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Exploratory adaptation in large random networks
Hallel I. Schreier1,2, Yoav Soen3 & Naama Brenner1,4

The capacity of cells and organisms to respond to challenging conditions in a repeatable

manner is limited by a finite repertoire of pre-evolved adaptive responses. Beyond this

capacity, cells can use exploratory dynamics to cope with a much broader array of conditions.

However, the process of adaptation by exploratory dynamics within the lifetime of a cell is

not well understood. Here we demonstrate the feasibility of exploratory adaptation in

a high-dimensional network model of gene regulation. Exploration is initiated by failure to

comply with a constraint and is implemented by random sampling of network configurations.

It ceases if and when the network reaches a stable state satisfying the constraint. We find

that successful convergence (adaptation) in high dimensions requires outgoing network hubs

and is enhanced by their auto-regulation. The ability of these empirically validated features

of gene regulatory networks to support exploratory adaptation without fine-tuning, makes

it plausible for biological implementation.
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T
he ability to organize a large number of interacting processes
into persistently viable states in a dynamic environment is
a striking property of cells and organisms. Many frequently

encountered perturbations (temperature, osmotic pressure, starva-
tion and more), trigger reproducible adaptive responses1–3. These
were assimilated into the organism by variation and selection over
evolutionary time. Despite the large number and flexible nature of
these responses, they span a finite repertoire of actions and cannot
address all possible scenarios of novel conditions. Indeed, cells may
encounter severe, unforeseen situations within their lifetime, for
which no effective response is available. To survive such challenges,
a different type of ad-hoc response can be employed, utilizing
exploratory dynamics4–8.

The capacity to withstand unforeseen conditions was recently
demonstrated and studied using dedicated experimental models
of novel challenge in yeast9–12 and flies13. Adaptive responses
exposed in these experiments involved transient changes in the
expression of hundreds of genes, followed by convergence to
altered patterns of expression. Analysis of repeated experiments
showed that a large fraction of the transcriptional response can
vary substantially across replicate trajectories of adaptation10,12.
These findings suggest that coping with unforeseen challenges
within one or a few generations relies on induction of exploratory
changes in gene regulation over time in an individual5,6.

Several properties of gene regulatory networks may support such
exploratory adaptation. These include a large number of potential
interactions between genes14, context-dependent plasticity of
interactions15–18 and multiplicity of microscopic configurations
consistent with a given phenotype19. Despite these properties, the
feasibility of acquiring adaptive phenotypes by random exploration
within a single organism remains speculative and poorly
understood. In particular, it is not known how exploration may
converge rapidly enough in the high dimensional space of possible
configurations? what determines the efficiency of this exploration?
and what ensures the stabilization of new phenotpes?

Here we address these open questions by introducing
a network model of gene regulation, which demonstrates
the capacity to adapt by exploratory dynamics in a single cell
(as opposed to selection on existing variation in a population).
Exploration is triggered by failure to satisfy a newly-imposed
external demand, and is implemented by a random walk in
the space of network configurations. Exploration relaxes if and
when the system reaches a stable state satisfying this demand. We
show that the success of this exploratory adaptation in high
dimension requires that the network include outgoing hubs.
Adaptive capability is further enhanced by autregulation of
these outgoing hubs. Since these are both well-known properties
of gene regulatory networks, our findings establish a basis
for a biologically plausible mode of adaptation by exploratory
dynamics.

Results
Exploratory adaptation model. To investigate the feasibility of
exploratory adaptation, we introduce a model of gene regulatory
dynamics incorporating random changes over time in a single
network. The model consists of a large number, N, of microscopic
components x¼ (x1, x2 ... xN), governed by the following
nonlinear equation of motion (Fig. 1a):

_x¼WfðxÞ� x; ð1Þ
where W is a random matrix, representing the intracellular
network of interactions; f(x) an element-wise saturating function
restricting the dynamic range of the variables; and the relaxation
rates are set to unity. Previous work has used similar equations to
address evolutionary aspects of gene regulation20,21 as well as
interactions and relaxation in neuronal networks22. Most studies

have focused on networks with uniform (full or sparse)
connectivity; much less is known about the dynamics for
networks with non-uniform topological structures, which may
be of relevance to gene regulation.

Here we consider sparse random networks with different types
of topological properties. For all cases, the interaction matrix W is
composed of an element-wise (Hadamard) product,

W¼T � J; ð2Þ
where T is a random topological backbone (adjacency) matrix
with binary (0/1) entries representing potential interactions
between network elements; and J is a random matrix specifying
the actual interaction strengths. To represent context-dependent
regulatory plasticity, we assume that the backbone remains
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Figure 1 | Exploratory dynamics and convergence to a constraint-

satisfying stable state. (a) Schematic representation of the model:

a random N�N network, composed of an adjacency matrix T and an

interaction strength matrix J, governs a nonlinear dynamical system

(equation in box; f(x)¼ tanh(x)). The resulting spontaneous dynamics are

typically irregular for large enough interactions. A macroscopic variable,

the phenotype y, is subject to an arbitrary constraint yEy� with finite

precision e. When the constraint is not met (left; ‘hot’ regime), the

connections strengths Jij undergo a random walk with magnitude

determined by the coefficient D and the mismatch functionM(y� y�). The

random walk stops when the mismatch is stably reduced to zero (right;

‘frozen’ regime). (b–d) Example of exploration and convergence. Shown are

representative trajectories of connection strengths (b), microscopic

variables (c) and the phenotype y (d) before and after convergence to

a stable state satisfying the constraint. The network in this example has

scale-free (SF) out-degree distribution (a¼ 1, g¼ 2.4) and Binomial

in-degree distribution p ’ 3:5
N ;N

� �
. N¼ 1,000, y� ¼ 10, D¼ 10� 3, g0¼ 10.

See Methods for more details.
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fixed, whereas the interaction strengths are plastic and amenable
to change over time. We will emphasize below network sizes
and topological structures that are relevant to gene regulatory
networks.

On a macroscopic level we consider a cellular phenotype,
y, which depends on the microscopic components and can
affect the cell’s functionality and state of stress. We define
this phenotype as a linear combination of microscopic variables

yðtÞ¼b � xðtÞ ð3Þ
with an arbitrary vector of coefficients b. To model an unforeseen
challenge, the system is subjected to an arbitrary contstraint
of maintaining the phenotype in a given range y(t)Ey�.
Importantly, any given value of the phenotype can be realized
by many alternative microscopic combinations.

Deviation from compliance with the constraint is represented by
a global cellular functionM(y� y�), corresponding to the level of
mismatch between the current phenotype and the demand. This
mismatch is effectively zero inside a ‘comfort zone’ of size e around
y� and increases sharply beyond it. Biologically, the comfort zone
can be interperted as a range of phenotypes that can be tolerated in
a given environment without invoking significant stress. This is
represented mathematically by a range of values which satisfy the
constraint (in contrast to many optimization problems which
require adherence to a specific value).

When the phenotype deviates from the comfort zone, the
mismatch drives an exploratory search, realized by small random
changes in the interaction strengths, forming a random walk in the
elements of the matrix J:

dJt¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D � M y� y�ð Þ

p
� dWt : Jðt¼0Þ¼J0; ð4Þ

where Wt is the standard Wiener process. The amplitude of the
random walk is controlled by a scale parameter, D, and the
mismatch level,M. These random changes can arise from diverse
sources of variation affecting the levels of transcription regula-
tors3,23,24, as well as regulatory interactions (for example,
alternative splicing, conformations of transcription factors and
their post-translational modifications17,18).

The random walk constitutes an exploratory search for
network configurations in which the dynamical system in
equation (1) satisfies the constraint in a stable manner. Random
occurrence of such a configuration decreases the search
amplitude, thereby promoting relaxation by reducing the drive
for exploration6,25. Convergence of this process to a stable state
satisfying the constraint is not a priori guaranteed. Intuitively, it
may be expected that randomly varying a large number of

parameters in a nonlinear high-dimensional system will cause the
dynamics to diverge. Surprisingly, we find that the adaptation
process can in fact converge; however, as shown below,
convergence depends on key properties of the network.

Adaptation depends on network topology. An example of
adaptive convergence is shown in Fig. 1b–d. At t¼ 0, the system
is confronted with a demand and starts an exploratory process in
which the connection strengths are slowly modified. Figure 1b
displays the time trajectories of four of these connection
strengths. During this exploration, the microscopic variables, x,
and the phenotype, y, exhibit highly irregular behavior, rapidly
sampling a large dynamic range (Fig. 1c,d respectively). At
tB400, the system manages to stably reduce the mismatch to
zero and converges to a fixed point (Fig. 1). In some cases
the dynamics converges to a small-amplitude limit-cycle
(Supplementary Note 3, Convergence to a limit cycle), and
remain within the comfort zone ±e around y�. The state of
convergence is found to be a stable attractor that is robust against
small perturbations of the dynamic variables, x, and the
interactions strengths, Wij (Supplementary Note 3, Stability of
the adapted state). The differences between the amplitude of
temporal changes in Fig. 1b–d reflects the separation of timescales
between the slowly accumulating changes in interaction strengths,
governed by the small value of D in equation (4), and the intrinsic
dynamics of equation (1).

To investigate the dependence of exploratory adaptation on
network topology we constructed random matrix ensembles with
different topological backbones, manifested by distinct in- and
out-going degree distributions26 (detailed in the Methods
section). Each ensemble was evaluated with respect to the
probability of convergence, estimated as the fraction of
simulations which converged within a given time window.
Figure 2a compares ensembles of networks with in- and out-
degrees drawn from Binomial (Binom), Exponential (Exp) and
Scale-Free (SF) distributions. It shows high fractions of
convergence, 0.5 or higher, only for ensembles with SF out-
degree distributions. In contrast, the in-degree distribution affects
convergence only mildly. For example, the convergence fraction
(CF) of networks with SF out-degree and Binomial in-degree
distributions (dark blue) is 0.5, whereas it is only 0.03 in the
transposed case (light blue). This asymmetry between outgoing
and incoming connections indicates that convergence of
exploratory adaptation does not rely on spectral properties of
the interaction matrix ensemble.
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Analysis of convergence as a function of network size shows
that the effect of topology becomes pronounced for large
networks (Fig. 2b). The CF in small to intermediate-sized
networks (Nt200) is higher and relatively independent of
topology. However, as N increases towards sizes that are relevant
to genetic networks, the benefit of having SF out-degree
distribution becomes progressively prominent.

Outgoing hubs enable adaptation in large networks. Among the
topological ensembles tested, an outgoing SF degree distribution
was found to be crucial for convergence in large enough networks.
Such distributions are characterized by a broad range of hetero-
geneous connectivities, with a small number of extremely highly
connected nodes (hubs). To evaluate the relative contribution of
outgoing hubs to convergence within this ensemble, we ranked the
backbones of the connectivity matrices drawn from the SF-Binom
distributions according to the out-degree of the largest hub.
Figure 3a shows that the CF increases with the connectivity of the
largest outgoing hub. As a second approach to characterize hub
contribution, we deleted a small number of outgoing hubs from
these networks27; this leads to a significant reduction in CF that is
not observed upon removal of randomly chosen nodes (Fig. 3b).

These results indicate that, in networks from the SF-Binom
ensemble, outgoing hubs have a major positive influence on the
success of exploration. We therefore asked whether the addition
of a few hubs to an otherwise poorly converging ensemble is
enough to induce significant convergence. Figure 3c indeed shows
that addition of as few as 8 hubs to a Binom-Binom ensemble
increases the CF from zero to about 0.4.

These findings are in-line with reported properties of
gene regulatory networks, particularly the existence of
‘master regulatory’ transcription factors that control the expres-
sion of hundreds of other genes28–30. Since many of these
master regulators are also autoregulated31, we evaluated the
influence of hub autoregulation on the success of exploratory
adaptation in our model. Figure 3d shows that autoregulation
of the leading hubs in the SF-Binom ensemble further increases
the CFs.

Since autoregulation motifs are commonly observed in
gene regulatory networks (not only in hubs)32, we investigated
whether these motifs could also contribute to convergence
when over-represented uniformly throughout the network.
Figure 4 depicts the results of adding such motifs randomly to
10% of the nodes in networks from the SF-Binom and Binom-SF
ensembles. It is seen that positive autoregulation enhances
convergence for intermediate sized networks (N¼ 1,000) in
both ensembles; this effect is particularly notable for the
Binom-SF ensemble, which has small CF without these motifs.
This contribution, however, decreases with network size and
vanishes in the same type of networks with N¼ 3,000.
We conclude that the presence of autoregulatory motifs
ranodmly positioned in the network cannot substitute for hub
contribution in the limit of very large networks. These
results highlight the interplay of several networks properties
in exploratory adaptation: network size, topology and
autoregulatory motifs. The addition of common network motifs
other than autoregulation did not lead to a conclusive effect on
convergence (Supplementary Note 3, Dependence of convergence
on network motifs).
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Adaptation occurs over a wide range of model parameters. We
investigated how the capacity to adapt is affected by various
model parameters. To examine the dependence on the severity of

the constraint, we varied the size of the comfort zone e. Figure 5a
reveals a sharp decrease of the CF as e is reduced, indicating that
a non-vanishing comfort zone is crucial for successful exploratory
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adaptation. This requirement is biologically plausible, as one
expects a range of phenotypes capable of accommodating a given
environment rather than a unique optimal phenotype. Another
way of increasing the adaptation challenge is by shifting the
required phenotypic range away from the origin. Reaching
a shifted region is challenging because it is more rarely visited by
spontaneous dynamics (Fig. 5b, grey curve). Figure 5b indeed
shows that the CF decreases as y� moves away from zero (blue
curve). Importantly however, it remains much larger than the
probability of encountering the required phenotype sponta-
neously. For example, a non-negligible convergence (CFB0.2) is
observed even for an interval around y�j j � 20 which is sponta-
neously encountered with probability of 0.02.

To evaluate the sensitivity of adaptation to exploration speed,
we varied the effective diffusion coefficient in the space of
connection strengths, D. Figure 5c shows that a non-zero
convergence fraction is achieved for a wide range of this
parameter and remains between 0.2 and 0.7 over more than
5 orders of magnitude. As the value of D increases beyond
a certain level where the separation of timescales ceases to hold,
the convergence fraction decreases rapidly.

For a given adjacency matrix T, interactions within the
network are determined by the connections strengths, Jij. These
are initially drawn from a Gaussian distribution with a zero mean
and a given s.d. The s.d. normalized to network size, g0 (also
called network gain; for details see Methods) determines the
contribution of the first versus second term in equation (1). In
large homogeneous networks, this parameter has a strong effect
on the dynamics of equation (1) (ref. 33). In contrast, we find that
the capacity to adapt by exploration in our model is relatively
weakly dependent on g0 (Fig. 5d).

Broad non-exponential distributions of adaptation times. The
analysis presented so far was based on convergence fractions
within a fixed time interval. To characterize the temporal aspects
of exploratory adaptation, we evaluated the distribution of
convergence times in repeated simulations. Figure 6 reveals
a broad distribution (CVE1.1), well fitted by a stretched
exponential (see Supplementary Note 3, Stretched exponential
fit to the distribution of convergence times). Such distributions
are common in complex systems34 and were suggested to reflect
a hierarchy of timescales35. While the general shape of the
distributions were similar in all topological ensembles tested,
networks with SF out-degree distributions typically converged
faster than their transposed counterparts (Fig. 6a). Moreover,
deletion of a small number of leading outgoing hubs causes a

significant shift towards longer convergence times (Fig. 6b). Thus,
networks with larger heterogeneity in out-degrees are both more
likely to converge within a given time window (Figs 2 and 3), and
typically converge faster (Fig. 6).

Adaptation success correlates with abundance of attractors.
In the typical example shown in Fig. 1, exploratory dynamics
culminates in reduction of drive for exploration and convergence
to a stable attractor of equation (1). The significant differences
between adaptive performance of network ensembles (Fig. 2a,b)
may reflect the abundance of networks supporting relaxation
to attractors in the different ensembles. Previous work has
shown that for networks with uniform degree distributions and
sufficiently strong interactions, the number of attractors of
equation (1) decreases with network size and vanishes in the limit
of infinite size (leading to chaotic motion only33). A related result
was recently found for Boolean networks36. It is not known,
however, how the number of attractors scales with system size for
networks of arbitrary topological structure.

To address this question, we simulated many independent
networks in each ensemble and estimated the fraction which
relaxed to fixed points without exploration or feedback
(equation (1) alone). For any given network, the probability
of relaxation to a fixed point was largely insensitive to
the initial conditions in x-space (not shown). With that in mind
we computed, for each topological ensemble, the fraction of
networks supporting relaxation within a given time window,
starting with random initial conditions. This measure is
analogous to the CF used in Fig. 2, but without any constraint,
feedback or random walk in connection strengths. To highlight
the dependence on network size we extended the simulations up
to N¼ 10,000. Figure 7a reveals topology-dependent differences
that are qualitatively in line with the ability for exploratory
adaption shown above (Fig. 2b). This suggests that a substantial
contribution to successful adaptation is indeed provided by
a high abundance of networks exhibiting fixed points in their
dynamics.

For each network ensemble that supports fixed points, we
further analysed the distribution of relaxation times into these
fixed points. Figure 7b demonstrates the effect of topology by
comparing the SF-Exp ensemble to the transposed Exp-SF.
It shows that networks with SF-out degree distribution typically
support faster relaxation to their respective fixed points. This may
allow the adaptation to converge before exploration has had
a chance to significantly modify network connections. Further
work is required to test this hypothesis and to broaden the
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theoretical understanding of these dynamics in random ensem-
bles with heterogeneous topologies.

Discussion
Overall, we have introduced a model of exploratory adaptation
driven by mismatch between an internal global variable and
an external constraint. Adaptation is achieved by a purely
exploratory process which relies on the plasticity of regulatory
interactions17,18. Our model was described in terms of gene
regulation but could equally well represent adaptation in other
cellular interactions, such as the protein-protein interaction
network. We have found that convergence of exploratory
adaptation depends crucially on structural properties of the
network. It requires the existence of outgoing hubs and is
enhanced by auto-regulation of these hubs. These results offer an
important, but hitherto unrealized, rationale for the
overwhelming abundance of autoregulation motifs on master
regulatory transcription factors31. These master regulators act as
network hubs by virtue of the large numbers of their downstream
gene targets. Our findings show that autoregulation of such hubs
improves their ability to drive the network into a stable state
which satisfies a phenotypic demand.

The contribution of outgoing hubs to the success of adaptation
may reflect their ability to coordinate changes in a large set of
affected nodes. In a network with a narrow distribution of
out-degrees (without hubs), each node has the same relatively
small influence as any other node. In the absence of a hierarchy in
the extent of influence, irregular dynamic variation in the
microscopic variables is unlikely to accumulate into a macro-
scopic coherent change in phenotype. On the other hand, the
existence of a few hubs with a much broader influence can
promote correlations between many downstream nodes, leading
to an ability to drive a coherent change in a given direction. These
effects may be related to other aspects of stability in network
dynamics that vary with topology37–39.

Beyond the structural aspects promoting exploratory adaptation,
the process of convergence appears to be complex and is
characterized by an extremely broad distribution of times. Successful
convergence likely depends on a delicate interplay between the space
of possible network configurations, their connectivity properties and
the typical timescales of their intrinsic dynamics.

While our model draws from neural network models40–42, it is
substantially different in relying on purely stochastic exploration. In
the language of learning theory, the ‘task’ is modest: convergence to
a stable attractor which satisfies a low-dimensional approximate
constraint. Without exploration, this task could be fulfilled by
chance with a very small probability. This probability increases

dramatically by exploratory dynamics within a class of networks
of a given structure. The ability to achieve high success rates
without a need for complex computation or fine-tuning makes
this type of adaptation particularly plausible for biological
implementation. The relevance of similar processes in neural
networks remains to be investigated.

Random network models were previously used to address
evolutionary dynamics of gene regulation over many generations.
These studies considered a population of networks undergoing
random mutations and selection according to an assigned
fitness21,43. In contrast, the model presented in the current
study considers random variations over time within a single
network, as an abstraction of a particular aspect of single cell
adaptation within its lifetime. While these two approaches differ
in timescales, level of organization and biological phenomena,
it seems that they cannot be completely decoupled and
that biological networks have basic properties that reflect
on both contexts44. For example, in the context of selection in
a population of networks, marked differences in evolu-
tionary dynamics were found between homogeneous and
SF networks45. In fact, the reproducible and exploratory
responses in single cells, and the evolutionary processes at the
population level, correspond to complementary aspects of gene-
environment interactions at different scales3,46. A major future
goal would be to integrate these aspects into a general picture of
adaptive responses to diverse types of challenges over a broad
range of timescales.

Methods
Constructing network backbone T for topological ensembles. Interactions
between the intracellular dynamical variables are governed by the network matrix
W, defined as the element-wise (Hadamrd) product of the binary backbone, the
adjacency matrix T, and a Gaussian random matrix J of connection strengths
(equation (2)). We construct an ensemble of a given topology by sampling the
connectivities of the backbone from a particular choice of in-degree and out-degree
distributions, Pin(Kin) and Pout(Kout), and by sampling the random strengths of J
independently from a Gaussian distribution. In practice, T is constructed first by

randomly sampling a list of N out-going degrees dout
i

� �N
i¼1 from the distribution

Pout(Kout) with dout
i � N � 1; and then sampling a list of N in-coming degrees

din
i

� �
from the distribution Pin(Kin) (again din

i � N � 1), conditioned on the
graphicality of the in- and out- degree sequences47. The network is then
constructed from these sequences using the algorithm described in48.

Scale-free (SF) sequences are obtained by a discretization to the nearest integer

of the continuous Pareto distribution P(K)¼ g� 1ð Þa g� 1ð Þ

Kg . Sampling SF degree
sequences using the discrete Zeta distribution gives qualitatively similar results.
Binomial sequences are drawn from a Binomial distribution PðKÞ¼BðN; pÞ,
with p¼ Kh i

N . Exponential sequences are obtained by a discretization to the

nearest integer of the continuous exponential distribution PðkÞ¼ 1
b e�

K
b

with b¼ Kh i. A Binomial degree sequence is implemented using MATLAB
Binomial random number generator. Exponential and Scale-free sequences are
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to a fixed point under the nonlinear dynamics of equation (1), with fixed connections, no constraint and no feedback. Topological ensembles which exhibited

higher success in exploratory adaptation in Fig. 2b, relaxed to fixed points in a larger fraction of simulations. (b) Distribution of relaxation times to fixed
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implemented by a discretization of the continuous MATLAB Exponential
and Generalized Pareto random number generators with parameters k¼ 1/(g� 1),
s¼ a/(g� 1) and y¼ a.

Comparison between different ensembles. To compare adaptation performance
between different ensembles, interaction matrices need to be properly normalized.
In the study of uniform random matrices, the elements are usually normalized such
that their variance is g2

0
N , providing a well-defined thermodynamic limit N-N in

which the matrix eigenvalues of are uniformly distributed within a disc of size g0 in
the complex plane49,50.

In our model, the initial interaction matrix J09Jðt¼0Þ is defined as a random

Gaussian matrix with mean 0 and variance g2
0

Kh i, Kh i being the average connectivity.

Neglecting correlations in the adjacency matrix T, the variance of its elements is

Var Tij
� �
¼ Kh i

N ð1�
Kh i
N Þ	

Kh i
N , which implies Var(Wij)E

g2
0

N . In principle both finite-
size effects and correlations in Wij result in deviations from a uniform distribution
of eigenvalues in the circle. However empirically we find that for matrices of
relevant size, the spectral radius of W is still Bg0, establishing a basis for
comparison between the different ensembles based on spectral radius. We note
however that the eigenvalue distribution is far from being uniform (see
Supplementary Note 1, Empirical spectrum of interaction matrices W).

Another model component that needs to be normalized for proper comparison
is the macroscopic phenotype y(x)¼ b � x. The arbitrary weight vector b is
characterized by a degree of sparseness c, the fraction of non-zero components,
1
N oco1; and by the typical magnitude of those components. In order to
compare between networks of different size and weight vectors of different
sparseness, the variance of the non-zero components is scaled by their number,
cN and by the matrix gain g0

2. The non-zero components of b are thus distributed
as bi �Nð0; 1

g2
0 �cN � aÞ, where a is a single parameter determining the scale of

phenotype fluctuations in different network sizes and gains (See Supplementary
Note 1, Distributions of phenotype y).

Computing convergence fractions. Convergence fractions were computed over
2,000 time steps in samples of 500 networks drawn from specified in- and
out-degree distributions, averaging over T, J0 and x0. For fully or sparsely
connected homogeneous random networks of size N¼ 1,500, the CF is close to
zero (not shown). Alternative ensemble definitions (for example, keeping T fixed)
do not change the main results (see Supplementary Note 1, Convergence of
different network ensembles).

Saturating function /(x). The saturating function is defined as an element-wise
function f(xj)¼ tanh(xj) operating separately on each of the components of x.
Model results are insensitive to the exact shape of this function (Supplementary
Note 2, Robustness of model to saturating function f) and to placing the saturation
inside or outside of the interactions (Supplementary Note 2, Robustness of model
to position of saturating function f).

Mismatch function M(y� y�). The mismatch function is defined here as

Mðy� y�Þ¼M0
2 1þ tanh y� y�j j � e

m

� �h i
, a symmetric sigmoid around y� , where

e¼ 3 controls the size of the low-mismatch ‘comfort-zone’ around y� , m¼ 0.01 the
steepness of the sigmoid and M0¼ 2 its maximal value. Main model results are
insensitive to the exact shape of this function as long as it has a flat region with zero
or very low mismatch around y� . (see Supplementary Note 2, Robustness of model
to mismatch function M).

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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