package. The TSA was conducted using TSA software (version 0.9.5.10 Beta). P values <0.05 were considered statistically significant.

## Results

## Study selection

A total of 348 studies were identified from four major databases, including PubMed (n = 49), EMBASE (n = 134), Cochrane (n = 52), and Scopus (n = 113). One additional record was identified through a Google search. After the removal of 179 duplicates, the remaining studies were screened for eligibility. One hundred and forty-one studies were excluded due to being irrelevant, animal studies, conference abstracts, or other reasons listed in Fig. 1. As a result. 29 studies were subjected to full-text review. However, one article was excluded because it did not compare propofolbased TIVA with VA, while another 8 articles were excluded because the full text could not be retrieved. Finally, 20 studies comprising 980 patients were included in the qualitative synthesis. Four studies [24–27] were not included in the further quantitative analysis due to insufficient information despite direct contact of the authors, leaving 16 studies included in the meta-analysis. The detailed PRISMA flow diagram is shown in Fig. 1.

#### Study characteristics

Eight studies enrolled patients undergoing laparoscopic surgery, including lower abdominal surgery [28], colorectal surgery [29], radical prostatectomy [30], cholecystectomy [31,32], pelvic surgery [32], and gynecological surgery [25,33,34]. Six studies enrolled patients undergoing ophthalmic surgery, including cataract surgery [24,35,36], anterior segment surgery [37], a variety of ophthalmic surgeries [38], and unspecified ophthalmic surgery [39]. Two studies enrolled patients undergoing spine surgery in the prone position [40,41]. Two studies enrolled patients undergoing orthopedic surgery, thoracic surgery, and nephrectomy requiring LDP [42,43]. One study enrolled patients undergoing open gynecological or urological surgery [27]. One study enrolled patients undergoing unspecified non-ophthalmic surgery [26]. Overall, the mean patient age ranged from 30.9 [25] to 74.5 [36] vears. In studies in which the patients underwent ophthalmic surgery, the mean age ranged from 56.5 [24] to 74.5 [36] years, while in studies in which the patients underwent laparoscopic surgery, the mean age ranged from 30.9 [25] to 64.9 [30] years. IOP was measured with/without topical anesthetics. In ophthalmic surgery, IOP was measured only in the non-operated eye in five studies [24,35–37,39] and was measured in both eyes before the surgical procedures and in the non-operated eye at the end of surgery in one study [38]. In non-ophthalmic surgery, IOP was measured in both eyes in seven studies [28,29,31,32,40,42,43], while the rest did not specify which eye was measured. All studies used an endotracheal tube for intubation except for one that used a laryngeal mask airway [36] and one that did not specify [26]. Sevoflurane was used for maintenance in the VA group in seven studies [27,28,30,34,35,41,43], desflurane in six studies [26,29,31-33,42], isoflurane in seven studies [24-26,36,37,39,40], and enflurane in one study [38]. Depolarizing NMBA was only used in two studies facilitate endotracheal intubation [34,39], while nonto depolarizing NMBA was used in the rest of the studies. The Hwang et al. study [32] enrolled patients undergoing surgery involving



Fig. 1. PRISMA flow diagram.

two different intraoperative positions, Trendelenburg and reverse Trendelenburg, which may have distinct effects on IOP. Accordingly, the Hwang et al. study was considered two individual studies for the further analysis and discussion (denoted as Hwang 2013-T and Hwang 2013-RT, respectively). A brief summary of the study characteristics is shown in Table 1.

#### Risk of bias

Six studies were considered as having a low risk of bias. Some concerns for bias were raised in 13 studies due to insufficient information for judgment regarding the blinding of the outcome assessors, which could possibly (although unlikely) influence the intergroup outcome assessment. The Mirkheshti [40] study was considered as having a high risk of bias in that the baseline demographics showed significant intergroup differences in IOP (16 ± 3 in the isoflurane group versus 18 ± 5 in the propofol-based TIVA group, P = 0.02) and sex (66.7% male in the isoflurane group versus 26.7% male in the propofol-based TIVA group, P = 0.002), suggesting a problem with the randomization process. The risk of bias graph and summary are shown in Fig. 2.

#### Intraocular pressure

IOP values were reported in six studies (n = 242) after induction, six studies (n = 214) after intubation, three studies (n = 172) after  $CO_2$  pneumoperitoneum, five studies (n = 264) after Trendelenburg positioning, two studies (n = 74) after LDP, and two studies (n = 84)after prone positioning. The pooled effect estimate showed a significantly lower IOP in the propofol-based TIVA group versus the volatile group after intubation (WMD, -1.87; 95% CI, -3.32 to -0.42; P = 0.01), after CO<sub>2</sub> pneumoperitoneum (WMD, -2.83; 95% CI, -3.27 to -2.38; P < 0.01), after Trendelenburg positioning (WMD, -4.23; 95% CI, -4.70 to -3.75; P < 0.01), and after LDP (WMD, -1.95; 95% CI, -3.15 to -0.75; P < 0.01). In the induction and prone positions, the pooled effect estimate showed no significant difference in IOP (Fig. 3). A sensitivity analysis was also performed with exclusion of the Mirkheshti et al. study [40] because the baseline IOP in the propofol-based TIVA group was significantly higher than that in the volatile-based anesthesia group. The pooled effect estimate after induction remained non-significant after the exclusion of this study (WMD, -0.98; 95% CI, -2.65 to 0.68; P = 0.25)

In the TSA of induction, the cumulative Z-curve surpassed the traditional boundary for statistical significance after the Schafer et al. study [35] and the Sugata et al. study [41] but fell within the traditional boundaries thereafter. The adjusted boundary for the significance threshold was ignored due to too little information use (1.95%). In the TSA of intubation, the cumulative Z-curve surpassed the upper sequential monitoring boundary for the adjusted statistical significance threshold (TSA-adjusted CI, -3.55 to -0.19; calculated Cohen's d, -0.406; NNT, 7.60). In the TSA of LDP, the cumulative Z-curve reached the RIS and surpassed the traditional significance boundary (TSA-adjusted CI, -3.80 to -0.10; calculated Cohen's d, -0.535; NNT, 5.57). In the TSA of CO<sub>2</sub> pneumoperitoneum and Trendelenburg positioning, the estimated RIS was exceeded by the first information; thus, the sequential monitoring boundaries were not renderable. The cumulative Z-curve surpassed the traditional significance boundary (calculated Cohen's d, -0.862; and NNT, 3.24 in CO<sub>2</sub> pneumoperitoneum; calculated Cohen's d, -1.168; and NNT, 2.33 in Trendelenburg positioning). In the TSA of the prone position, the estimated RIS was not reached by the cumulative Z-curve and the cumulative Z-curve did not surpass the traditional boundary (TSA-adjusted CI was -6.04 to 2.81) (Suppl. Fig. S2).

In the propofol-TIVA group, propofol was used for induction in all studies. However, in the VA group, etomidate was used in two studies [36,37], thiopental in three [29,38,42], and propofol in one [43] for induction. The subgroup analysis showed that IOP after intubation in the propofol-TIVA group was significantly lower than that in the VA group with thiopental as the induction agent (WMD, -2.94; 95% CI, -4.42 to -1.46; P < 0.01). However, IOP was not significantly different in the propofol-TIVA group versus the VA group with etomidate (WMD, -0.39; 95% CI, -3.62 to 2.85; P = 0.82) and propofol (WMD, -2.00; 95% CI, -5.31 to 1.31; P = 0.24) as the induction agent (Suppl. Fig. S3).

## Ocular perfusion pressure

Only two studies reported ocular perfusion pressure (OPP) measured after intubation and LDP. The pooled effect estimate showed no significant difference after intubation (WMD, -3.39: 95% CI. -8.85 to 2.07; P = 0.22) and LDP (WMD, -1.36; 95% CI, -8.79 to 6.07; P = 0.72) (Fig. 4). In the TSA of intubation, the cumulative Z-curve did not reach the estimated RIS and did not surpass the traditional boundary for statistical significance or the sequential monitoring boundary for the adjusted significance threshold (TSA-adjusted CI, -17.23 to 10.44). In the TSA of LDP, the cumulative Z-curve did not surpass the traditional boundary for statistical significance. The sequential monitoring boundary for the adjusted significance threshold was ignored due to too little information used (1.64%) (Suppl. Fig. S4). In the sensitivity analysis, we replaced the OPP measured at 5 min after the adoption of LDP with that measured at 1 h after LDP reported in the Yamada et al. [43] study to evaluate if the effect of the propofol-based TIVA and the volatile-based anesthesia on OPP was influenced by the duration of the positional change. The intergroup difference in the pooled effect estimate remained non-significant (WMD, 2.56; 95% Cl, -2.64 to 7.75; P = 0.33).

## End-tidal CO<sub>2</sub>

End-tidal CO<sub>2</sub> was investigated in four studies (n = 178) after induction, four (n = 152) after intubation, four (n = 204) after pneumoperitoneum, three (n = 172) after Trendelenburg positioning, and two (n = 74) after LDP. The pooled effect estimate showed no significant difference in IOP after induction (WMD, 0.83; 95% CI, -0.39 to 2.05; P = 0.18), after intubation (WMD, -0.02; 95% CI, -0.55 to 0.52; P = 0.96), after pneumoperitoneum (WMD, -0.48; 95% CI, -1.22 to 0.25; P = 0.20), after Trendelenburg positioning (WMD, -0.34; 95% CI, -1.00 to 0.32; P = 0.32), and after LDP (WMD, -1.82; 95% CI, -5.07 to 1.43; P = 0.27) (Fig. 5).

In the TSA, the cumulative Z-curve did not reach the estimated RIS and did not surpass the sequential monitoring boundary for the adjusted significance threshold after induction (TSA-adjusted CI, -1.92 to 3.58), after pneumoperitoneum (TSA-adjusted CI, -2.29 to 1.32), after Trendelenburg positioning (TSA-adjusted CI, -3.03 to 2.36), and after LDP (TSA-adjusted CI, -15.09 to 11.44). In the TSA of intubation, the cumulative Z-curve did not surpass the traditional significance boundary, and the sequential monitoring boundary for adjusted significance threshold was ignored due to too little information used (0.07%) (Suppl. Fig. S5).

## Peak inspiratory pressure

Peak inspiratory pressure (PIP) was analyzed in four studies (n = 202) after induction, two (n = 92) after intubation, two (n = 106) after pneumoperitoneum, and four (n = 198) after Trendelenburg positioning. The pooled effect estimate showed no significant intergroup difference in IOP after induction (WMD, 0.07; 95% CI, -0.33 to 0.47; P = 0.74), after pneumoperitoneum (WMD,

## Table 1

Study characteristics.

| Study           | Surgery                                                                                                                                   | argery Position <u>Number</u>                                                                                                                               |                          | VA         | Age            |              | Sex Regimen                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          | Airway | Tonometer                                                                  |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------|
|                 |                                                                                                                                           |                                                                                                                                                             | P- VA (n)<br>TIVA<br>(n) |            | P-TIVA         | VA           | M F P-TIVA<br>(n) (n)                                                                                                                                                                                                                                                                                                                              | VA                                                                                                                                                                                                                                                                                                       | -      |                                                                            |
| Kim 2019        | Arthroscopic<br>shoulder surgery                                                                                                          | Lateral decubitus                                                                                                                                           | 23 23                    | Desflurane | 59.22(7.70)    | 59.17(8.50)  | <ul> <li>21 25 <u>Induction:</u> propofol 1.5–<br/>2.5 mg/kg, remifentanil<br/>continuous infusion and<br/>rocuronium 1 mg/kg.<br/><u>Maintenance:</u> continuous<br/>infusion of 2% propofol and<br/>remifentanil. Propofol was<br/>administered via a TCI syst<br/>with Cet 2.5–5 mg/ml.</li> </ul>                                              | Induction: thiopenta<br>5–6 mg/kg,<br>remifentanil<br>continuous infusion<br>and rocuronium<br>1 mg/kg.<br>Maintenance:<br>PM Desflurane 5–8 vol%<br>and continuous<br>infusion of<br>remifentanil using a<br>TCI system with Cet<br>3–6 ng/ml.                                                          | I ETT  | Tono-Pen <sup>®</sup> AVIA,<br>Reichert<br>Technologies,<br>Depew, NY, USA |
| Kaur 2018       | Lower abdominal<br>laparoscopic surger                                                                                                    | 25°–30°<br>y Trendelenburg<br>position                                                                                                                      | 30 30                    | Sevoflurar | e 30.53(11.05) | 31.87(11.81) | ) 29 31 <u>Induction:</u> propofol 1.5 mg<br>fentanyl 2 μg, midazolam<br>1 mg, atracurium 0.5 mg/k<br><u>Maintenance:</u> propofol<br>infusion 5–10 mg/kg/h                                                                                                                                                                                        | kg, <u>Induction:</u> propofol<br>1.5 mg/kg, fentanyl<br>2 µg, midazolam<br>1 mg, atracurium<br>0.5 mg/kg.<br><u>Maintenance:</u><br>sevoflurane 1–4 vol%                                                                                                                                                | ETT    | Schiotz<br>tonometer                                                       |
| Seo 2018        | Laparoscopic<br>anterior resection of<br>the sigmoid colon;<br>laparoscopic low<br>anterior resection of<br>the rectum                    | Supine-<br>f Trendelenburg (30°<br>with right tilt (10°-<br>15°)-reverse<br>f Trendelenburg<br>(20°-25°) with righ<br>tilt-Trendelenburg<br>with right tilt | 23 23<br>)<br>t          | Desflurane | 58.43(7.39)    | 59.61(9.67)  | 30 16 <u>Induction:</u> propofol 1.5–<br>2.5 mg/kg, rocuronium 1 m<br>kg.<br><u>Maintenance:</u> propofol TCI<br>(Cet: 2.5–5 μg/mL),<br>remifentanil TCI (Cet:3–6 r<br>mL).                                                                                                                                                                        | Induction: thiopenta<br>g/ 5-6 mg/kg,<br>rocuronium 1 mg/kg<br><u>Maintenance:</u><br>desflurane 5-8 vol%,<br>remifentanil TCI<br>(Cet:3-6 ng/mL).                                                                                                                                                       | 1 ETT  | Tono Pen <sup>®</sup> AVIA,<br>Reichert<br>Technologies,<br>Depew, NY, USA |
| Mirkheshti 2017 | Lumbar disc<br>herniation surgery                                                                                                         | Prone                                                                                                                                                       | 30 30                    | Isoflurane | 46.5(12)       | 47.3(9)      | <ul> <li>28 32 <u>Induction:</u> thiopental 5 mg<br/>fentanyl 2 µg/kg, midazola</li> <li>0.02 mg/kg, atracurium</li> <li>0.5 mg/kg.</li> <li><u>Maintenance:</u> propofol 100<br/>200 µg/kg/min</li> </ul>                                                                                                                                         | <ul> <li>kg, <u>Induction</u>: thiopenta</li> <li>n 5 mg/kg, fentanyl</li> <li>2 μg/kg, midazolam</li> <li>0.02 mg/kg,</li> <li>atracurium 0.5 mg/kg.</li> <li><u>Maintenance</u>:</li> </ul>                                                                                                            | 1 ETT  | Tono-Pen AVIA,<br>Reichert, USA                                            |
| Yamada 2016     | Sevoflurane group:<br>lung operation, hip<br>replacement,<br>femoral plate<br>removal<br>Propofol group: lun<br>operation,<br>nephrectomy | Lateral decubitus                                                                                                                                           | 14 14                    | Sevofluran | e 66.1(7.5)    | 63.5(16)     | <ul> <li>13 15 <u>Induction:</u> propofol TCI (Ce<br/>3.0–5.0 μg/ml), remifentan<br/>0.2–0.5 μg/kg/min,<br/>vecuronium (0.12–0.15 mg<br/>or rocuronium (0.65–0.9 m<br/>kg).<br/><u>Maintenance:</u> propofol TCI<br/>(Cet: 2.8–4 μg/ml), fentany<br/>50–100 μg bolus and/or<br/>remifentanil 0.1–0.3 μg/kg,<br/>min infusion as needed.</li> </ul> | <ul> <li>Induction: 1.8-</li> <li>2.5 mg/kg propofol<br/>bolus, remifentanil</li> <li>kg) 0.2-0.5 μg/kg/min,</li> <li>vecuronium (0.12-<br/>0.15 mg/kg) or<br/>rocuronium (0.65-<br/>0.9 mg/kg).</li> <li>Maintenance:<br/>sevoflurane 1.5-<br/>2.0 vol%, fentanyl 50<br/>100 μg bolus and/or</li> </ul> | ETT    | Tono-Pen® XL<br>Applanation<br>tonometer<br>(Reichert, Depew,<br>NY, USA)  |

C.-Y. Chang et al./Journal of Advanced Research 24 (2020) 223–238

(continued on next page)

Table 1 (continued)

| Study          | Surgery                                                | Position                                 | Num               | ber    | VA          | Age                                                                         |                                                                              | Sex            | Regimen                                                                                                                                                                                                                           |                                                                                                                                                                                                                      | Airway | Tonometer                                                                         |
|----------------|--------------------------------------------------------|------------------------------------------|-------------------|--------|-------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------|
|                |                                                        |                                          | P-<br>TIVA<br>(n) | VA (n) | -           | P-TIVA                                                                      | VA                                                                           | M F<br>(n) (n) | P-TIVA                                                                                                                                                                                                                            | VA                                                                                                                                                                                                                   | -      |                                                                                   |
|                |                                                        |                                          |                   |        |             |                                                                             |                                                                              |                |                                                                                                                                                                                                                                   | remifentanil 0.1–<br>0.3 μg/kg/min<br>infusion as needed.                                                                                                                                                            |        |                                                                                   |
| Montazeri 2015 | Cataract surgery                                       | -                                        | 67                | 67     | Isoflurane  | With<br>remifentanil:<br>58.7(13.4)<br>With normal<br>saline: 62.7<br>(7.1) | With<br>remifentanil:<br>54.2(12.3)<br>With normal<br>saline: 60.6<br>(13.9) | 50 84          | Induction: thiopental 5 mg/kg<br>remifentanil 1 µg/kg,<br>atracurium 0.5 mg/kg.<br><u>Maintenance:</u> propofol 100 µg<br>kg/min with either<br>remifentanil 0.1 µg/kg/min or<br>normal saline.                                   | . Induction: thiopental<br>5 mg/kg, remifentanii<br>1 μg/kg, atracurium<br>( 0.5 mg/kg.<br><u>Maintenance:</u><br>isoflurane with either<br>remifentanil 0.1 μg/<br>kg/min or normal<br>saline.                      | ETT    | Handheld<br>applanation<br>tonometer                                              |
| Yoo 2014       | Robot-assisted<br>laparoscopic radica<br>prostatectomy | 30° Trendelenburg<br>I position          | 33                | 33     | Sevoflurane | 2 64.7(8.3)                                                                 | 65.1(6.7)                                                                    |                | Propofol TCI (Cet: 2–5 µg/ml)<br>and remifentanil TCI (Cet: 2–<br>5 ng/ml) for induction and<br>maintenance. Rocuronium<br>0.6 mg/kg for intubation,<br>rocuronium 0.15 mg/kg during<br>maintenance as needed.                    | Induction: propofol<br>1.5 mg/kg bolus,<br>remifentanil,<br>rocuronium 0.6 mg/<br>kg.<br>Maintenance:<br>sevoflurane 1.5-<br>2.5 vol%, remifentanii<br>TCI (Cet: 2–5 ng/ml),<br>rocuronium 0.15 mg/<br>kg as needed. | ETT    | Tono-Pen <sup>®</sup> XL,<br>Medtronic,<br>Jacksonville, FL,<br>USA               |
| Asuman 2013    | Laparoscopic<br>cholecystectomy                        | 15° reverse<br>Trendelenburg             | 14                | 18     | Desflurane  | 49.57(9.93)                                                                 | 46.33(11.32)                                                                 | 11 21          | <u>Induction:</u> propofol 2 mg/kg,<br>rocuronium 0.6 mg/kg.<br><u>Maintenance:</u> propofol<br>infusion 5–10 mg/kg/h,<br>fentanyl 0.5–1 μg/kg as<br>needed                                                                       | Induction: thiopental<br>5 mg/kg, rocuronium<br>0.6 mg/kg.<br><u>Maintenance:</u><br>desflurane 3–6 vol%,<br>fentanyl 0.5–1 μg/kg<br>as needed                                                                       | ETT    | Shioetz<br>tonometer                                                              |
| Hwang 2013-RT  | Laparoscopic<br>cholecystectomy                        | 20° reverse<br>Trendelenburg<br>position | 25                | 25     | Desflurane  | 51(14)                                                                      | 54(15)                                                                       |                | <u>Induction:</u> propofol TCI (Cet:<br>4 mg/mL), alfentanil 6 mg/kg,<br>rocuronium 0.6 mg/kg.<br><u>Maintenance:</u> propofol TCI<br>(Cet: 2–4 mg/mL).                                                                           | Induction: thiopental<br>5 mg/kg, alfentanil<br>6 mg/kg, rocuronium<br>0.6 mg/kg.<br>Maintenance:<br>desflurane 4–8 vol%.                                                                                            | ETT    | Tono-penXL<br>(Medtronicsolan,<br>Jacksonville, FL)                               |
| Hwang 2013-T   | Pelvic laparoscopy                                     | 20° Trendelenburg<br>position            | 25                | 25     | Desflurane  | 42(11)                                                                      | 41(8)                                                                        |                | Induction: propofol TCI (Cet:<br>4 mg/mL), alfentanil 6 mg/kg,<br>rocuronium 0.6 mg/kg.<br><u>Maintenance:</u> propofol TCI<br>(Cet: 2–4 mg/mL).                                                                                  | Induction: thiopental<br>5 mg/kg, alfentanil<br>6 mg/kg, rocuronium<br>0.6 mg/kg.<br><u>Maintenance:</u><br>desflurane 4–8 vol%.                                                                                     | ETT    | Tono-penXL<br>(Medtronicsolan,<br>Jacksonville, FL)                               |
| Sugata 2012    | Prone spine surgery                                    | / Prone                                  | 12                | 12     | Sevoflurane | 2 68(12)                                                                    | 69(10)                                                                       | 14 10          | Induction: TCI doses of<br>propofol and remifentanil 0.2-<br>0.3 mg/kg/min, vecuronium or<br>rocuronium to facilitate<br>intubation.<br><u>Maintenance:</u> TCI of propofol,<br>fentanyl, and remifentanil<br>0.15–0.2 mg/kg/min. | Induction: propofol<br>1.5-2.5 mg/kg,<br>remifentanil 0.2-<br>0.3 mg/kg/min,<br>vecuronium or<br>rocuronium to<br>facilitate intubation.<br>Maintenance:                                                             | ETT    | Tonopen XL<br>hand-held<br>tonometer<br>(Medtronic<br>SOLAN,<br>Jacksonville, FL) |

C.-Y. Chang et al./Journal of Advanced Research 24 (2020) 223–238

228

Table 1 (continued)

| Study                        | Surgery                                                   | Position                             | Num               | ber    | VA          | Age        |           | Sex           |     | Regimen                                                                                                                                                                                          |                                                                                                                                                                                                            | Airway | Tonometer                                                                                                                        |
|------------------------------|-----------------------------------------------------------|--------------------------------------|-------------------|--------|-------------|------------|-----------|---------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------|
|                              |                                                           |                                      | P-<br>TIVA<br>(n) | VA (n) |             | P-TIVA     | VA        | M F<br>(n) (1 | [n) | P-TIVA                                                                                                                                                                                           | VA                                                                                                                                                                                                         |        |                                                                                                                                  |
| Park 2006                    | Laparoscopic<br>gynecological<br>surgery                  | 10° Trendelenburg<br>position        | 21                | 21     | Desflurane  | 42.0(11.1) | 40.6(8.3) | 04            | 42  | <u>Induction:</u> propofol TCI (Cet:<br>4 µg/ml), alfentanil 6 µg/kg,<br>rocuronium 0.6 mg/kg.<br><u>Maintenance:</u> propolol TCI<br>(Cet: 2.5.4 µg/mplo)                                       | sevoflurane<br>(concentration no<br>specified), fentanyl,<br>and remifentanil<br>0.15–0.2 mg/kg/min<br><u>Induction</u> : thiopental<br>5 mg/kg, alfentanil<br>6 µg/kg, rocuronium<br>0.6 mg/kg.           | ETT    | Tono-penRXL,<br>Medtronicsolan,<br>Jacksonville, FL,<br>USA).                                                                    |
| Son 2005                     | Laparoscopic<br>hysterectomy                              | 15°–20°<br>Trendelenburg             | 15                | 16     | Sevoflurane | 42.7(6.1)  | 44.3(7.6) |               | _   | Induction: propofol TCI (Cet:<br>5 µg/ml), fentanyl 1.5 µg/kg,<br>succinylcholine 1 mg/kg.<br><u>Maintenance:</u> propofol TCI<br>(Cet: 3–4.5 µg/ml),<br>vecuronium                              | desflurane 4–8 vol%.<br>Induction: thiopental<br>5 mg/kg, fentanyl<br>1.5 mg/kg,<br>succinylcholine 1 mg/<br>kg.<br><u>Maintenance:</u><br>sevoflurane (1.5–<br>3 vol%), vecuronium                        | ETT    | Tono-pen<br>tonometer (Tono-<br>pen XLR, Mentor<br>O & O inc, USA)<br>after one dose of<br>0.5%<br>proparacaine<br>hydrochloride |
| Mowafi 2003                  | Gynecologic<br>laparoscopy                                | 15°-20°<br>Trendelenburg<br>position | 20                | 20     | lsoflurane  | 30(7.1)    | 31.8(6.0) |               | _   | Induction: propofol 2.5 mg/kg,<br>fentanyl 2 µg/kg, atracurium<br>0.5 mg/kg.<br><u>Maintenance:</u> propofol<br>infusion 5–10 mg/kg/hr,<br>atracurium 0.15 mg/kg as<br>needed.                   | Induction: thiopental<br>5 mg/kg, fentanyl<br>2 μg/kg, atracurium<br>0.5 mg/kg.<br><u>Maintenance:</u><br>isoflurane 1–2 vol%,<br>atracurium 0.15 mg/<br>kg as needed                                      | ETT    | Schioetz<br>tonometer                                                                                                            |
| Sator-Katzenschlager<br>2002 | Elective<br>gynaecological or<br>urological<br>procedures | -                                    | 16                | 17     | Sevoflurane | -          | -         |               | _   | <u>Induction:</u> propofol 2 mg/kg,<br>fentanyl 2 µg/kg, vecuronium<br>0.1 mg/kg.<br><u>Maintenance:</u> propofol<br>infusion 6–8 mg/kg/hr.                                                      | Induction: propofol<br>2 mg/kg, fentanyl<br>2 μg/kg, vecuronium<br>0.1 mg/kg.<br><u>Maintenance:</u><br>sevoflurane 1.5–<br>2.5 vol%.                                                                      | ETT    | Hand-held<br>Perkins<br>applanation<br>tonometer.                                                                                |
| Schafer 2002                 | Cataract surgery                                          | _                                    | 20                | 20     | Sevoflurane | 71(14)     | 75(11)    | 93            | 31  | Induction: propofol 1.5–<br>2.0 mg/kg bolus, remifentanil<br>10 mg/kg/h over 2 mins,<br>mivacurium 0.12 mg/kg.<br><u>Maintenance:</u> propofol 3.0–<br>7.0 mg/kg/h, remifentanil<br>10 mg/kg/hr. | Induction: propofol<br>1.5–2.0 mg/kg bolus,<br>remifentanil 10 mg/<br>kg/h over 2 mins,<br>mivacurium 0.12 mg/<br>kg.<br><u>Maintenance:</u><br>sevoflurane 0.7–<br>1.2 vol%, remifentanil<br>10 mg/kg/hr. | ETT    | Draeger handheld<br>applanation<br>tonometer,<br>Moeller-Wedel<br>Inc., 22,668<br>Wedel, Germany                                 |

(continued on next page)

| Study       | Surgery                                                                                                                                              | Position | Num               | ber                                    | VA                        | Age                 |                     | Sex            | Regimen                                                                                                                                                                                                   |                                                                                                                                                                            | Airway      | Tonometer                                                  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------|----------------------------------------|---------------------------|---------------------|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------|
|             |                                                                                                                                                      |          | P-<br>TIVA<br>(n) | VA (n)                                 | -                         | P-TIVA              | VA                  | M F<br>(n) (n) | P-TIVA                                                                                                                                                                                                    | VA                                                                                                                                                                         | -           |                                                            |
| Sator 1998  | Elective non-<br>ophthalmic surgery                                                                                                                  | -        | 16                | Isoflurane:<br>16<br>Desflurane:<br>16 | Isoflurane,<br>desflurane | -                   | -                   |                | Induction: thiopental 3–5 mg/<br>kg, vecuronium 0.1 mg/kg,<br>fentanyl 2–4 μg/kg.<br><u>Maintenance:</u> propofol 4–<br>8 mg/kg/hr                                                                        | Induction: thiopental<br>3–5 mg/kg,<br>vecuronium 0.1 mg/<br>kg, fentanyl 2–4 μg/<br>kg.<br><u>Maintenance:</u> 1 MAC<br>of isoflurane or<br>desflurane                    | Unspecified | Hand-held<br>applanation<br>tonometer<br>(Perkins)         |
| Moffat 1995 | Cataract surgery                                                                                                                                     | -        | 20                | 20                                     | Isoflurane                | 72(range 60–<br>86) | 77(range 64–<br>88) |                | Anesthesia was induced and<br>maintained with propofol<br>using a computer-controlled<br>infusion device (target plasma<br>concentration 6 µg/ml -> 4 µg/<br>ml).                                         | Induction: etomidate<br>0.25 mg/kg,<br>vecuronium<br>0.075 mg/kg.<br><u>Maintenance:</u><br>isoflurane 0.5–1 vol%                                                          | LMA         | Perkins<br>tonometer                                       |
| Polarz 1995 | Ophthalmic surgery                                                                                                                                   | . –      | 20                | 20                                     | Isoflurane                | 73.3(7.2)           | 74.2(8.1)           | 13 27          | <u>Induction:</u> propofol 1.5 mg/kg<br>bolus, alfentanil 15 µg/kg<br>bolus, succinylcholine 1 mg/<br>kg.<br><u>Maintenance:</u> propofol 6 mg/<br>kg/h, alfentanil 15 µg/kg/h,<br>vecuronium 0.07 mg/kg. | Induction: thiopental<br>4 mg/kg, alfentanil<br>15 pg/kg,<br>succinylcholine 1 mg/<br>kg.<br><u>Maintenance:</u><br>isoflurane 0.5–0.8 vol<br>%, vecuronium<br>0.07 mg/kg. | ETT         | Möller-Wedel<br>applanation<br>tonometer on<br>health eyes |
| Mets 1992   | Anterior segment<br>surgery                                                                                                                          | -        | 20                | 20                                     | Isoflurane                | 67.6(8)             | 70.1(7.1)           | 18 22          | <u>Induction:</u> propofol<br>(2.05 ± 1.07 mg/kg),<br>vecuronium 0.1 mg/kg.<br><u>Maintenance:</u> propofol 90 μg/<br>kg/min, vecuronium 0.1 mg/<br>kg.                                                   | Induction: etomidate<br>(0.23 ± 0.09 mg/kg),<br>alfentanil 15 µg/kg,<br>vecuronium 0.1 mg/<br>kg.<br><u>Maintenance:</u><br>isoflurane 0.5%,<br>vecuronium 0.1 mg/<br>kg.  | ETT         | Schiotz<br>tonometer                                       |
| Guedes 1988 | Cataract extraction,<br>strabismus,<br>dacryocystectomy,<br>secondary<br>implantation,<br>detachment of the<br>retina, vitrectomy,<br>trabeculectomy | -        | 15                | 15                                     | Enflurane                 | 73.6(21)            | 71.6(0.2)           | 16 14          | Induction: propofol<br>(1.8 ± 0.39 mg/kg) bolus,<br>vecuronium (unspecified<br>dose).<br><u>Maintenance:</u> propofol<br>continuous infusion<br>(5.2 ± 1.55 mg/kg/hr)                                     | Induction: thiopental<br>6.8 ± 1.16 mg/kg,<br>vecuronium<br>(unspecified dose).<br><u>Maintenance:</u><br>enflurane<br>1.1 ± 0.39 vol%                                     | ETT         | Perkins<br>tonometer                                       |

230

C.-Y. Chang et al./Journal of Advanced Research 24 (2020) 223–238

Age is presented as mean (SD). P-TIVA: propofol-based total intravenous anesthesia; VA: volatile anesthesia; M: male; F: female; TCI: target-controlled infusion; Cet: target effect-site concentration; IOP: intraocular pressure; ETT: endotracheal tube; LMA: laryngeal mask airway.





-0.13; 95% CI, -0.92 to 0.65; P = 0.74), and after Trendelenburg positioning (WMD, -0.05; 95% CI, -1.22 to 1.11; P = 0.93). However, after intubation, PIP was significantly lower in the propofolbased TIVA group (WMD, -1.32; 95% CI, -2.53 to -0.29; P = 0.01) (Fig. 6).

In the TSA, the estimated RIS was not reached by the cumulative Z-curve and the cumulative Z-curve did not surpass the traditional boundary for statistical significance after induction, after pneumoperitoneum, and after Trendelenburg positioning. In these three situations, the sequential monitoring boundary for the adjusted significance threshold was ignored due to too little information used (1.49%, 1.35%, and 0.09%). After intubation, the estimated

RIS was 115 and was not reached by the cumulative Z-curve (92). Nonetheless, the cumulative Z-curve surpassed the upper sequential monitoring boundary for the adjusted significance threshold after inclusion of the Kim et al. study [42] (TSA-adjusted CI, -2.51 to -0.14; calculated Cohen's d, -0.490; and NNT, 6.15) (Suppl. Fig. S6).

## Mean arterial pressure

MAP was analyzed in 10 studies (n = 433) after induction, seven (n = 262) after intubation, four (n = 204) after pneumoperitoneum, six (n = 285) after Trendelenburg positioning, two (n = 82) after

|            |                |                      |         |                    |            |        |                 |                         | Me                    | an Difference       | (95% CI)                              |
|------------|----------------|----------------------|---------|--------------------|------------|--------|-----------------|-------------------------|-----------------------|---------------------|---------------------------------------|
|            |                | Prop                 | ofol -  | TIVA               | V          | olati  | le              |                         | Favor                 | Favor               |                                       |
|            | Study ID       | Mean                 | SD      | Total              | Mean       | SD     | Total           | Weight -                | Propofol -TIVA        | Volatile            | 1                                     |
|            | Guedes 1988    | 12.6                 | 4.26    | 15                 | 14.4       | 6.97   | 15              | 10.7%                   | +                     |                     | -1.80 [-5.93, 2.33]                   |
|            | Schafer 2002   | 6                    | 3.2     | 20                 | 8.9        | 3.4    | 20              | 19.4%                   |                       |                     | -2.90 [-4.95, -0.85]                  |
| o          | Sugata 2012    | 8.9                  | 3.5     | 12                 | 11.6       | 3.9    | 12              | 15.1%                   |                       |                     | -2.70 [-5.66, 0.26]                   |
| IJ         | Yamada 2016    | 16                   | 3.5     | 14                 | 14.4       | 3.7    | 14              | 16.4%                   | +                     | •                   | 1.60 [-1.07, 4.27]                    |
| qu         | Mirkheshti 201 | 7 17.8               | 7.8     | 30                 | 13.36      | 6.5    | 30              | 12.4%                   |                       |                     | 4.44 [0.81, 8.07]                     |
| <u> </u>   | Kaur 2018      | 12.39                | 0.8     | 30                 | 12.37      | 0.9    | 30              | 26.0%                   | +                     |                     | 0.02 [-0.41, 0.45]                    |
|            | Total (95%Cl)  |                      |         | 121                |            |        | 121             | 100%                    | -                     | -                   | -0.35 [-2.10, 1.41]                   |
|            | Heterogeneity: | Tau² =               | 3.03;   | Chi² = 1           | 8.63, df   | = 5 (F | <b>-</b> = 0.00 | 02); l² = 739           | % Test for overall e  | effect: Z = 0.39 (I | P = 0.70)                             |
|            |                |                      |         |                    |            |        |                 | -6                      | 5 O                   | +6                  | i i i i i i i i i i i i i i i i i i i |
|            | Guedes 1988    | 13.7                 | 4.65    | 15                 | 14.8       | 6.58   | 15              | 9.8%                    |                       |                     | -1.10 [-5.18, 2.98]                   |
|            | Mets 1992      | 14.4                 | 3.03    | 10                 | 16.4       | 3.6    | 14              | 17.7%                   |                       |                     | -2.00 [-4.66, 0.66]                   |
| lo         | Moffat 1995    | 12.4                 | 5.6     | 20                 | 11.1       | 3.2    | 20              | 16.5%                   |                       |                     | 1.30 [-1.53, 4.13]                    |
| at         | Yamada 2016    | 11.9                 | 3.6     | 14                 | 13.9       | 5.2    | 14              | 13.3%                   |                       | _                   | -2.00 [-5.31, 1.31]                   |
| qn         | Seo 2018       | 13.91                | 4.34    | 23                 | 16.52      | 4.21   | 23              | 19.3%                   |                       |                     | -2.61 [-5.08, -0.14]                  |
| <u>l</u>   | Kim 2019       | 15.39                | 4.09    | 23                 | 19.04      | 2.98   | 23              | 23.3%                   |                       |                     | -3.65 [-5.72, -1.58]                  |
|            | Total (95%Cl)  |                      |         | 105                |            |        | 109             | 100%                    |                       |                     | -1.87 [-3.32, -0.42]                  |
|            | Heterogeneity: | Tau <sup>2</sup> =   | 1.23;   | Chi² = 8           | 3.10, df   | = 5 (P | = 0.15          | ); I² = 38%             | Test for overall eff  | ect: Z = 2.53 (P    | = 0.01)                               |
|            |                |                      |         |                    |            |        |                 | -6                      | 5 0                   | +6                  |                                       |
| Υ E        | Yoo 2014       | 15                   | 3.4     | 33                 | 18.4       | 5.6    | 33              | 4.0%                    |                       |                     | -3.40 [-5.64, -1.16]                  |
| nel<br>nel | Kaur 2018      | 14.1                 | 0.7     | 30                 | 16.9       | 1.1    | 30              | 92.0%                   |                       |                     | -2.80 [-3.27, -2.33]                  |
| ito        | Seo 2018       | 10.91                | 2.81    | 23                 | 13.78      | 4.69   | 23              | 4.0%                    |                       |                     | -2.87 [-5.10, -0.64]                  |
| Pel Pi     | Hotorogonoity: | Tou <sup>2</sup> -   | 0.00.   | $Chi^2 = ($        | ) 27 df -  | - 2 (P | - 0.99          | 100%                    | Test for overall effe | oct: 7 - 12 38 /P   | -2.63 [-3.27, -2.36]                  |
|            | neterogeneity. | Tau -                | 0.00,   |                    | <i></i>    | - 2 (1 | - 0.00          | j, 1 − 0 /8             |                       | JOL Z - 12.00 (1    | - 0.00001)                            |
|            | Trandala       | nhur                 |         |                    |            |        |                 |                         |                       |                     |                                       |
|            | Trendelei      | indur                | 9       |                    |            |        |                 | -                       | 3 0                   | +8                  |                                       |
|            | Hwang 2013-T   | 18                   | 3       | 25                 | 22         | 4      | 25              | 6.0%                    |                       |                     | -4.00 [-5.96, -2.04]                  |
|            | Yoo 2014       | 19.9                 | 3.8     | 33                 | 23.5       | 4.3    | 33              | 6.0%                    |                       |                     | -3.60 [-5.56, -1.64]                  |
|            | Park 2016      | 17.7                 | 3.2     | 21                 | 21.8       | 4.4    | 21              | 4.2%                    |                       |                     | -4.10 [-6.43, -1.77]                  |
|            | Kaur 2018      | 15.5                 | 0.9     | 30                 | 19.8       | 1.2    | 30              | 79.4%                   | -                     |                     | -4.30 [-4.84, -3.76]                  |
|            | Seo 2018       | 20.39                | 3.09    | 23                 | 24.56      | 4.64   | 23              | 4.4%                    |                       |                     | -4.17 [-6.45, -1.89]                  |
| E:         | Hotorogonoitu  | Tou2 =               | 0.00    | 132                | E2 df-     | - 4 (D | - 0.07          | 100%                    |                       | ot: 7 - 17.21 (D    | -4.23 [-4.70, -3.75]                  |
| Si.        | Helefogeneily. | Tau                  | 0.00,   | Cn⊧ – t            | ).55, ui - | -4(P   | - 0.97          | ), I <sup>_</sup> − 0 % | rest for overall elle | CL Z = 17.31 (P)    | < 0.00001)                            |
| 6          | Lateral de     | ecubi                | tus     |                    |            |        |                 | -4                      | + 0                   | +4                  |                                       |
|            | Yamada 2016    | 16.6                 | 4       | 14                 | 17.2       | 3.9    | 14              | 16.8%                   |                       |                     | -0.60 [-3.53, 2.33]                   |
|            | Kim 2019       | 13.26                | 2.65    | 23                 | 15.48      | 1.83   | 23              | 83.2%                   |                       |                     | -2.22 [-3.54, -0.90]                  |
|            | Total (95%Cl)  |                      |         | 37                 |            |        | 37              | 100%                    |                       |                     | -1.95 [-3.15, -0.75]                  |
|            | Heterogeneity: | Tau <sup>2</sup> =   | 0.00;   | Chi² = (           | ).98, df : | = 1 (P | = 0.32          | ); I² = 0%              | Test for overall effe | ect: Z = 3.18 (P =  | = 0.001)                              |
|            | Deep           |                      |         |                    |            |        |                 |                         |                       |                     |                                       |
| 8          | Pro            | ne                   |         |                    |            |        |                 | -1                      | 6 0                   | +6                  | 5                                     |
|            | Sugata 2012    | 21.9                 |         | 5 12               | 2 24.8     | 3.4    | 12              | 38.7%                   |                       | -                   | -2.90 [-6.32, 0.52]                   |
|            | Mirkheshti 201 | 17 17.2              | 4.9     | 9 30               | ) 18       | 5.8    | 30              | 61.3%                   |                       |                     | -0.80 [-3.52, 1.92]                   |
|            | Total (95%CI)  |                      |         | 42                 | 2          |        | 42              | 100%                    |                       |                     | -1.61 [-3.74, 0.52]                   |
|            | Heterogeneity  | : lau <sup>2</sup> = | = 0.00; | Chi <sup>2</sup> = | u.89, df   | = 1 (F | - = 0.35        | o); I² = 0%             | l est for overall ef  | rect: Z = 1.49 (P   | = 0.14)                               |

Fig. 3. Forest plot of intraocular pressure at different timings.

reverse Trendelenburg positioning, two (n = 74) after LDP, and four (n = 189) after the resolution of pneumoperitoneum. After intubation, MAP in the propofol-based TIVA group was significantly lower than that in the VA group (WMD, -6.61; 95% CI, -10.56 to -2.66; P < 0.01). However, after pneumoperitoneum, MAP was significantly higher in the propofol-based TIVA group (WMD, 0.81; 95% CI, 0.01 to 1.60; P = 0.05). There was no significant heterogeneity

across studies after intubation and pneumoperitoneum (Chi<sup>2</sup> = 4.92, P = 0.55, I<sup>2</sup> = 0%; Chi<sup>2</sup> = 0.75, P = 0.86, I<sup>2</sup> = 0%). The pooled effect estimate showed no significant intergroup difference in IOP after induction (WMD, 0.08; 95% CI, -1.42 to 1.59; P = 0.91), after Trendelenburg positioning (WMD, 0.37; 95% CI, -2.30 to 3.03; P = 0.79), after reverse Trendelenburg positioning (WMD, -2.34; 95% CI, -9.00 to 4.32; P = 0.49), after LDP (WMD, -2.62;

|       | Study ID      | Prop<br>Mear | o <mark>fol</mark> | TIVA<br>Total | V<br>Mean | olatil<br><sub>SD</sub> | e<br>Total | Weight -             | Favor<br>Propofol -TIVA<br>10 ← C | lean Differen<br><sup>Favor</sup><br>Volatile | ce (9 <u>4</u><br>+10 | 5% CI)               |
|-------|---------------|--------------|--------------------|---------------|-----------|-------------------------|------------|----------------------|-----------------------------------|-----------------------------------------------|-----------------------|----------------------|
| Ę     | Yamada 2016   | 50.4         | 10.1               | 14            | 52.4      | 10.9                    | 14         | 49.2%                |                                   |                                               |                       | -2.00 [-9.78, 5.78]  |
| ctic  | Kim 2019 1    | 03.13        | 14.99              | 23            | 107.87    | 11.24                   | 23         | 50.8%                | ← ■                               |                                               |                       | -4.74 [-12.40, 2.92] |
| que   | Total (95%Cl  | )            |                    | 37            |           |                         | 37         | 100%                 |                                   | -                                             |                       | -3.39 [-8.85, 2.07]  |
| Ē     | Heterogeneity | : Tau² =     | = 0.00;            | Chi² = 0      | .24, df = | 1 (P =                  | 0.62); I   | <sup>2</sup> = 0% Te | est for overall effec             | et: Z = 1.22 (P =                             | 0.22)                 |                      |
|       |               |              |                    |               |           |                         |            | -                    | 10                                | 0                                             | +10                   |                      |
| 2     | Yamada 2016   | 6 46.3       | 13.1               | 14            | 52.5      | 13.3                    | 14         | 38.0%                | < <b>─■</b>                       |                                               |                       | -6.20 [-15.98, 3.58] |
| eral  | Kim 2019      | 70.13        | 10.34              | 23            | 68.52     | 11.39                   | 23         | 62.0%                |                                   |                                               |                       | 1.61 [-4.68, 7.90]   |
| _ate_ | Total (95%Cl  | )            |                    | 37            | 0         |                         | 37         | 100%                 |                                   |                                               |                       | -1.36 [-8.79, 6.07]  |
| ď     | Heterogeneity | /: Tau² :    | = 12.91            | ; Chi² =      | 1.73, df  | = 1 (F                  | 9 = 0.19)  | ; l² = 42%           | Test for overall e                | effect: Z = 0.36                              | (P = 0                | .72)                 |

Fig. 4. Forest plot of ocular perfusion pressure at different timings.

|      |             |                |                    |        |                      |          |        |         |             | N                  | Aean Differen     | ce (95% Cl)          |
|------|-------------|----------------|--------------------|--------|----------------------|----------|--------|---------|-------------|--------------------|-------------------|----------------------|
|      |             |                | Prop               | ofol - | TIVA                 | V        | olatil | le      |             | Favor              | Favor             |                      |
|      |             | Study ID       | Mean               | SD     | Total                | Mean     | SD     | Total   | Weight      | Propofol -TIVA     | Volatile          | . 10                 |
|      |             | Sugata 2012    | 37                 | 5      | 12                   | 34       | 4      | 12      | 9.9%        |                    |                   | 3.00 [-0.62, 6.62]   |
| 2    |             | Yoo 2014       | 3.3                | 2.7    | 33                   | 33.1     | 3.2    | 33      | 38.6%       | _                  | -                 | 0.20 [-1.23, 1.63]   |
|      |             | Yamada 2016    | 31                 | 6      | 14                   | 27       | 6      | 14      | 6.9%        |                    |                   | 4.00 [-0.44, 8.44]   |
| Ē    | י<br>ג<br>ג | Kaur 2018      | 30.8               | 2      | 30                   | 30.4     | 2.8    | 30      | 44.7%       | -                  | -                 | 0.40 [-0.83, 1.63]   |
| 2    | 2           | Total (95%CI)  |                    |        | 89                   |          |        | 89      | 100%        |                    | •                 | 0.83 [-0.39, 2.05]   |
|      |             | Heterogeneity: | Tau <sup>2</sup> = | 0.47;  | Chi² =               | 4.33, df | = 3 (P | = 0.23  | ); I² = 31% | Test for overall e | effect: Z = 1.33  | (P = 0.18)           |
|      |             |                |                    |        |                      |          |        |         | -:          | 8                  | 0 .               | +8                   |
|      |             | Asuman 2013    | 35                 | 0.4    | 14                   | 35       | 2.4    | 18      | 22.6%       | -                  | -                 | 0.00 [-1.13, 1.13]   |
| 2    | 5           | Yamada 2016    | 34                 | 6      | 14                   | 32       | 6      | 14      | 1.5%        |                    |                   | 2.00 [-2.44, 6.44]   |
| ati. | 5           | Seo 2018       | 33                 | 3.14   | 23                   | 34       | 1.93   | 23      | 12.7%       |                    | -                 | -1.00 [-2.51, 0.51]  |
| 4    | 2           | Kim 2019       | 33.39              | 1.12   | 23                   | 33.26    | 1.21   | 23      | 63.3%       | -                  | -                 | 0.13 [-0.54, 0.80]   |
| t    |             | Total (95%CI)  |                    |        | 74                   |          |        | 78      | 100%        |                    |                   | -0.02 [-0.55, 0.52]  |
|      |             | Heterogeneity: | Tau <sup>2</sup> = | 0.00;  | Chi² = 2             | 2.61, df | = 3 (P | = 0.46) | ; I² = 0%   | Test for overall e | ffect: Z = 0.06 ( | P = 0.96)            |
|      |             |                |                    |        |                      |          |        |         |             | 4                  | 0 .               | +4                   |
|      | _           | Asuman 2013    | 35                 | 4      | 14                   | 36       | 4      | 18      | 7.0%        |                    |                   | -1.00 [-3.79, 1.79]  |
| 6    | nn          | Yoo 2014       | 34.5               | 4.6    | 33                   | 35       | 5.5    | 33      | 9.1%        |                    |                   | -0.50 [-2.95, 1.95]  |
| Ē    | ne          | Seo 2018       | 32.13              | 1.71   | 23                   | 32.52    | 2.04   | 23      | 46.1%       |                    |                   | -0.39 [-1.48, 0.70]  |
| Jer  | ito         | Kaur 2018      | 37                 | 1.7    | 30                   | 37.5     | 2.9    | 30      | 37.7%       |                    |                   | -0.50 [-1.70, 0.70]  |
| Ъ    | <b>Per</b>  | Total (95%CI)  |                    |        | 100                  |          |        | 104     | 100%        | -                  |                   | -0.48 [-1.22, 0.25]  |
|      | <u>0</u>    | Heterogeneity: | Tau² =             | 0.00;  | Chi² = (             | 0.16, df | = 3 (P | = 0.98) | ; I² = 0%   | Test for overall e | ffect: Z = 1.28 ( | P = 0.20)            |
|      |             | - 11           |                    |        |                      |          |        |         |             |                    |                   |                      |
|      |             | Irendeler      | nbur               | g      |                      |          |        |         | -1          | б                  | 0                 | +6                   |
|      |             | Yoo 2014       | 40.8               | 7.6    | 33                   | 40       | 6.1    | 33      | 3.9%        |                    |                   | 0.80 [-2.52, 4.12]   |
|      |             | Kaur 2018      | 40.5               | 1.7    | 30                   | 41.1     | 2.6    | 30      | 35.3%       |                    | +                 | -0.60 [-1.71, 0.51]  |
|      | _           | Seo 2018       | 32.96              | 1.42   | 23                   | 33.22    | 1.51   | 23      | 60.8%       | -                  | -                 | -0.26 [-1.11, 0.59]  |
| Ż    | 5           | Total (95%CI)  |                    |        | 86                   |          |        | 86      | 100%        |                    |                   | -0.34 [-1.00, 0.32]  |
| E    |             | Heterogeneity: | Tau <sup>2</sup> = | 0.00;  | Chi <sup>2</sup> = ( | 0.70, df | = 2 (P | = 0.71) | ; I² = 0%   | Test for overall e | effect: Z = 1.00  | (P = 0.32)           |
| č    | 2           |                |                    |        |                      |          |        |         |             |                    |                   |                      |
|      |             | Lateral de     | ecub               | itus   |                      |          |        |         |             | 8                  | 0                 | +8                   |
|      |             | Yamada 2016    | 32                 | 6      | 14                   | 36       | 3      | 14      | 36.7%       |                    |                   | -4.00 [-7.51, -0.49] |
|      |             | Kim 2019 3     | 30.48              | 0.79   | 23                   | 31.04    | 1.07   | 23      | 63.3%       | -                  | ŀ                 | -0.56 [-1.10, -0.02] |
|      |             | Total (95%CI)  |                    |        | 37                   |          |        | 37      | 100%        |                    |                   | -1.82 [-5.07, 1.43]  |
|      |             | Heterogeneity: | Tau <sup>2</sup> = | 4.27;  | Chi² =               | 3.60, df | = 1 (P | = 0.06  | ); I² = 72% |                    |                   |                      |

Fig. 5. Forest plot of end-tidal  $CO_2$  at different timings.

|             |                |                    |         |           |           |        |         |                                     | Mean Difference (95% Cl)                     | _        |
|-------------|----------------|--------------------|---------|-----------|-----------|--------|---------|-------------------------------------|----------------------------------------------|----------|
|             |                | Propo              | ofol -  | TIVA      | Ve        | olati  | e       |                                     | Favor Favor                                  |          |
|             | Study ID       | Mean               | SD      | Total     | Mean      | SD     | Total   | Weight -                            | $3 \longleftarrow 0 \longrightarrow +3$      |          |
|             | Hwang 2013-R   | T 15               | 2       | 25        | 16        | 3      | 25      | 8.1%                                | -1.00 [-2.41, 0.41]                          |          |
| no          | Hwang 2013-T   | 15                 | 2       | 25        | 15        | 2      | 25      | 13.1%                               | 0.00 [-1.11, 1.11]                           |          |
| Ŀ.          | Park 2016      | 14.9               | 2.4     | 21        | 14.8      | 1.9    | 21      | 9.4%                                | 0.10 [-1.21, 1.41]                           |          |
| q           | Kaur 2018      | 13.7               | 0.9     | 30        | 13.5      | 1      | 30      | 69.5%                               | 0.20 [-0.28, 0.68]                           |          |
| 2           | Total (95%CI)  |                    |         | 101       |           |        | 101     | 100%                                | 0.07 [-0.33, 0.47]                           |          |
|             | Heterogeneity: | Tau <sup>2</sup> = | 0.00;   | Chi² = 2  | .50, df = | = 3 (P | = 0.48  | ); I <sup>2</sup> = 0% <sup>·</sup> | Test for overall effect: Z = 0.33 (P = 0.74) |          |
|             |                |                    |         |           |           |        |         | -3                                  | 3 0 +3                                       |          |
| Ę           | Seo 2018       | 13.57              | 2.63    | 23        | 14.52     | 3.01   | 23      | 39.8%                               | -0.95 [-2.58, 0.68]                          |          |
| atic        | Kim 2019       | 14.78              | 2.04    | 23        | 16.35     | 2.53   | 23      | 60.2%                               | -1.57 [-2.90, -0.24]                         |          |
| tub         | Total (95%CI)  |                    |         | 46        |           |        | 46      | 100%                                | -1.32 [-2.35, -0.29]                         |          |
| Ē           | Heterogeneity: | Tau <sup>2</sup> = | 0.00; ( | Chi² = 0. | 33, df =  | = 1 (P | = 0.56) | ; I² = 0%                           | Test for overall effect: Z = 2.52 (P = 0.01) |          |
|             |                |                    |         |           |           |        |         | -2                                  | 2 0 +2                                       |          |
| <u>, E</u>  | Kaur 2018      | 18.9               | 1.4     | 30        | 19        | 2      | 30      | 80.5%                               | -0.10 [-0.97, 0.77]                          |          |
| neu         | Seo 2018       | 20.22              | 3.3     | 23        | 20.48     | 2.83   | 23      | 19.5%                               | -0.26 [-2.04, 1.52]                          |          |
| neu<br>rito | Total (95%Cl)  |                    |         | 53        |           |        | 53      | 100%                                | -0.13 [-0.92, 0.65]                          |          |
| Pe P        | Heterogeneity: | Tau² =             | 0.00; ( | Chi² = 0. | 03, df =  | = 1 (P | = 0.87) | ; I <sup>2</sup> = 0% T             | Γest for overall effect: Z = 0.33 (P = 0.74) |          |
|             |                |                    |         |           |           |        |         | -4                                  | 4 0 +4                                       |          |
| bır         | Hwang 2013-T   | 24                 |         | 4 25      | 23        | 3 3    | 25      | 20.1%                               | 1.00 [-0.96, 2.96]                           | $ \prec$ |
| Jdr         | Park 2016      | 23.8               | 3.      | 9 21      | 22.5      | 5 2.6  | 21      | 19.6%                               | 1.30 [-0.70, 3.30]                           |          |
| ler         | Kaur 2018      | 21.6               | 1.:     | 3 30      | 21.9      | ) 2    | 30      | 37.4%                               | -0.30 [-1.15, 0.55]                          |          |
| Jde         | Seo 2018       | 23.09              | 3.32    | 2 23      | 24.83     | 2.7    | 23      | 22.8%                               | -1.74 [-3.49, 0.01]                          |          |
| rec         | Total (95%CI)  |                    |         | 99        |           |        | 99      | 100%                                | -0.05 [-1.22, 1.11]                          |          |
|             | Heterogeneity: | Tau <sup>2</sup> = | 0.75;   | Chi² = 6  | .62, df : | = 3 (P | = 0.09  | ); I <sup>2</sup> = 55%             | Test for overall effect: Z = 0.09 (P = 0.93) |          |

Fig. 6. Forest plot of peak inspiratory pressure at different timings.

95% CI, -9.07 to 3.83; P = 0.43), and after resolution of pneumoperitoneum (WMD, 0.41; 95% CI, -3.03 to 3.86; P = 0.82) (Fig. 7).

In the TSA of intubation, the cumulative Z-curve reached the estimated RIS and surpassed the traditional boundary for statistical significance (TSA-adjusted CI, -10.99 to -2.12; calculated Cohen's d, -0.414; and NNT, 7.44). In the TSA of pneumoperitoneum, the cumulative Z-curve surpassed the traditional boundary for statistical significance but did not reach the estimated RIS and did not surpass the lower sequential monitoring boundary for the adjusted significance threshold (TSA-adjusted CI, -0.39 to 2.01; calculated Cohen's d, 0.067; and NNT, 51.86). In the TSA of LDP and reverse Trendelenburg positioning, the cumulative Z-curve did not reach the estimated RIS and did not surpass the sequential monitoring boundary for the adjusted significance threshold. In the TSA of induction, Trendelenburg positioning and pneumoperitoneum resolution, the sequential monitoring boundary for the adjusted significance threshold was ignored due to too little information used (0.26%, 0.94%, and 1.53%) (Suppl. Fig. S7).

In the outcome of MAP after induction, propofol was used for induction in the propofol-TIVA group in all studies, while thiopental was used in five studies [32–34,38,39] and propofol in four [28,30,35,41] for induction in the VA group. In the subgroup analysis, MAP after induction was not significantly different between the propofol-TIVA group and the VA group with thiopental (WMD, -1.02; 95% CI, -4.19 to 2.15; P = 0.53) or propofol (WMD, 0.55; 95% CI, -1.49 to 2.60; P = 0.60) as the induction agent (Suppl. Fig. S8). In the outcome of MAP after intubation, propofol was used for induction in the propofol-TIVA group in all studies,

whereas thiopental was used in five studies [29,31,38,39,42] and propofol in two [35,43] for induction in the VA group. The subgroup analysis showed that MAP after intubation in the propofol-TIVA group was significantly lower than that in the VA group with thiopental as the induction agent (WMD, -7.90; 95% CI, -12.77 to -3.02; P < 0.01). However, MAP was not significantly different between the propofol-TIVA group and the VA group with propofol as the induction agent (WMD, -4.08; 95% CI, -10.87 to 2.72; P = 0.24) (Suppl. Fig. S9).

## Influence analysis

An influence analysis was conducted for each outcome except those including only two studies. The results of the influence analysis for all outcomes showed that the re-calculated pooled estimates after the omission of one study at a time were within the 95% Cl of the pooled estimate of all studies, indicating the robustness of the results (Suppl. Figs. S10-14).

## Discussion

Endotracheal intubation is associated with a marked increase in IOP, likely attributable to the increase in MAP and subsequent increase in the choroidal blood flow [44]. Propofol-based TIVA has been shown to result in lower heart rate and MAP after induction and intubation than sevoflurane and isoflurane in a previous study [45], thereby leading to a lower IOP. Different induction agents may also play an important role in IOP after intubation.

|                                                                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lean Differen                                                                                                                                                         | ice (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                   | Prop                                                                                                                                                                                                                                                               | ofol -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TIVA                                                                                                                                                                                                                                                                                                                                              | Vo                                                                                                                                                                        | olatil                                                                                                                         | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Favor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Favor                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                | Study ID                                                                                                                                                                                                                                                                                                                                                          | <u>.</u>                                                                                                                                                                                                                                                           | <b>CD</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>T</b>                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                         | <b>CD</b>                                                                                                                      | Tettel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Propofol -TIVA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Volatile                                                                                                                                                              | - 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                | Study ID                                                                                                                                                                                                                                                                                                                                                          | Mean                                                                                                                                                                                                                                                               | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lotal                                                                                                                                                                                                                                                                                                                                             | Mean                                                                                                                                                                      | SD                                                                                                                             | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weight -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20 - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                       | +20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                | Guedes 1988                                                                                                                                                                                                                                                                                                                                                       | 90.83                                                                                                                                                                                                                                                              | 17.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                | 98.57                                                                                                                                                                     | 13.74                                                                                                                          | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -7.74 [-18.82, 3.34]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                | Polarz 1995                                                                                                                                                                                                                                                                                                                                                       | 85                                                                                                                                                                                                                                                                 | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                | 92                                                                                                                                                                        | 20                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                       | -7.00 [-19.09, 5.09]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                | Schafer 2002                                                                                                                                                                                                                                                                                                                                                      | 76                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                | 73                                                                                                                                                                        | 15                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 3.00 [-7.96, 13.96]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                | Son 2005                                                                                                                                                                                                                                                                                                                                                          | 76.5                                                                                                                                                                                                                                                               | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                | 73.4                                                                                                                                                                      | 7.1                                                                                                                            | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ·                                                                                                                                                                     | 3.10 [-3.00, 9.20]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LO LO                                                                          | Sugata 2012                                                                                                                                                                                                                                                                                                                                                       | 78                                                                                                                                                                                                                                                                 | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                                                                                                                                                                                                                                                                                                                                                | 81                                                                                                                                                                        | 13                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -3.00 [-14.23, 8.23]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E                                                                              | Hwang 2013-F                                                                                                                                                                                                                                                                                                                                                      | RT 71                                                                                                                                                                                                                                                              | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                | 75                                                                                                                                                                        | 13                                                                                                                             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.4%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -4.00 [-11.21, 3.21]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| du                                                                             | Hwang 2013-T                                                                                                                                                                                                                                                                                                                                                      | 72                                                                                                                                                                                                                                                                 | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                                                                                                                                                                                                                                                                                                                                                | 72                                                                                                                                                                        | 12                                                                                                                             | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.7%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 0.00 [-6.94, 6.94]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u> </u>                                                                       | Yoo 2014                                                                                                                                                                                                                                                                                                                                                          | 83.9                                                                                                                                                                                                                                                               | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                | 78.6                                                                                                                                                                      | 12.6                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | 5.30 [-0.93, 11.53]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                | Park 2016                                                                                                                                                                                                                                                                                                                                                         | 72                                                                                                                                                                                                                                                                 | 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21                                                                                                                                                                                                                                                                                                                                                | 71.8                                                                                                                                                                      | 11.7                                                                                                                           | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 0.20 [-7.34, 7.74]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                | Kaur 2018                                                                                                                                                                                                                                                                                                                                                         | 82.3                                                                                                                                                                                                                                                               | 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                | 82.3                                                                                                                                                                      | 2.6                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 67.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | F. Contraction                                                                                                                                                        | 0.00 [-1.83, 1.83]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                | Total (95%Cl)                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 216                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                | 217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 0.08 [-1.42, 1.59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                | Heterogeneity                                                                                                                                                                                                                                                                                                                                                     | : Tau² =                                                                                                                                                                                                                                                           | 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chi² = 8                                                                                                                                                                                                                                                                                                                                          | 3.67, df =                                                                                                                                                                | = 9 (P =                                                                                                                       | = 0.47);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l² = 0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Test for overall ef                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | fect: Z = 0.11 (                                                                                                                                                      | P = 0.91)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) .                                                                                                                                                                   | +30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                | Guedes 1988                                                                                                                                                                                                                                                                                                                                                       | 102.83                                                                                                                                                                                                                                                             | 17.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15                                                                                                                                                                                                                                                                                                                                                | 101.7                                                                                                                                                                     | 17.8                                                                                                                           | 3 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                     | 1.13 [-11.52, 13.78]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                | Polarz 1995                                                                                                                                                                                                                                                                                                                                                       | 86                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                | 95                                                                                                                                                                        | 22                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -9.00 [-22.03, 4.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                | Schafer 2002                                                                                                                                                                                                                                                                                                                                                      | 76                                                                                                                                                                                                                                                                 | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                | 79                                                                                                                                                                        | 14                                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -3.00 [-12.99, 6.99]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| io                                                                             | Asuman 2013                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                | 105                                                                                                                                                                       | 15                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -5.00 [-17.13, 7.13]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| bat                                                                            | Yamada 2016                                                                                                                                                                                                                                                                                                                                                       | 70                                                                                                                                                                                                                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                | 75                                                                                                                                                                        | 13                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -5.00 [-14.27, 4.27]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| It                                                                             | Seo 2018                                                                                                                                                                                                                                                                                                                                                          | 116.3                                                                                                                                                                                                                                                              | 17.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                | 131.78                                                                                                                                                                    | 20.64                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | -15.48 [-26.52, -4.44]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                | Kim 2019 1                                                                                                                                                                                                                                                                                                                                                        | 18.52                                                                                                                                                                                                                                                              | 15.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                | 126.91                                                                                                                                                                    | 11.68                                                                                                                          | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 23.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -8.39 [-16.48, -0.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                | Total (95%CI)                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                           |                                                                                                                                | 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                       | -6.61 [-10.56, -2.66]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                | Heterogeneity:                                                                                                                                                                                                                                                                                                                                                    | : Tau² =                                                                                                                                                                                                                                                           | 0.00; 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chi² = 4                                                                                                                                                                                                                                                                                                                                          | .92, df =                                                                                                                                                                 | 6 (P =                                                                                                                         | 0.55); l <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e = 0% Te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est for overall effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t: Z = 3.28 (P =                                                                                                                                                      | 0.001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                           |                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n                                                                                                                                                                     | +6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                | Asuman 2013                                                                                                                                                                                                                                                                                                                                                       | 107                                                                                                                                                                                                                                                                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                                                | 102                                                                                                                                                                       | 19                                                                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                       | → 5.00 [-9.07, 19.07]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| _                                                                              | Yoo 2014                                                                                                                                                                                                                                                                                                                                                          | 98.4                                                                                                                                                                                                                                                               | 14 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33                                                                                                                                                                                                                                                                                                                                                | 96.5                                                                                                                                                                      | 16.2                                                                                                                           | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | → 1.90 [-5.50, 9.30]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -ou                                                                            | Kaur 2018                                                                                                                                                                                                                                                                                                                                                         | 96.8                                                                                                                                                                                                                                                               | 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                                                                | 96                                                                                                                                                                        | 1.9                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97.9%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                                                     | 0.80 [-0.00, 1.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| E E                                                                            | 0 0040                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                                                                                                                | 104 50                                                                                                                                                                    | 10.6                                                                                                                           | 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | 2 12 [ 12 16 7 00]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| te                                                                             | Seo 2018                                                                                                                                                                                                                                                                                                                                                          | 102.39                                                                                                                                                                                                                                                             | 14.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23                                                                                                                                                                                                                                                                                                                                                | 104.52                                                                                                                                                                    | 19.0                                                                                                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                       | -2.13[-12.10, 7.90]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Pne                                                                            | Seo 2018<br>Total (95%Cl)                                                                                                                                                                                                                                                                                                                                         | )                                                                                                                                                                                                                                                                  | 14.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100                                                                                                                                                                                                                                                                                                                                               | 104.52                                                                                                                                                                    | 19.0                                                                                                                           | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                     | 0.81 [0.01, 1.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pne                                                                            | Total (95%Cl)<br>Heterogeneity                                                                                                                                                                                                                                                                                                                                    | 102.39<br>)<br>: Tau² =                                                                                                                                                                                                                                            | 14.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23<br>100<br>Chi² = 0                                                                                                                                                                                                                                                                                                                             | 104.52<br>).75, df =                                                                                                                                                      | 3 (P =                                                                                                                         | 104<br>= 0.86);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.8%<br>100%<br>I² = 0% T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P                                                                                                                                                       | 0.81 [0.01, 1.60]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pne                                                                            | Total (95%Cl)<br>Heterogeneity                                                                                                                                                                                                                                                                                                                                    | 102.39<br>)<br>: Tau² =                                                                                                                                                                                                                                            | 0.00;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23<br>100<br>Chi² = 0                                                                                                                                                                                                                                                                                                                             | 0.75, df =                                                                                                                                                                | 3 (P =                                                                                                                         | 104<br>= 0.86);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100%<br>1 <sup>2</sup> = 0% T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P                                                                                                                                                       | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Pne                                                                            | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005                                                                                                                                                                                                                                                                                                            | 102.39<br>)<br>: Tau² =<br>95.7                                                                                                                                                                                                                                    | 14.78<br>0.00; <sup>1</sup><br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23<br>100<br>Chi <sup>2</sup> = 0<br>15                                                                                                                                                                                                                                                                                                           | 91.6                                                                                                                                                                      | 3 (P =                                                                                                                         | 104<br>= 0.86);<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100%<br>1 <sup>2</sup> = 0% T<br>-<br>10.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P                                                                                                                                                       | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| g Pne                                                                          | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1                                                                                                                                                                                                                                                                                            | 102.39<br>: Tau <sup>2</sup> =<br>95.7                                                                                                                                                                                                                             | 14.78<br>0.00; •<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23<br>100<br>Chi <sup>2</sup> = 0<br>15<br>25                                                                                                                                                                                                                                                                                                     | 0.75, df =<br>91.6<br>89                                                                                                                                                  | 19.8<br>3 (P =<br>11.8<br>10                                                                                                   | 104<br>= 0.86);<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8%<br>100%<br>I <sup>2</sup> = 0% T<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P                                                                                                                                                       | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ourg Pne                                                                       | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014                                                                                                                                                                                                                                                                                | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6                                                                                                                                                                                                             | 14.78<br>0.00; 1<br>9.4<br>15<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23<br>100<br>Chi <sup>2</sup> = 0<br>15<br>25<br>33                                                                                                                                                                                                                                                                                               | 104.52<br>0.75, df =<br>91.6<br>89<br>93.5                                                                                                                                | 19.0<br>3 (P =<br>11.8<br>10<br>16.3                                                                                           | 104<br>= 0.86);<br>16<br>15<br>33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0%<br>100%<br>1 <sup>2</sup> = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | iest for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ct: Z = 1.99 (P                                                                                                                                                       | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| enburg Pne                                                                     | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016                                                                                                                                                                                                                                                                   | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6                                                                                                                                                                                                             | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br>100<br>Chi <sup>2</sup> = 0<br>15<br>25<br>33                                                                                                                                                                                                                                                                                               | 91.6<br>93.5<br>89                                                                                                                                                        | 19.0<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8                                                                                    | 104<br>= 0.86);<br>16<br>15<br>33<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0%<br>100%<br>1 <sup>2</sup> = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P                                                                                                                                                       | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lelenburg                                                                      | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018                                                                                                                                                                                                                                                       | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>Г 88<br>90.6<br>88<br>105 78                                                                                                                                                                                             | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14.5<br>9.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23<br>100<br>Chi <sup>2</sup> = 0<br>15<br>25<br>33<br>5<br>21                                                                                                                                                                                                                                                                                    | 91.6<br>93.5<br>93.5<br>89.4<br>98.74                                                                                                                                     | 19.0<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11 91                                                                           | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0%<br>100%<br>1 <sup>2</sup> = 0% T<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0                                                                                                                                                  | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>7.04 [0.77, 13.31]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ndelenburg Pne                                                                 | Seo 2018<br>Total (95%C)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018                                                                                                                                                                                                                                           | 102.39<br>Tau <sup>2</sup> =<br>95.7<br>88<br>90.6<br>88<br>105.78<br>94 2                                                                                                                                                                                         | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14.5<br>9.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>23<br>30                                                                                                                                                                                                                                                                       | 91.6<br>93.5<br>93.5<br>89.4<br>98.74<br>95                                                                                                                               | 19.0<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2                                                                    | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%<br>100%<br>1 <sup>2</sup> = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0                                                                                                                                                  | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trendelenburg                                                                  | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%Cl)                                                                                                                                                                                                                         | 102.39<br>)<br>: Tau <sup>2</sup> =<br>95.7<br>Г 88<br>90.6<br>88<br>105.78<br>94.2                                                                                                                                                                                | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>: 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>25<br>25<br>25<br>25<br>25<br>23<br>23<br>20<br>21<br>23<br>30<br>247                                                                                                                                                                                                                      | 91.6<br>93.5<br>89.4<br>98.74<br>95                                                                                                                                       | 19.0<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2                                                                    | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P                                                                                                                                                       | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Trendelenburg Pne                                                              | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%Cl)                                                                                                                                                                                                                         | )<br>: Tau <sup>2</sup> =<br>95.7<br><b>F</b> 88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>: Tau <sup>2</sup> =                                                                                                                                                      | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>: 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>21<br>23<br>30<br>147<br>22                                                                                                                                                                                                                                              | 91.6<br>93.5<br>89.4<br>98.74<br>98. df = 1                                                                                                                               | 13.6<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2                                                                    | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>0.16); 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0                                                                                                                                                  | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>:0.79)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Trendelenburg<br>perit                                                         | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%Cl)<br>Heterogeneity                                                                                                                                                                                                        | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br><b>6</b><br>88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>: Tau <sup>2</sup> =                                                                                                                                              | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23<br>100<br>Chi <sup>2</sup> = 0<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>Chi <sup>2</sup> = 7                                                                                                                                                                                                                                              | 91.6<br>93.5<br>89.9<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1                                                                                                         | 13.6<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =                                                          | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>0.16); l <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%<br>100%<br>1 <sup>2</sup> = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T                                                                                                                                                                                                                                                                                                                                                                                                                                                              | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>                                                                                                                                              | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>:0.79)<br>+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <sup>9</sup> Trendelenburg                                                     | Seo 2018<br>Total (95%Cl)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%Cl)<br>Heterogeneity<br>Asuman 2013                                                                                                                                                                                         | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>: Tau <sup>2</sup> =                                                                                                                                                        | 14.78<br>0.00;<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>Chi <sup>2</sup> = 7.<br>1 1                                                                                                                                                                                                                                      | 91.6<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1                                                                                                           | 19.6<br>3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =                                                          | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>0.16); l <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100%<br>100%<br>1 <sup>2</sup> = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                             | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>t: Z = 0.27 (P =<br>0                                                                                                                         | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>: 0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Trendelenburg                                                                  | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Asuman 2013<br>Hwang 2013-1                                                                                                                                                                         | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>3 10:<br>RT 8                                                                                                                                       | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>: 1.8<br>3.94; C<br>5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>Chi <sup>2</sup> = 7.<br>1 1<br>4 2                                                                                                                                                                                                                               | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>98, df = 1<br>4 103                                                                                            | 3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =                                                                  | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>0.16); 1 <sup>2</sup><br>18<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 100%<br>100%<br>12 = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                    | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>                                                                                                                                              | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| everse<br>detemburg Trendelenburg Pne<br>perit                                 | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Asuman 2013<br>Hwang 2013-1<br>Total (95%CI)                                                                                                                                                        | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>3 10!<br>RT 8:                                                                                                                                        | 14.78<br>0.00; +<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>: 1.8<br>3.94; C<br>5 1<br>5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>Chi <sup>2</sup> = 7<br>1 1<br>4 2<br>39                                                                                                                                                                                                                          | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>98, df = 1<br>4 103<br>5 90                                                                                    | 19.8 (P =<br>11.8 10<br>16.3 9.8<br>11.91<br>1.2<br>5 (P =<br>5 16<br>) 9                                                      | 23<br>104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>0.16);   <sup>2</sup><br>18<br>25<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>38.0%<br>62.0%<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                                                           | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>                                                                                                                                              | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reverse<br>Trendelenburg<br>Pretite                                            | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Asuman 2013-1<br>Total (95%CI)<br>Heterogeneity                                                                                                                                                     | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>8 103<br>RT 8:<br>)<br>r Tau <sup>2</sup> =                                                                                                           | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; (<br>5<br>5<br>1<br>5<br>5<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23<br>100<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                                                                                                                                                                                                                                        | 91.6<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 5<br>4 103<br>5 90<br>1 44 df =                                                                             | 3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>5 (P =<br>16)<br>9<br>9                                       | 104<br>= 0.86);<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>0.16); l <sup>2</sup><br>18<br>25<br>43<br>= 0.23);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>38.0%<br>62.0%<br>100%<br>12 = 31%                                                                                                                                                                                                                                                                                                                                                                                                                                               | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>1<br>1<br>1<br>1<br>1<br>2<br>2<br>2<br>0<br>2<br>1<br>1<br>9<br>1<br>1<br>9<br>1<br>9<br>1<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9<br>1<br>9 | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reverse<br>Trendelenburg Pne                                                   | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Total (95%CI)<br>Hwang 2013-1<br>Total (95%CI)                                                                                                                                                      | 102.39<br>Tau <sup>2</sup> =<br>95.7<br>88<br>90.6<br>88<br>105.78<br>94.2<br>)<br>Tau <sup>2</sup> =<br>3 104<br>RT 8:<br>)<br>r: Tau <sup>2</sup> =                                                                                                              | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>5 1<br>5 1<br>5 1<br>5 1<br>5 1<br>5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 23<br>100<br>Chi² = C<br>15<br>25<br>33<br>3<br>21<br>23<br>3<br>3<br>3<br>147<br>147<br>1<br>1<br>1<br>1<br>1<br>4<br>29<br>30<br>147<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                                                                                                | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>4 103<br>5 90                                                                                                  | 3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>5 (P =<br>16<br>) 9<br>5 (P =                           | 104<br>104<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>23<br>30<br>138<br>18<br>25<br>43<br>25<br>43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>138.0%<br>62.0%<br>100%<br>12 = 31%                                                                                                                                                                                                                                                                                                                                                                                                                                              | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>t: Z = 0.27 (P =<br>0<br>ffect: Z = 0.69 (                                                                                                    | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Reverse Trendelenburg Pne                                                      | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Asuman 2013-1<br>Total (95%CI)<br>Heterogeneity                                                                                                                                                     | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>3 10:<br>;<br>Tau <sup>2</sup> =<br>3 10:<br>;<br>7 Tau <sup>2</sup> =<br>3 10:<br>;<br>7 Tau <sup>2</sup> =                                    | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>5 1<br>5 1<br>5 1<br>5 1<br>5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>3<br>21<br>23<br>3<br>3<br>0<br>147<br>1<br>1<br>1<br>1<br>1<br>4<br>2<br>39<br>Chi <sup>2</sup> = 7<br>14                                                                                                                                                                                 | 0.75, df =<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df =<br>98, df =<br>1.44, df =                                                                             | 13.3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>5 (P =<br>5 16<br>) 9<br>5 (P =                            | 203<br>104<br>106<br>15<br>33<br>21<br>23<br>30<br>138<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100%<br>100%<br>12 = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>-<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                         | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>)<br>t: Z = 0.27 (P =<br>0<br>)<br>(Fect: Z = 0.69 (0<br>0                                                                                    | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| al Reverse Trendelenburg Pne<br>itus                                           | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Asuman 2013-1<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019                                                                                                                          | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>3 100<br>: Tau <sup>2</sup> =<br>3 100<br>: Tau <sup>2</sup> =<br>71<br>92.20                                                                   | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>3.94; C<br>5<br>1<br>5<br>1<br>5<br>1<br>7.53;<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23<br>100<br>100<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>39<br>Chi <sup>2</sup> = C<br>39<br>20<br>147<br>14<br>20<br>39<br>20<br>147<br>15<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                  | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>98, df = 1<br>4<br>1.44, df =<br>79                                                                            | 13.3 (P =<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>) 9<br>5 (P =<br>17<br>11 08                         | 23<br>104<br>106<br>15<br>33<br>21<br>23<br>30<br>138<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>14<br>23<br>30<br>14<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100%<br>100%<br>12 = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>238.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                        | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>)<br>:t: Z = 0.27 (P =<br>0<br>)<br>ffect: Z = 0.69 (0                                                                                        | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [6 73 5 51]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ateral Reverse Trendelenburg Pne<br>cubitus Trendelenburg perit                | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Asuman 2013-<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)                                                                                                          | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>3 10 <sup>2</sup><br>: Tau <sup>2</sup> =<br>71<br>83.39                                                                                        | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>5 1<br>5 1<br>5 1<br>5 1<br>5 1<br>5 1<br>14<br>10.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>300<br>147<br>1<br>1<br>1<br>1<br>1<br>4<br>29<br>Chi <sup>2</sup> = 7<br>14<br>23<br>37                                                                                                                                                                                       | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84                                                                  | 11.8<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>16<br>9<br>5 (P =<br>17<br>11.08                          | 23<br>104<br>16<br>15<br>33<br>21<br>23<br>30<br>138<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>14<br>23<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100%<br>100%<br>12 = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>238.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>100%                                                                                                                                                                                                                                                                                                                                                                                                                   | est for overall effe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ct: Z = 1.99 (P<br>0<br>::: Z = 0.27 (P =<br>0<br>::: Z = 0.69 (0<br>0                                                                                                | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lateral Reverse Trendelenburg Pne                                              | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)                                                                                                                                                            | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>71<br>83.39<br>71<br>83.39<br>71<br>71<br>71<br>71<br>71<br>71<br>71<br>71<br>71<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70    | 14.78<br>0.00; +<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; (<br>5 1<br>5 1<br>5 1<br>5 1<br>14<br>10.07<br>5 11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>300<br>147<br>14<br>23<br>39<br>Chi <sup>2</sup> = 7<br>14<br>23<br>37<br>Chi <sup>2</sup> = 1<br>24<br>39<br>29<br>Chi <sup>2</sup> = 7<br>14<br>23<br>37<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25                                                         | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>4 103<br>5 90<br>1.44, df =<br>79<br>84                                                                        | 11.8<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>16<br>9<br>5 (P =<br>17<br>11.08<br>1 (P =                | 104<br>104<br>16<br>15<br>16<br>15<br>16<br>15<br>21<br>13<br>30<br>138<br>25<br>43<br>25<br>43<br>14<br>23<br>14<br>23<br>37<br>24<br>23<br>24<br>23<br>24<br>23<br>24<br>23<br>24<br>23<br>24<br>24<br>25<br>24<br>24<br>25<br>24<br>25<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100%<br>100%<br>12 = 0% T<br>-<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>-<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                                                                         | est for overall effer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ct: Z = 1.99 (P<br>0<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;<br>;                                                        | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Lateral Reverse Trendelenburg Pne Portug                                       | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity                                                                                                                                           | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>71<br>83.39<br>)<br>Tau <sup>2</sup> =<br>71<br>83.39                                                                                             | 14.78<br>0.00; +<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; (<br>5 1<br>5 1<br>5 1<br>5 1<br>7.53;<br>14<br>10.07<br>5.11; (<br>0.07<br>11; (<br>12)<br>14; (<br>14)<br>14; (<br>14)<br>15; (<br>14)<br>14; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>15; (<br>14)<br>14; (<br>15)<br>14; (<br>14)<br>15; (<br>15; (<br>15)<br>15; (<br>15; (<br>15)<br>15; (<br>15; (<br>15)<br>15; (<br>15; (<br>15)<br>15; (<br>15; (<br>15)<br>15; (<br>15; (<br>15; (<br>15)<br>15; (<br>15; ( | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>300<br>147<br>Chi <sup>2</sup> = 7<br>1 1 1<br>4 2<br>39<br>Chi <sup>2</sup> = 7<br>14<br>37<br>Chi <sup>2</sup> = 7<br>14<br>37<br>Chi <sup>2</sup> = 7<br>14<br>37<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                               | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>4 103<br>5 90<br>1.44, df =<br>79<br>84<br>23, df = 1                                                          | 11.8<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>16<br>9<br>5 (P =<br>17<br>11.08<br>17<br>11.08<br>1 (P = | 104<br>104<br>16<br>15<br>16<br>15<br>33<br>21<br>138<br>23<br>300<br>138<br>23<br>300<br>138<br>25<br>43<br>43<br>= 0.23);<br>14<br>43<br>37<br>24<br>37<br>30<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37<br>37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>238.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>72.8%<br>100%<br>100%                                                                                                                                                                                                                                                                                                                                                                                                       | est for overall effective<br>10<br>est for overall effective<br>10<br>Test for overall effective<br>10<br>est for overall effective<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ct: Z = 1.99 (P<br>0<br>t: Z = 0.27 (P =<br>0<br>ffect: Z = 0.69 (0<br>0<br>t: Z = 0.80 (P =                                                                          | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>= 0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]<br>= 0.43)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - Lateral Reverse Trendelenburg Pne Portice Decubitus                          | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity:<br>Son 2005                                                                                                                              | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>71<br>83.39<br>)<br>Tau <sup>2</sup> =<br>88<br>88<br>83.39                                                                                     | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; (<br>5<br>1<br>5<br>1<br>5<br>1<br>5<br>1<br>7.53;<br>14<br>10.07<br>5.11; (<br>0<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>300<br>147<br>Chi <sup>2</sup> = 7<br>1 1 1<br>4 2<br>39<br>Chi <sup>2</sup> = 7<br>14<br>23<br>37<br>Chi <sup>2</sup> = 1.                                                                                                                                                    | 91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df = 1<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84<br>23, df = 1<br>81, 7                                           | 11.8<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>17<br>11.08<br>1 (P =                                           | 104<br>104<br>16<br>15<br>33<br>21<br>123<br>30<br>138<br>25<br>138<br>25<br>43<br>25<br>43<br>25<br>43<br>25<br>43<br>27<br>14<br>23<br>37<br>24<br>23<br>25<br>24<br>23<br>25<br>24<br>24<br>25<br>25<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>-<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>72.8%<br>100%<br>100%<br>100%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                                                                               | est for overall effective<br>10<br>est for overall effective<br>10<br>Test for overall effective<br>10<br>Te | ct: Z = 1.99 (P<br>0<br>1<br>t: Z = 0.27 (P =<br>0<br>1<br>ffect: Z = 0.69 (0<br>0<br>1<br>t: Z = 0.80 (P =<br>0                                                      | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.37 [-2.30, 3.03]<br>= 0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]<br>= 0.43)<br>+15<br>-6.60 [0 36, 12, 84]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mo- Lateral Reverse Trendelenburg Pne Decubitus Trendelenburg Pne              | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-T<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Acumos 2017                                                                                                                | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>F 88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>)<br>: Tau <sup>2</sup> =<br>71<br>83.39<br>)<br>Tau <sup>2</sup> =<br>88.3<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                          | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>5 1<br>5 1<br>5 1<br>5 1<br>5 1<br>10.07<br>5.11; C<br>9.6<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>300<br>147<br>Chi <sup>2</sup> = 7<br>1 1 1<br>4 2<br>39<br>Chi <sup>2</sup> = 7<br>14<br>23<br>37<br>Chi <sup>2</sup> = 1.<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                        | 0.75, df =<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df =<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84<br>23, df = 1<br>81.7                                | 11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>5 (P =<br>17<br>11.08<br>1 (P =<br>8<br>14                        | 104<br>104<br>16<br>15<br>33<br>21<br>123<br>30<br>138<br>25<br>138<br>25<br>43<br>25<br>43<br>25<br>43<br>25<br>43<br>25<br>43<br>27<br>14<br>23<br>37<br>0.27); l <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100%           100%           12 = 0%           1           10.0%           9.4%           12.6%           10.0%           13.0%           45.0%           100%           38.0%           62.0%           100%           12           38.0%           62.0%           100%           12           38.0%           62.0%           100%           12           38.0%           62.0%           100%           12           38.0%           62.0%           100%           12           31.0%           27.2%           72.8%           100%           = 19%           19.1% | est for overall effective<br>10<br>est for overall effective<br>10<br>Test for overall effective<br>10<br>Te | ct: Z = 1.99 (P<br>0<br>)<br>:t: Z = 0.27 (P =<br>0<br>)<br>:ffect: Z = 0.69 (0<br>0<br>)<br>:t: Z = 0.80 (P =<br>0                                                   | <ul> <li>-2.13 [-12.16, 7.90]</li> <li>0.81 [0.01, 1.60]</li> <li>= 0.05)</li> <li>+10</li> <li>4.10 [-3.39, 11.59]</li> <li>-1.00 [-8.76, 6.76]</li> <li>-2.90 [-9.32, 3.52]</li> <li>-1.40 [-8.89, 6.09]</li> <li>7.04 [0.77, 13.31]</li> <li>-0.80 [-1.57, -0.03]</li> <li>0.37 [-2.30, 3.03]</li> <li>0.79)</li> <li>+10</li> <li>2.00 [-7.37, 11.37]</li> <li>-5.00 [-11.52, 1.52]</li> <li>-2.34 [-9.00, 4.32]</li> <li>P = 0.49)</li> <li>+10</li> <li>-8.00 [-19.54, 3.54]</li> <li>-0.61 [-6.73, 5.51]</li> <li>-2.62 [-9.07, 3.83]</li> <li>0.43)</li> <li>+15</li> <li>6.60 [0.36, 12.84]</li> <li>2.00 [-9.01, 13.01]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| neumo- Lateral Reverse Trendelenburg Pne<br>pum Decubitus Trendelenburg Pretit | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Asuman 2013                                                                                                                | 102.39<br>: Tau <sup>2</sup> =<br>95.7<br>88<br>90.6<br>88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>94.2<br>94.2<br>9<br>: Tau <sup>2</sup> =<br>102<br>71<br>83.39<br>)<br>Tau <sup>2</sup> =<br>88.3<br>88.3<br>9<br>202<br>202<br>202<br>202<br>202<br>202<br>202 | 9.4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>1.8<br>3.94; (<br>5<br>1<br>5<br>1<br>7.53;<br>14<br>10.07<br>5.11; (<br>9.6<br>7.511; (<br>9.6<br>17<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>14<br>23<br>30<br>147<br>1<br>1<br>1<br>1<br>1<br>4<br>2<br>39<br>Chi <sup>2</sup> = 7<br>30<br>Chi <sup>2</sup> = 7<br>30<br>147<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15                                                                     | 104.32<br>9.75, df =<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df =<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84<br>23, df = -<br>81.7<br>100               | 11.8<br>11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>17<br>11.08<br>1 (P =<br>8<br>14<br>14<br>11 6            | 104<br>104<br>104<br>16<br>15<br>33<br>21<br>13<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>25<br>43<br>25<br>43<br>14<br>23<br>37<br>0.27); l <sup>2</sup><br>16<br>18<br>27<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>72.8%<br>100%<br>= 31%<br>-<br>27.2%<br>100%<br>-<br>27.2%<br>-<br>27.2%<br>-<br>27.2%<br>-<br>27.2%<br>-<br>27.2%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                               | est for overall effective<br>10 est for overall effective<br>10 Test for overall effective<br>10 est for overall effective<br>10 est for overall effective<br>15 est for overall effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ct: Z = 1.99 (P<br>0<br>)<br>t: Z = 0.27 (P =<br>0<br>)<br>(ffect: Z = 0.69 (D<br>0<br>)<br>(t: Z = 0.80 (P =<br>0)                                                   | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]<br>:0.43)<br>+15<br>-6.60 [0.36, 12.84]<br>-2.00 [-9.01, 13.01]<br>-2.00 [-9.01, 13.01]<br>-2.00 [-9.01, 13.01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| on Pneumo-<br>Lateral Reverse<br>poneum Decubitus Trendelenburg Pne            | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Asuman 2013<br>Yoo 2014                                                                                                    | 102.39<br>102.39<br>102.39<br>102.39<br>102.48<br>105.78<br>90.6<br>88<br>90.6<br>88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>102.78<br>94.2<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>10                                                                  | 14.78<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>9.67<br>1.8<br>3.94; C<br>5 1<br>1.8<br>3.94; C<br>5 1<br>5 1<br>5.11; C<br>9.6<br>17<br>10.5<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>1<br>1<br>1<br>1<br>1<br>4<br>23<br>30<br>147<br>1<br>1<br>1<br>1<br>4<br>23<br>30<br>Chi <sup>2</sup> = 7<br>39<br>Chi <sup>2</sup> = 7<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                         | 104.32<br>9.75, df =<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df =<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84<br>23, df =<br>81.7<br>100<br>81.7         | 11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>17<br>11.08<br>1 (P =<br>8<br>14<br>11.6                          | 104<br>104<br>105<br>106<br>15<br>16<br>15<br>33<br>21<br>123<br>30<br>138<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>25<br>43<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>72.8%<br>100%<br>12 = 31%<br>-<br>27.2%<br>100%<br>12 = 31%<br>-<br>23.0%<br>100%<br>-<br>23.0%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                                  | est for overall effective<br>10 est for overall effective<br>10 Test for overall effective<br>10 Est for overall effective<br>10 Est for overall effective<br>15 Est for overall effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ct: Z = 1.99 (P<br>0<br>)<br>t: Z = 0.27 (P =<br>0<br>)<br>(ffect: Z = 0.69 (0<br>0<br>)<br>t: Z = 0.80 (P =<br>0                                                     | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]<br>:0.43)<br>+15<br>-6.60 [0.36, 12.84]<br>-2.90 [-8.24, 2.44]<br>-0.71 [-5.05]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Aution Pneumo-<br>Decubitus Trendelenburg Pne<br>Trendelenburg Pne             | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Asuman 2013<br>Yoo 2014<br>Kaur 2018                                                                                       | 102.39<br>102.39<br>102.39<br>102.39<br>102.39<br>103.68<br>105.78<br>90.6<br>88<br>90.6<br>88<br>90.6<br>88<br>90.6<br>88<br>91.7<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>102                                                                         | 14.78<br>0.00; 4<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>9.67<br>1.8<br>3.94; C<br>5 1<br>1.8<br>3.94; C<br>5 1<br>5 1<br>1.8<br>3.94; C<br>5 1<br>1.8<br>3.94; C<br>5 1<br>1.4<br>5.11; C<br>9.6<br>1.7<br>1.0<br>1.7<br>1.0<br>1.7<br>1.6<br>1.7<br>1.6<br>1.7<br>1.6<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7<br>1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>14<br>23<br>30<br>147<br>1<br>1<br>1<br>1<br>1<br>4<br>23<br>30<br>Chi <sup>2</sup> = 7<br>39<br>Chi <sup>2</sup> = 7<br>39<br>Chi <sup>2</sup> = 7<br>10<br>11<br>11<br>12<br>30<br>147<br>147<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15       | 104.32<br>9.75, df =<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df =<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84<br>23, df =<br>81.7<br>100<br>81.1<br>92.4 | 11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>17<br>11.08<br>1 (P =<br>8<br>14<br>11.6<br>2.1<br>               | 104<br>104<br>104<br>16<br>15<br>33<br>21<br>13<br>30<br>138<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>25<br>43<br>25<br>43<br>27<br>14<br>23<br>37<br>0.27); l <sup>2</sup><br>16<br>18<br>33<br>30<br>0.27); l <sup>2</sup><br>16<br>18<br>37<br>18<br>25<br>43<br>37<br>10<br>43<br>37<br>10<br>43<br>10<br>43<br>10<br>43<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>72.8%<br>100%<br>= 31%<br>-<br>27.2%<br>100%<br>12.6%<br>-<br>23.0%<br>49.7%<br>100%                                                                                                                                                                                                                                                                                                            | est for overall effective<br>10 est for overall effective<br>10 Test for overall effective<br>10 Est for overall effective<br>10 Est for overall effective<br>15 Est for overall effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ct: Z = 1.99 (P<br>0<br>)<br>t: Z = 0.27 (P =<br>0<br>)<br>(ffect: Z = 0.69 (D<br>0<br>)<br>t: Z = 0.80 (P =<br>0                                                     | -2.13 [-12.16, 7.90]<br>0.81 [0.01, 1.60]<br>= 0.05)<br>+10<br>→ 4.10 [-3.39, 11.59]<br>-1.00 [-8.76, 6.76]<br>-2.90 [-9.32, 3.52]<br>-1.40 [-8.89, 6.09]<br>→ 7.04 [0.77, 13.31]<br>-0.80 [-1.57, -0.03]<br>0.37 [-2.30, 3.03]<br>0.79)<br>+10<br>→ 2.00 [-7.37, 11.37]<br>-5.00 [-11.52, 1.52]<br>-2.34 [-9.00, 4.32]<br>P = 0.49)<br>+10<br>-8.00 [-19.54, 3.54]<br>-0.61 [-6.73, 5.51]<br>-2.62 [-9.07, 3.83]<br>:0.43)<br>+15<br>-6.60 [0.36, 12.84]<br>-2.90 [-8.24, 2.44]<br>-0.70 [-1.55, 0.15]<br>0.41 [-0.73, 5.15]<br>-2.90 [-8.24, 2.44]<br>-0.70 [-1.55, 0.15]<br>0.41 [-0.73, 5.15]<br>-2.90 [-8.24, 2.44]<br>-0.70 [-1.55, 0.15]<br>0.41 [-0.73, 5.15]<br>-2.90 [-8.24, 2.44]<br>-0.70 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.71 [-2.50, 2.51]<br>-0.70 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.71 [-2.50, 2.51]<br>-0.71 [-2.50, 2.51]<br>-0.71 [-2.50, 2.51]<br>-0.70 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.71 [-2.50, 2.51]<br>-0.72 [-1.55, 0.15]<br>-0.72 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.72 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.72 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.72 [-1.55, 0.15]<br>-0.71 [-2.50, 2.51]<br>-0.72 [-1.55, 0.15]<br>-0.72 [-1.55, 0.15]<br>-0.73 [-1.55, 0.15]<br>-0.74 [-2.72 [-1.55, 0.15]<br>-0.75 [-1.55, 0.15]<br>-0.75 [-1.55, 0.15]<br>-0.75 [-1.55, 0.15]<br>-0.75 [-1.55 [-1.55]<br>-0.75 [-1.55]<br>-0.75 [-1.55 [-1.55]<br>-0.75 [-1.55]<br>-0.75 [-1.55 [-1.55]<br>-0.75 [-1.55] |
| Resolution Pneumo-<br>Decubitus Trendelenburg Trendelenburg Pne<br>Decubitus   | Seo 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Hwang 2013-1<br>Yoo 2014<br>Park 2016<br>Seo 2018<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Yamada 2016<br>Kim 2019<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Asuman 2013<br>Yoo 2014<br>Kaur 2018<br>Total (95%CI)<br>Heterogeneity<br>Son 2005<br>Asuman 2013<br>Yoo 2014<br>Kaur 2018 | 102.39<br>102.39<br>102.39<br>102.39<br>102.39<br>102.48<br>105.78<br>90.6<br>88<br>90.6<br>88<br>90.6<br>88<br>94.2<br>94.2<br>94.2<br>94.2<br>102<br>102<br>102<br>102<br>102<br>102<br>102<br>10                                                                | 14.78<br>9.4<br>15<br>9.4<br>14.5<br>9.67<br>9.67<br>1.8<br>3.94; C<br>5 1<br>1.8<br>3.94; C<br>5 1<br>5 1<br>5 1<br>5 1<br>14<br>10.07<br>5.11; C<br>9.6<br>17<br>10.5<br>1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23<br>100<br>Chi <sup>2</sup> = C<br>15<br>25<br>33<br>21<br>23<br>30<br>147<br>14<br>23<br>30<br>147<br>14<br>23<br>30<br>Chi <sup>2</sup> = 7<br>11<br>1<br>1<br>1<br>1<br>4<br>23<br>30<br>Chi <sup>2</sup> = 7<br>14<br>37<br>Chi <sup>2</sup> = 10<br>Chi <sup>2</sup> = 7<br>14<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | 104.32<br>9.75, df =<br>91.6<br>89<br>93.5<br>89.4<br>98.74<br>95<br>98, df =<br>4<br>103<br>5<br>90<br>1.44, df =<br>79<br>84<br>23, df =<br>81.7<br>100<br>81.1<br>92.4 | 11.8<br>10<br>16.3<br>9.8<br>11.91<br>1.2<br>5 (P =<br>16<br>17<br>11.08<br>1 (P =<br>8<br>14<br>11.6<br>2.1<br>2 2 (C)        | 104<br>104<br>104<br>16<br>15<br>33<br>21<br>13<br>30<br>138<br>23<br>30<br>138<br>23<br>30<br>138<br>25<br>43<br>25<br>43<br>25<br>43<br>25<br>43<br>20<br>14<br>23<br>30<br>188<br>25<br>43<br>21<br>16<br>18<br>25<br>43<br>21<br>16<br>18<br>25<br>43<br>21<br>16<br>18<br>25<br>43<br>21<br>16<br>18<br>25<br>43<br>20<br>18<br>25<br>43<br>21<br>14<br>23<br>30<br>188<br>25<br>43<br>21<br>14<br>23<br>30<br>188<br>25<br>43<br>21<br>14<br>25<br>43<br>21<br>14<br>25<br>43<br>21<br>14<br>25<br>43<br>27<br>16<br>18<br>25<br>43<br>27<br>16<br>16<br>18<br>25<br>43<br>27<br>16<br>16<br>18<br>25<br>43<br>27<br>16<br>16<br>16<br>18<br>25<br>16<br>16<br>17<br>18<br>25<br>16<br>16<br>17<br>18<br>25<br>18<br>18<br>25<br>16<br>16<br>17<br>18<br>25<br>16<br>16<br>17<br>18<br>25<br>16<br>17<br>18<br>25<br>18<br>18<br>25<br>11<br>18<br>25<br>19<br>10<br>11<br>18<br>25<br>11<br>18<br>25<br>19<br>10<br>11<br>18<br>25<br>19<br>10<br>11<br>18<br>25<br>11<br>18<br>25<br>11<br>18<br>25<br>11<br>18<br>25<br>19<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 100%<br>100%<br>12 = 0% T<br>10.0%<br>9.4%<br>12.6%<br>10.0%<br>13.0%<br>45.0%<br>100%<br>= 37% T<br>38.0%<br>62.0%<br>100%<br>12 = 31%<br>-<br>27.2%<br>72.8%<br>100%<br>12 = 31%<br>-<br>27.2%<br>100%<br>12 = 31%<br>-<br>23.0%<br>49.7%<br>100%<br>100%<br>100%<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-                                                                                                                                                                                                                                       | est for overall effective<br>10 est for overall effective<br>10 Test for overall effective<br>10 Test for overall effective<br>15 Tot for overall effective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ct: Z = 1.99 (P<br>0<br>)<br>t: Z = 0.27 (P =<br>0<br>)<br>(ffect: Z = 0.69 (D<br>0<br>)<br>(t: Z = 0.80 (P =<br>0)<br>)<br>(ffect: Z = 0.80 (P =                     | <ul> <li>-2.13 [-12.16, 7.90]</li> <li>0.81 [0.01, 1.60]</li> <li>= 0.05)</li> <li>+10</li> <li>4.10 [-3.39, 11.59]</li> <li>-1.00 [-8.76, 6.76]</li> <li>-2.90 [-9.32, 3.52]</li> <li>-1.40 [-8.89, 6.09]</li> <li>7.04 [0.77, 13.31]</li> <li>-0.80 [-1.57, -0.03]</li> <li>0.37 [-2.30, 3.03]</li> <li>0.79)</li> <li>+10</li> <li>2.00 [-7.37, 11.37]</li> <li>-5.00 [-11.52, 1.52]</li> <li>-2.34 [-9.00, 4.32]</li> <li>P = 0.49)</li> <li>+10</li> <li>-8.00 [-19.54, 3.54]</li> <li>-0.61 [-6.73, 5.51]</li> <li>-2.62 [-9.07, 3.83]</li> <li>0.43)</li> <li>+15</li> <li>6.60 [0.36, 12.84]</li> <li>2.00 [-9.01, 13.01]</li> <li>-2.90 [-8.24, 2.44]</li> <li>-0.70 [-1.55, 0.15]</li> <li>0.41 [-3.03, 3.86]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Fig. 7. Forest plot of mean arterial pressure at different timings.

For example, induction by thiopental was associated with higher IOP and blood pressure after induction and intubation than were propofol and etomidate [46–48]. This was compatible with our

subgroup analysis in which we found that IOP and MAP after intubation in the propofol-based TIVA group were significantly lower than that in the VA group with thiopental as the induction agent.

|     |                                      | w   | eighted mean difference (95 | % CI)                    |          |        |
|-----|--------------------------------------|-----|-----------------------------|--------------------------|----------|--------|
|     |                                      | 8   | 6 0                         | ר<br><sub>+6</sub> Favor | Conclusi | ve NNT |
|     | After induction                      | 242 |                             | NS                       |          | )      |
|     | After intubation                     | 214 | <b>_</b> _                  | Propofol-TIV             | /A 🗸     | 7.60   |
| 4   | After pneumoperitoneum               | 172 | +                           | Propofol-TIV             | /A 🗸     | 3.24   |
| ≌   | After Trendelenburg position         | 264 | +                           | Propofol-TIV             | /A 🗸     | 2.33   |
|     | After lateral decubitus position     | 74  | <b>—</b>                    | Propofol-TIV             | /A 🗸     | 5.57   |
|     | After prone position                 | 84  |                             | NS                       |          |        |
|     |                                      | -   | 10 0 +                      | 10                       |          |        |
| d d | After intubation                     | 74  |                             | NS                       |          |        |
| ō   | After lateral decubitus position     | 74  |                             | NS                       |          |        |
|     | A fear to deal to a                  | -   | 5 0 .                       | +6                       |          |        |
|     | After induction                      | 1/8 |                             | NS                       | _        |        |
| ်   | After intubation                     | 152 | +                           | NS                       |          |        |
| L H | After pneumoperitoneum               | 204 |                             | NS                       | _        |        |
|     | After Trendelenburg position         | 172 | -                           | NS                       |          |        |
|     | After lateral decubitus position     | 74  |                             | NS                       |          |        |
|     |                                      | -   | 5 O                         | +6                       |          |        |
|     | After induction                      | 202 | •                           | NS                       |          |        |
| ≙   | After intubation                     | 92  |                             | Propotol-11V             | /A 🗸     | 6.15   |
|     | After pneumoperitoneum               | 106 |                             | NS                       |          |        |
|     | After Trendelenburg position         | 198 |                             | NS                       |          |        |
|     |                                      | -   | 12 0 +                      | 12                       |          |        |
|     | After induction                      | 433 | +                           | NS                       |          |        |
|     | After intubation                     | 262 |                             | Propofol-TIV             | /A 🗸     | 7.44   |
| ΡΡ  | After pneumoperitoneum               | 204 | •                           | Volatile                 |          | 51.86  |
| Σ   | After Trendelenburg position         | 285 |                             | NS                       |          |        |
|     | After reverse Trendelenburg position | 82  |                             | NS                       |          |        |
|     | After lateral decubitus position     | 84  |                             | NS                       |          |        |
|     | After resolution of pneumoperitoneum | 189 |                             | NS                       |          |        |

Fig. 8. Forest plot of all brief conclusions.

PIP has been shown to increase IOP [49]. The proposed mechanism for the positive correlation between PIP and IOP is that the increased intrathoracic pressure increases the central venous pressure, which in turn increases the episcleral venous pressure and blocks the aqueous humor outflow [9,50], leading to an increased IOP. Propofol and most of the volatile anesthetics are well documented for their bronchodilation property via inhibiting intracellular calcium mobilization [11]. Clinical studies evaluating the effects of propofol and sevoflurane on respiratory mechanics during surgery found no significant difference in PIP [51,52]. However, a recent study demonstrated that the total inspiratory resistance of desflurane is significantly higher than that of sevoflurane and isoflurane at a 1.5 minimum alveolar concentration (MAC) [53]. Therefore, we postulated that the significantly lower PIP after intubation observed in the present study was due to desflurane use in the studies by Seo et al. and Kim et al. [29,42]. Further investigations are required to confirm our theory.

IOP after pneumoperitoneum and Trendelenburg positioning in the propofol-based TIVA group was significantly lower than that in the VA group. The mechanism underlying such a difference was proposed to be the inhibitory effect of propofol on arginine vasopressin (AVP), which increased during laparoscopic surgery [54,55] and Trendelenburg positioning [56]. AVP and its synthetic derivative desmopressin has been shown to increase IOP [57,58]. Propofol inhibits magnocellular neuron excitability in the paraventricular nucleus [59] and supraoptic nucleus [60] via gammaaminobutyric acid(A)-mediated inhibitory currents; therefore, it may attenuate the increase in IOP during pneumoperitoneum and Trendelenburg positioning. On the contrary, the plasma concentration of AVP was not altered by volatile anesthetics [61].

LDP has been shown to increase the IOP of the dependent eye in both anaesthetized patients and healthy subjects [62,63]. The increased IOP in LDP is likely due to the increased episcleral venous pressure and choroidal volume resulting from gravity or a shift of body fluid and jugular vein compression [63]. In the present study, we found that IOP after LDP in the propofol-based TIVA groups was significantly lower than that in the VA group. The mechanism remains unclear. It was postulated that the reducing effect of propofol on IOP was greater than the increasing effect of LDP, but not volatile anesthetics [43]. Further investigations are necessary to explore this finding.

Our study has some limitations. First, the time elapsed between the IOP measurement and intubation was mentioned in some studies [29,31,35-37,39,42] but unclear in others. Moreover, information was unavailable regarding the exhaled concentration of the VA or the MAC after intubation at which the IOP was measured. As a result, it was unclear to what extent the volatile anesthetics affected the IOP and may underestimate the effects of VA after intubation. Second, some of the included studies were not included in the meta-analysis due to insufficient information. As a result, the pooled effect may have been shifted in either direction if these studies had been included in the meta-analysis. Third, our search strategy was based on the primary outcome, i.e., IOP. Although the literature was searched comprehensively, it remains possible that some studies reporting our secondary outcomes were not included. Consequently, the results of the secondary outcomes in this study may be subject to type one or type two errors. Finally, despite attempts to explore possible modulating factors by metaregression to account for the intergroup heterogeneity, we were unable to perform it due to insufficient data.

## Conclusions

To the best of our knowledge, this is the first meta-analysis of RCTs to evaluate the effects of propofol-based TIVA and VA on

IOP in patients undergoing surgery. We found that IOP, MAP, and PIP after intubation in the propofol-based TIVA group were significantly lower than that in the VA group. Moreover, the IOP was also significantly lower in the propofol-TIVA group after pneumoperitoneum, Trendelenburg positioning, and LDP (Fig. 8.). Thus, propofol-based TIVA should be the regimen of choice during anesthesia maintenance, especially in at-risk patients.

## Funding

This research received no external funding.

## **Compliance with Ethics Requirements**

This article does not contain any studies with human or animal subjects.

## **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

## Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jare.2020.02.008.

## References

- Klein BE, Klein R, Knudtson MD. Intraocular pressure and systemic blood pressure: longitudinal perspective: the Beaver Dam Eye Study. Br J Ophthalmol 2005;89(3):284–7.
- [2] Murphy DF. Anesthesia and intraocular pressure. Anesth Analg 1985;64 (5):520–30.
- [3] Beulen P, Rotteveel J, de Haan A, Liem D, Mullaart R. Ultrasonographic assessment of congestion of the choroid plexus in relation to carbon dioxide pressure. Eur J Ultrasound 2000;11(1):25–9.
- [4] Murgatroyd H, Bembridge J. Intraocular pressure. BJA. Education 2008;8 (3):100–3.
- [5] Atkinson TM, Giraud GD, Togioka BM, Jones DB, Cigarroa JE. Cardiovascular and ventilatory consequences of laparoscopic surgery. Circulation 2017;135 (7):700–10.
- [6] Kelly DJ, Farrell SM. Physiology and role of intraocular pressure in contemporary anesthesia. Anesth Analg 2018;126(5):1551–62.
- [7] Quigley HA, McKinnon SJ, Zack DJ, Pease ME, Kerrigan-Baumrind LA, Kerrigan DF, et al. Retrograde axonal transport of BDNF in retinal ganglion cells is blocked by acute IOP elevation in rats. Invest Ophthalmol Vis Sci 2000;41 (11):3460–6.
- [8] Popa-Cherecheanu A, Schmidl D, Werkmeister RM, Chua J, Garhofer G, Schmetterer L. Regulation of choroidal blood flow during isometric exercise at different levels of intraocular pressure. Invest Ophthalmol Vis Sci 2019;60 (1):176–82.
- [9] Friberg TR, Sanborn G, Weinreb RN. Intraocular and episcleral venous pressure increase during inverted posture. Am J Ophthalmol 1987;103(4):523–6.
- [10] Shen Y, Drum M, Roth S. The prevalence of perioperative visual loss in the United States: a 10-year study from 1996 to 2005 of spinal, orthopedic, cardiac, and general surgery. Anesth Analg 2009;109(5):1534–45.
- [11] Miller RD. Miller's Anesthesia, 8th ed. Philadelphia: PA: Churchill Livingstone/ Elsevier; 2015.
- [12] Artru AA, Momota Y. Trabecular outflow facility and formation rate of aqueous humor during anesthesia with sevoflurane-nitrous oxide or sevofluraneremifentanil in rabbits. Anesth Analg 1999;88(4):781–6.
- [13] Artru AA. Trabecular outflow facility and formation rate of aqueous humor during propofol, nitrous oxide, and halothane anesthesia in rabbits. Anesth Analg 1993;77(3):564–9.
- [14] Cook JH. The effect of suxamethonium on intraocular pressure. Anaesthesia 1981;36(4):359–65.
- [15] Vinik HR. Intraocular pressure changes during rapid sequence induction and intubation: a comparison of rocuronium, atracurium, and succinylcholine. J Clin Anesth 1999;11(2):95–100.
- [16] Sweeney J, Underhill S, Dowd T, Mostafa SM. Modification by fentanyl and alfentanil of the intraocular pressure response to suxamethonium and tracheal intubation. Br J Anaesth 1989;63(6):688–91.

- [17] Domi RQ. A comparison of the effects of sufentanil and fentanyl on intraocular pressure changes due to easy and difficult tracheal intubations. Saudi Med J 2010;31(1):29–31.
- [18] Sator-Katzenschlager SM, Oehmke MJ, Deusch E, Dolezal S, Heinze G, Wedrich A. Effects of remifentanil and fentanyl on intraocular pressure during the maintenance and recovery of anaesthesia in patients undergoing nonophthalmic surgery. Eur J Anaesthesiol 2004;21(2):95–100.
- [19] D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, P. Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6(7):e1000097.
- [20] Sterne JAC, Savovic J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 2019;366: 14898.
- [21] DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7(3):177–88.
- [22] Wetterslev J, Jakobsen JC, Gluud C. Trial Sequential Analysis in systematic reviews with meta-analysis. BMC Med Res Methodol 2017;17(1):39.
- [23] Furukawa TA, Leucht S. How to obtain NNT from Cohen's d: comparison of two methods. PLoS ONE 2011;6(4):e19070.
- [24] Montazeri K, Dehghan A, Akbari S. Increase in intraocular pressure is less with propofol and remifentanil than isoflurane with remifentanil during cataract surgery: A randomized controlled trial. Adv Biomed Res 2015;4:55.
- [25] Mowafi HA, Al-Ghamdi A, Rushood A. Intraocular pressure changes during laparoscopy in patients anesthetized with propofol total intravenous anesthesia versus isoflurane inhaled anesthesia. Anesth Analg 2003;97 (2):471–4. table of contents.
- [26] Sator S, Wildling E, Schabernig C, Akramian J, Zulus E, Winkler M. Desflurane maintains intraocular pressure at an equivalent level to isoflurane and propofol during unstressed non-ophthalmic surgery. Br J Anaesth 1998;80 (2):243–4.
- [27] Sator-Katzenschlager S, Deusch E, Dolezal S, Michalek-Sauberer A, Grubmuller R, Heinze G, et al. Sevoflurane and propofol decrease intraocular pressure equally during non-ophthalmic surgery and recovery. Br J Anaesth 2002;89 (5):764–6.
- [28] Kaur G, Sharma M, Kalra P, Purohit S, Chauhan K. Intraocular pressure changes during laparoscopic surgery in trendelenburg position in patients anesthetized with propofol-based total intravenous anesthesia compared to sevoflurane anesthesia: a comparative study. Anesth Essays Res 2018;12(1):67–72.
- [29] Seo KH, Kim YS, Joo J, Choi JW, Jeong HS, Chung SW. Variation in intraocular pressure caused by repetitive positional changes during laparoscopic colorectal surgery: a prospective, randomized, controlled study comparing propofol and desflurane anesthesia. J Clin Monit Comput 2018;32 (6):1101–9.
- [30] Yoo YC, Shin S, Choi EK, Kim CY, Choi YD, Bai SJ. Increase in intraocular pressure is less with propofol than with sevoflurane during laparoscopic surgery in the steep Trendelenburg position. Can J Anaesth 2014;61(4):322–9.
- [31] Asuman AO, Baris A, Bilge K, Bozkurt S, Nurullah B, Meliha K, et al. Changes in intraocular pressures during laparoscopy: a comparison of propofol total intravenous anesthesia to desflurane-thiopental anesthesia. Middle East J Anaesthesiol 2013;22(1):47–52.
- [32] Hwang JW, Oh AY, Hwang DW, Jeon YT, Kim YB, Park SH. Does intraocular pressure increase during laparoscopic surgeries? It depends on anesthetic drugs and the surgical position. Surg Laparosc Endosc Percutan Tech 2013;23 (2):229–32.
- [33] Park SH, Kim MH, Kim HJ, Park HP, Jeon YT, Hwang JW. Intraocular pressure changes during gynecologic laparoscopy in patients anesthetized with propofol versus desflurane. Anesth Pain Med 2006;1(2):106–10.
- [34] Son YS, Oh SC, Chung KD, Kim KH, Yoon KJ. A Comparison of the effects of propofol and sevoflurane anesthesias on intraocular pressure during laparoscopic hysterectomy. Korean J Anesthesiol 2005;48(1):10–4.
- [35] Schäfer R, Klett J, Auffarth G, Polarz H, Völcker HE, Martin E, et al. Intraocular pressure more reduced during anesthesia with propofol than with sevoflurane: Both combined with remifentanil. Acta Anaesthesiol Scand 2002;46(6):703–6.
- [36] Moffat A, Cullen PM. Comparison of two standard techniques of general anaesthesia for day-case cataract surgery. Br J Anaesth 1995;74(2):145–8.
- [37] Mets B, Salmon JF, James MFM. Continuous intravenous propofol with nitrous oxide for ocular surgery. A comparison with etomidate, alfentanil, nitrous oxide and isoflurane. S Afr Med J 1992;81(10):523–6.
- [38] Guedes Y, Rakotoseheno JC, Leveque M, Mimouni F, Egreteau JP. Changes in intra-ocular pressure in the elderly during anaesthesia with propofol. Anaesthesia 1988;43(Suppl):58–60.
- [39] Polarz H, Bohrer H, Von Tabouillot W, Martin E, Tetz M, Volcker HE. Intraocular pressure during anaesthesia with isoflurane versus propofol/alfentanil. Anasthesiol Intensivmed Notfallmed Schmerzther 1995;30(2):96–8.
- [40] Mirkheshti A, Shojaei SP, Rabei HM, Mirzaei M, Moghaddam MJ. Comparison of propofol and isoflurane effects on intraocular pressure in patients undergoing lumbar disc surgery. Br J Anaesth 2012;108:pp. ii443.
- [41] Sugata A, Hayashi H, Kawaguchi M, Hasuwa K, Nomura Y, Furuya H. Changes in intraocular pressure during prone spine surgery under propofol and sevoflurane anesthesia. J Neurosurg Anesthesiol 2012;24(2):152–6.
- [42] Kim YS, Han NR, Seo KH. Changes of intraocular pressure and ocular perfusion pressure during controlled hypotension in patients undergoing arthroscopic shoulder surgery: A prospective, randomized, controlled study comparing propofol, and desflurane anesthesia. Medicine (Baltimore) 2019;98(18). pp. e15461.

- [43] Yamada MH, Takazawa T, Iriuchijima N, Horiuchi T, Saito S. Changes in intraocular pressure during surgery in the lateral decubitus position under sevoflurane and propofol anesthesia. J Clin Monit Comput 2016;30(6):869–74.
- [44] Robinson R, White M, McCann P, Magner J, Eustace P. Effect of anaesthesia on intraocular blood flow. Br J Ophthalmol 1991;75(2):92–3.
- [45] Ozkose Z, Ercan B, Unal Y, Yardim S, Kaymaz M, Dogulu F, et al. Inhalation versus total intravenous anesthesia for lumbar disc herniation: comparison of hemodynamic effects, recovery characteristics, and cost. J Neurosurg Anesthesiol 2001;13(4):296–302.
- [46] Kim SH, Lee SH, Shim SH, Kim JS, Kwak SD, Kim CS, et al. Effects of etomidate, propofol and thiopental sodium on intraocular pressure during the induction of anesthesia. Korean J Anesthesiol 2000;39(3):309–13.
- [47] Reza Sahraei HKJ, Adelpour Mohsen, Kalani Navid, Eftekhareian Fatemeh. The comparison of the influence of thiopental and propofol on intraocular pressure during induction of anesthesia in intubated patients under cataracct surgery. Int J Med Res Health Sci 2016;5(7S):147–51.
- [48] Mirakhur RK, Shepherd WF, Darrah WC. Propofol or thiopentone: effects on intraocular pressure associated with induction of anaesthesia and tracheal intubation (facilitated with suxamethonium). Br J Anaesth 1987;59(4):431–6.
- [49] Awad H, Santilli S, Ohr M, Roth A, Yan W, Fernandez S, et al. The effects of steep trendelenburg positioning on intraocular pressure during robotic radical prostatectomy. Anesth Analg 2009;109(2):473–8.
- [50] Johnson DS, Crittenden DJ. Intraocular pressure and mechanical ventilation. Optom Vis Sci 1993;70(7):523-7.
- [51] Bang SR, Lee SE, Ahn HJ, Kim JA, Shin BS, Roe HJ, et al. Comparison of respiratory mechanics between sevoflurane and propofol-remifentanil anesthesia for laparoscopic colectomy. Korean J Anesthesiol 2014;66 (2):131–5.
- [52] Salihoglu Z, Demiroluk S, Demirkiran O, Emin I, Kose Y. Effects of sevoflurane, propofol and position changes on respiratory mechanics. Middle East J Anaesthesiol 2004;17(5):811–8.
- [53] Nyktari V, Papaioannou A, Volakakis N, Lappa A, Margaritsanaki P, Askitopoulou H. Respiratory resistance during anaesthesia with isoflurane, sevoflurane, and desflurane: a randomized clinical trial. Br J Anaesth 2011;107 (3):454–61.
- [54] Viinamki O, Punnonen R. Vasopressin release during laparoscopy: role of increased intra-abdominal pressure. Lancet 1982;1(8264):175–6.
- [55] Joris JL, Chiche JD, Canivet JL, Jacquet NJ, Legros JJ, Lamy ML. Hemodynamic changes induced by laparoscopy and their endocrine correlates: effects of clonidine. J Am Coll Cardiol 1998;32(5):1389–96.
- [56] Berg K, Wilhelm W, Grundmann U, Ladenburger A, Feifel G, Mertzlufft F. Laparoscopic cholecystectomy–effect of position changes and CO2 pneumoperitoneum on hemodynamic, respiratory and endocrinologic parameters. Zentralbl Chir 1997;122(5):395–404.
- [57] Gondim EL, Liu JH, Costa VP, Weinreb RN. Exogenous vasopressin influences intraocular pressure via the V(1) receptors. Curr Eye Res 2001;22(4):295–303.
- [58] Wallace I, Moolchandani J, Krupin T, Wulc A, Stone RA. Effects of systemic desmopressin on aqueous humor dynamics in rabbits. Invest Ophthalmol Vis Sci 1988;29(3):406–10.
- [59] Shirasaka T, Yoshimura Y, Qiu DL, Takasaki M. The effects of propofol on hypothalamic paraventricular nucleus neurons in the rat. Anesth Analg 2004;98(4):1017–23. table of contents.
- [60] Inoue Y, Shibuya I, Kabashima N, Noguchi J, Harayama N, Ueta Y, et al. The mechanism of inhibitory actions of propofol on rat supraoptic neurons. Anesthesiology 1999;91(1):167–78.
- [61] Leighton KM, Lim SL, Wilson N. Arginine vasopressin response to anaesthesia produced by halothane, enflurane and isoflurane. Can Anaesth Soc J 1982;29 (6):563–6.

- [62] Hwang JW, Jeon YT, Kim JH, Oh YS, Park HP. The effect of the lateral decubitus position on the intraocular pressure in anesthetized patients undergoing lung surgery. Acta Anaesthesiol Scand 2006;50(8):988–92.
- [63] Lee JY, Yoo C, Jung JH, Hwang YH, Kim YY. The effect of lateral decubitus position on intraocular pressure in healthy young subjects. Acta Ophthalmol 2012;90(1):e68–72.



**Chun-Yu Chang** obtained his MD's degree from Tzu Chi University, Taiwan. His research area includes anesthesiology, pain medicine, critical care medicine, emergency care medicine, and systematic review and meta-analysis methodology.



**Yung-Jiun Chien** obtained her MD's degree from Tzu Chi University, Taiwan. She is currently undergoing residency training in physical medicine and rehabilitation at Taipei Tzu Chi Hospital, Taiwan.



**Meng-Yu Wu** obtained his MD's degree from Tzu Chi University, Taiwan. He is currently undergoing residency training in emergency medicine at Taipei Tzu Chi Hospital, Taiwan. He has participated in more than 10 research projects and published more than 30 publications in internationally recognized peer-reviewed journals. His research area included carcinogenesis, emergency and critical care medicine. The detail information is provided in lab website: https://sites.google.com/view/wumengyu.