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Abstract
In the present study, the effect and mechanism of action of the flavonoid naringenin were

evaluated in superoxide anion donor (KO2)-induced inflammatory pain in mice. Naringenin

reduced KO2-induced overt-pain like behavior, mechanical hyperalgesia, and thermal hyper-

algesia. The analgesic effect of naringenin depended on the activation of the NO−cGMP

−PKG−ATP-sensitive potassium channel (KATP) signaling pathway. Naringenin also reduced

KO2-induced neutrophil recruitment (myeloperoxidase activity), tissue oxidative stress, and

cytokine production. Furthermore, naringenin downregulated KO2-induced mRNA expres-

sion of gp91phox, cyclooxygenase (COX)-2, and preproendothelin-1. Besides, naringenin

upregulated KO2-reduced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) mRNA expression

coupled with enhanced heme oxygenase (HO-1) mRNA expression. In conclusion, the pres-

ent study demonstrates that the use of naringenin represents a potential therapeutic

approach reducing superoxide anion-driven inflammatory pain. The antinociceptive, anti-

inflammatory and antioxidant effects are mediated via activation of the NO−cGMP−PKG

−KATP channel signaling involving the induction of Nrf2/HO-1 pathway.

Introduction
Pain is an unpleasant sensory and emotional experience, generally in association with tissue
injury. During inflammation, pro-inflammatory mediators activate resident cells, recruited
cells and nociceptors, thereby driving pain signaling. Nociceptive neurons do not express
receptors for all inflammatory molecules, suggesting both direct and indirect activation and
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sensitization of nociceptors [1]. Increased levels of oxidative stress during the inflammatory
response also contribute to nociception. For instance, reactive oxygen species (ROS) and reac-
tive nitrogen species (RNS) can act directly and indirectly to induce nociceptor sensitization
and activation [2–5]. The superoxide anion (O2

−) is a common form of ROS that can drive
nociception [5,6]. O2

− reacts with nitric oxide (NO) generating peroxynitrite, which also con-
tributes to nociception [3]. Superoxide dismutase (SOD), an enzymatic antioxidant, transforms
superoxide anion in hydrogen peroxide, which may also induce nociception [2]. Therefore,
O2

− is a crucial ROS to the biological underpinnings driving nociception. O2
− increases other

pro-inflammatory effects, including increasing vascular permeability [7], inducing cytokine
release [8,9] and increasing neutrophil recruitment [9,10], as well as provoking overt pain-like
behavior and hyperalgesia [2–5]. In a physiological state, O2

− levels remain under control by
the action of the endogenous antioxidant systems, including SOD, and the endogenous antioxi-
dant reduced glutathione (GSH) [9]. However, the imbalance between oxidants and antioxi-
dants during inflammation leads to oxidative stress. This is important, as inhibiting the
production of pro-inflammatory cytokines and ROS limit the development of inflammatory
pain [6,11–13].

Naringenin (4’,5,7-tryhidroxy-flavonone) is a flavonoid which belongs to flavonones class
found in citric fruits, including lemon, orange, tangerine and grapefruit [14]. Naringenin inhib-
its the nociceptive responses in models of formalin-, acetic acid- and capsaicin-induced overt
pain, as well as neuropathic pain [15–17]. Naringenin also inhibits inflammation by targeting
cyclooxygenase (COX)-2 in ethanol-induced liver injury [18] and in vitro [19]. Moreover, nar-
ingenin inhibits phosphorylation of nuclear factor kappaB (NFκB) subunit p65 and mitogen-
activated protein kinases (MAPK) in daunorubicin-induced nephrotoxicity [20] as well as
inhibiting the EGFR-PI3K-Akt/ERK MAPK signaling pathway in human airway epithelial cells
[21]. Naringenin also inhibits a number of aspects of oxidative stress, including lipid peroxida-
tion and O2

− production, as well as restoring GSH levels in UVB-induced oxidative stress in
the skin of Hairless mice [22]. Furthermore, naringenin increases SOD in an experimental
stroke model, highlighting its wide-acting induction of endogenous antioxidants [23]. In agree-
ment with such antioxidant effects, naringenin also induces nuclear factor (erythroid-derived
2)-like 2 (Nrf2)/ heme oxygenase (HO)-1 in CCl4-induced hepatic inflammation [24]. Some
flavonoids can induce antinociception by activating the NO−cGMP−PKG−ATP-sensitive
potassium channel (KATP) signaling pathway [25–28]. Activating this signaling pathway is an
important mechanism of action of a number of clinical analgesics, such as opioids [25], and
some non-steroidal anti-inflammatory drugs including dipyrone [26], diclofenac [27], and
indomethacin [28].

Given the above, the current study addresses the analgesic effects of naringenin in a model
of O2

−-triggered inflammatory pain. It was also investigated as to whether naringenin's mecha-
nism of action involves the NO−cGMP−PKG−KATP channel signaling pathway, the regulation
of inflammatory mediators/enzymes and oxidative stress as well as the transcription factor
Nrf2, and its downstream target, HO-1.

Materials and Methods

Animals
Male Swiss mice (25 ± 5 g) from Londrina State University were housed in standard plastic
cages with free access to food and water, with a light/dark cycle of 12:12 h, at 21°C. All behav-
ioral testing was performed between 9 a.m. and 5 p.m. in a temperature-controlled room. At
the end of experiments, mice were anesthetized with isoflurane 3% to minimize suffering
(Abbott Park, IL, USA) and killed by cervical dislocation followed by decapitation. The animal
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condition was monitored daily and at indicated time points during the experiments. No unex-
pected animal deaths occurred during this study. Animals' care and handling procedures were
in accordance with the International Association for Study of Pain (IASP) guidelines and with
the approval of the Ethics Committee of the Londrina State University (process
133666.2013.71).

Drugs and reagents
Potassium superoxide (KO2) (Alfa Aesar, 96,5%, Ward Hill, MA, USA). Naringenin (Santa
Cruz Biotechnology, Inc., 98%, Dalla, TX, USA). Saline (NaCl 0,9%; Fresenius Kabi Brazil
Ltda. Aquiraz, CE, Brazil). L-NAME (Research Biochemicals, Natick, MA, USA), KT5823 (Cal-
biochem, San Diego, CA, USA), ODQ [1H-(1,2,4)-oxadiazolol-(4,3-a)-quinoxalin-1-one,
Tocris Cookson, Baldwin, MO, USA]. Glybenclamide, HTAB (Bromide, hexadecyl trimethyl
ammonium), dihydrochloride O-dianisidine, GSH (reduced glutathione), EDTA sodium salt,
ferric chloride hexahydrate, TPTZ (2,4,6-tripiridil-s-triazine) and Trolox (6-hydroxy-
2,5,7,8-tetramethylchroman-2-11 carboxylic) were purchased from Sigma Chemical Co.
(St. Louis, MO, USA). DMSO 2% and Tween 80 (Química Moderna, Barueri, SP, Brazil).

Experimental procedures
Mice were pretreated per orally (po) with 16.7, 50, or 150 mg/kg of naringenin or with vehicle
(saline) 1 h before intraplantar (ipl) or intraperitoneal (ip) injection of 30 μg or 1 mg of KO2,
respectively [6]. The writhing response was evaluated between 0–20 min after KO2 ip injection
and the paw flinching and licking nociceptive responses were quantified during 30 min after
ipl injection of KO2. Mechanical and thermal hyperalgesia were evaluated 0.5–7 h after KO2.
Inflammatory stimulation with KO2 induced mechanical and thermal hyperalgesia only in the
ipsilateral paw, in the side where the stimulus was injected. Myeloperoxidase (MPO) activity
was evaluated 7 h after KO2 administration. Mice were pretreated with inhibitors of the NO
synthase (L-NAME; 90 mg/kg, ip, 1 h pre-treatment), guanylate cyclase (ODQ, 0,3 mg/kg, ip,
30 min pre-treatment), PKG (KT5823, 0,5 μg/animal, ip, 5 min pre-treatment), KATP channels
(glibenclamide, 0,3 mg/kg, po, 45 min pre-treatment) before naringenin treatment (50 mg/kg,
po). After 1 h mice received ipl injection of 30 μg of KO2, and mechanical and thermal hyperal-
gesia were assessed 0.5–7 h thereafter. Evaluations of oxidative stress (GSH, FRAP, TBARS,
NBT) and cytokine production (tumor necrosis factor [TNF]α and interleukin [IL]-10) were
carried out, as well as RT-qPCR measures of gp91phox, COX-2, prepro endothelin (ET)-1, Nrf2,
HO-1, and IL-33, 3 h after KO2 injection in samples of paw skin.

Overt pain-like behavioral tests
Abdominal writhing was induced by ip injection of 1 mg of KO2 [6]. Immediately after stimu-
lus injection, each mouse was placed individually in a large glass cylinder, and the intensity of
nociceptive behavior was quantified by counting the total number of writhings occurring
between 0 and 20 min after stimulus injection. The writhing response consists of a contraction
of the abdominal muscle together with a stretching of hind limbs, and the intensity was
expressed as the cumulative number of abdominal contortions over 20 min. The number of
paw flinches and the time spent licking the paw were determined between 0–30 min after ipl
injection of 30 μg of KO2. Each mouse was placed in a large glass cylinder immediately after
stimulus injection. The intensity of nociceptive behavior was quantified by counting the total
number of paw flinches and the time (seconds) spent licking the ipsilateral paw [6].
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Mechanical hyperalgesia test
Mechanical hyperalgesia was evaluated by the electronic version of von Frey’s test, as reported
previously [29]. In a quiet, temperature controlled room, mice were placed in acrylic cages (12
x 10 x 17 cm) with wire grid floors, 15–30 min before the start of testing. The test consisted of
evoking a hind paw flexion reflex with a handheld force transducer (electronic anesthesi-
ometer, IITC Life Science, Woodland Hills, CA) adapted with a 0.5 mm2 polypropylene tip.
The investigator was trained to apply the tip perpendicularly to the central area of the plantar
hind paw with a gradual increase in pressure. The gradual increase in pressure was manually
performed in blinded experiments. The upper limit pressure was 15 g. The end-point was char-
acterized by the removal of the paw followed by clear flinching movements. After paw with-
drawal, the intensity of the pressure was automatically recorded, and the final value for the
response was obtained by averaging three measurements. The animals were tested before and
after treatments. The results are expressed by delta (Δ) withdrawal threshold (in grams) calcu-
lated by subtracting the mean measurements 0.5, 1, 3, 5 and 7 h after stimulus from the zero-
time mean measurements [6].

Thermal hyperalgesia test
Heat thermal hyperalgesia was performed using a hot plate at 55 ± 1°C [6]. The end-point was
characterized by the removal of the paw followed by clear paw flinching or licking movements.
The upper time was 15 s to avoid possible injury. The results are expressed by total withdrawal
latency (in seconds) of measurements obtained 0.5, 1, 3, 5 and 7 h after stimulus [30].

MPO assay
Neutrophil migration to the hind paw skin tissue was evaluated using an MPO kinetic-
colorimetric assay, as described previously [6]. Samples of paw skin tissue were collected 7 h
after stimulus in ice-cold 50 mM K2HPO4 buffer (pH 6.0) containing 0.5% hexadecyltrimethy-
lammonium bromide (HTAB) and kept at -80°C until use. Samples were homogenized, centri-
fuged (16,100g x 2 min, 4°C), and the resulting supernatant was assayed for MPO activity
spectrophotometrically at 450 nm (Multiskan GOMicroplate Spectrophotometer, Thermo Sci-
entific, Vantaa, Finland), with three readings in 1 min. The MPO activity of samples was com-
pared to a standard curve of neutrophils. Briefly, 15 μL of sample was mixed with 200 μL of
50 mM phosphate buffer, pH 6.0, containing 0.167 mg/mL o-dianisidine dihydrochloride and
0.015% hydrogen peroxide. The results are presented as MPO activity (number of neutrophils
X 1010 per g of tissue).

GSHmeasurement
Paw skin sample was collected and maintained at -80°C for at least 48 h. Sample was homoge-
nized with 200 μL of 0.02 M EDTA. The homogenate was mixed with 25 μL of 50% trichloro-
acetic acid and was homogenized three times during 15 min. The mixture was centrifuged
(15 min x 1500 g x 4°C). The supernatant was added to 200 μL of 0,2 M TRIS buffer, pH 8.2,
and 10 μL of 0,01M DTNB. After 5 min, the absorbance was measured at 412 nm against a
reagent blank with no supernatant. A standard curve was performed with standard GSH. The
results are expressed as GSH nmol per mg paw [31].

FRAP assay
Paw skin sample was collected and immediately homogenized with 500 μL of 1.15% KCl, and
was centrifuged (10 min x 200 g x 4°C). The ability of the sample to resist oxidative damage
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was determined using FRAP assays [32]. For the FRAP assay, 50 μL of supernatant was mixed
with 150 μL of deionized water and 1.5 mL of freshly prepared FRAP reagent. The reaction
mixture was incubated at 37°C for 30 min and the absorbance was measured at 595 nm. The
results were equated against a Trolox standard curve (1.5–30 μmol/L, final concentrations).
The results are expressed as Trolox equivalents per mg of paw.

Superoxide anion production
The quantitation of O2

− production in tissue homogenates was performed using the NBT
assay, as described previously [33]. Skin samples were collected 3h after the stimulus. Briefly,
50 μL of the homogenate was incubated with 100 μL of NBT (1 mg/mL) in 96-well plates at
37°C for 1h. The supernatant was carefully removed and the reduced formazan solubilized by
adding 120 μL of 2M KOH and 140 μL of DMSO. The NBT reduction was measured at 600 nm
using a microplate spectrophotometer reader (Multiskan GO, Thermo Scientific). The tissue
weight was used for data normalization; thus the results are expressed as NBT reduction
(OD/mg of paw).

Lipid Peroxidation
Tissue lipid peroxidation was assessed by the levels of thiobarbituric acid reactive substances
(TBARS) [34]. For this assay, TCA 10% was added to the homogenate and the mixture was
centrifuged (1000 g, 3 min, 4°C) to precipitate proteins. The protein-free supernatant was then
separated and mixed with TBA (0.67%). The mixture was kept in water bath (15 min, 100°C).
Malondialdehyde (MDA), an intermediate product of lipid peroxidation, was determined by
difference between absorbances at 535 and 572 nm using a microplate spectrophotometer
reader. The results were presented as nmol of MDA per mg of paw [34].

Cytokine measurement
Paw skin samples were collected 3 h after the injection of KO2, homogenized in 500 μL of ice-
cold buffer containing protease inhibitors, centrifuged (3000 rpm x 10 min x 4°C) and the
supernatants used to measure, TNFα and IL-10 levels, by an enzyme-linked immunosorbent
assay (ELISA) using eBioscience kits. As a control, the concentrations of these cytokines were
determined in animals injected with saline. The results are expressed as picograms (pg) of cyto-
kine per mg of paw.

Reverse transcription and quantitative polymerase chain reaction (RT-
qPCR)
RT-qPCR was performed as previously described [33]. Paw skin samples were collected 3 h
after stimulus and homogenized in trizol reagent, with the total RNA being isolated according
to manufacturer’s directions. The purity of total RNA was measured with a spectrophotometer
with the wavelength absorption ratio (260/280 nm) being between 1.8 and 2.0 for all prepara-
tions. Reverse transcription of total RNA to cDNA, and qPCR were carried out using GoTaq1

2-Step RT-qPCR System (Promega) following the manufacturer’s instructions. The relative
gene expression was measured using the comparative 2−(ΔΔCq) method. The primers used were
gp91phox, sense: 5’-AGCTATGAGGTGGTGATGTTAGTGG-3’, antisense: 5’-CACAATAT
TTGTAC CAGACAGACTTGAG-3’; IL-33, sense: 5’-TCCTTGCTTGGCAGTATCCA-3’, anti-
sense: 5’-TGCTCAATGTGTCAACAGACG-3’; COX-2, sense: 5’-GTGGAAAAACCTCGTC
CAGA-3’, antisense: 5’-GCTCGGCTTC CAGTATTGAG-3’; preproET-1, sense: 5’-TGT
GTCTACTTCTGCCACCT-3’, antisense: 5’-CACCAGCTGCTGATAGATAC-3’; Nrf2, sense:
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5’-TCACACGAGATGAGCTTAGGGCAA-3’, antisense: 5’-TACAGTTCTGGG CGGCGACTT
TAT-3’; HO-1, sense: 5’-CCCAAAACTGGCCTGTAAAA-3’, antisense: 5’-CGTGGTCAGT
CAACATGGAT-3’; β-actin, sense: 5’-AGCTGCGTTT TACACCCTTT-3’, antisense: 5’- AA
GCCATGCCAATGTTGTCT-3’. The expression of β-actin mRNA was used as a reference gene
to normalize data.

Statistical analysis
Results are presented as means ± SEM of measurements made on six mice in each group per
experiment, and are representative of two independent experiments. Two-way analysis of vari-
ance (ANOVA) was used to compare the groups and doses at all times (curves), when the
hyperalgesic responses were measured at different times after the administration or enforce-
ment of the stimuli. The factors analyzed were treatment, time, and time versus treatment
interaction. When there was a significant time versus treatment interaction, one-way ANOVA
followed by Tukey’s post hoc was performed on each occasion. On the other hand, when the
hyperalgesic responses were measured once after the administration or enforcement of the sti-
muli, the difference between responses were evaluated by one-way ANOVA followed by
Tukey’s post hoc. Statistical differences were considered to be significant at p<0.05.

Results

Naringenin inhibits KO2-induced overt pain-like behavior
Mice received naringenin (16.7, 50,150 mg/kg, po) treatment 1h before injection of 1 mg of
KO2 ip for the assessment of the total number of writhings, or received 30 μg of KO2 ipl for the
evaluation of the total number of paw flinches and time spent licking the paw. The naringenin
doses of 50 and 150 mg/kg inhibited KO2-induced writhing response at a similar magnitude of
effect, with the 3 mg/kg dose showing no statistically significant effect (Fig 1a). The dose of
50 mg/kg of naringenin was therefore selected for the next experiments. Naringenin also inhib-
ited KO2-induced paw flinches (Fig 1b) and time spent licking the paw (Fig 1c).

Naringenin inhibits KO2-induced mechanical hyperalgesia, thermal
hyperalgesia, and MPO activity
Mice received naringenin (50 mg/kg, po) treatment 1h before KO2 injection (30 μg, ipl).
Mechanical and thermal hyperalgesia were assessed 0.5, 1, 3, 5 and 7 h after KO2 injection.
Naringenin inhibited KO2-induced mechanical and thermal hyperalgesia at all time points (Fig
2a and 2b). Naringenin also reduced KO2-induced increased of MPO activity at 7 h (Fig 2c).

Naringenin inhibits KO2-induced mechanical and thermal hyperalgesia
by activating the NO−cGMP−PKG− KATP channel signaling pathway
Mice were treated with inhibitors of a) NO synthase (L-NAME; 90 mg/kg, ip, 1 h pre-treat-
ment), b) guanylate cyclase (ODQ, 0,3 mg/kg, ip, 30 min pre-treatment), c) PKG (KT5823,
0,5 μg/animal, ip, 5 min pre-treatment), and d) the KATP channel (glibenclamide, 0,3 mg/kg,
po, 45 min pre-treatment) before naringenin (50 mg/kg, po, 1 h before KO2 injection) adminis-
tration. After 1h naringenin treatment, mice received a KO2 ipl injection. L-NAME (Fig 3a and
3b), ODQ (Fig 3c and 3d), KT5823 (Fig 3e and 3f), and glibenclamide (Fig 3g and 3h) inhibited
the analgesic effect of naringenin in KO2-induced mechanical and thermal hyperalgesia. There-
fore, the anti-hyperalgesic mechanism of naringenin depends, at least in part, on activating the
NO−cGMP−PKG− KATP channel signaling pathway.
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Fig 1. Naringenin inhibits KO2-induced overt pain-like behavior. (a-c) Mice received naringenin (16.7, 50
and 150 mg/kg, po) treatment 1 h before ip injection of 1 mg of KO2 or ipl injection of 30 μg of KO2. The total
number of writhings was evaluated 0–20 min after ip injection of KO2. (b) The number of paw flinches and (c)
time spent licking the paw were evaluated 0–30 min after ipl injection of KO2. Results are mean ± SEM of 6
mice per group per experiment, and are representative of 2 independent experiments. *p< 0.05 vs. saline
group, #p< 0.05 vs. KO2 group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g001

Naringenin Inhibits Superoxide Anion-Induced Inflammatory Pain

PLOS ONE | DOI:10.1371/journal.pone.0153015 April 5, 2016 7 / 20



Fig 2. Naringenin inhibits KO2-inducedmechanical hyperalgesia, thermal hyperalgesia and
myeloperoxidase (MPO) activity. (a-c) Mice received naringenin (50 mg/kg, po) treatment 1 h before ipl
injection of 30 μg of KO2. Mechanical (a) and thermal (b) hyperalgesia were evaluated between 0.5–7 h after
ipl injection of KO2. (c) At the 7th h after KO2 injection, paw skin samples were collected for MPO activity
assay. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent
experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. Repeated measures two-way ANOVA for
hyperalgesia data and One-way ANOVA for MPO activity followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g002
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Fig 3. Naringenin inhibits KO2-inducedmechanical and thermal hyperalgesia by activating NO/cGMP/
PKG/KATP channel signaling pathway.Mice received (a,b) L-NAME (NOS inhibitor, 90 mg/kg, ip, 1 h), (c,d)
ODQ (guanylate cyclase inhibitor, 0,3 mg/kg, ip, 30 min), (e,f) KT5823 (PKG inhibitor, 0,5 μg/mice, ip, 5 min),
or (g,h) glibenclamide (KATP channel inhibitor, 0,3 mg/kg, po, 45 min) treatment before administration of
naringenin (50 mg/kg, po). (a-h) 1 h after naringenin administration, mice received an ipl injection of 30 μg of
KO2. Mechanical (a,c,e,g) and thermal (b,d,f,h) hyperalgesia were evaluated between 0.5–7 h after the ipl
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Naringenin inhibits KO2-induced oxidative stress
Mice received naringenin (50 mg/kg, po) treatment 1h before KO2 injection (30 μg, ipl). Sam-
ples of paw skin were collected after 3 h for colorimetric assays and RT-qPCR. KO2 depleted
paw skin GSH (Fig 4a) and antioxidant capacity (Fig 4b); and increased lipid peroxidation (Fig
4c) and superoxide anion production (Fig 4d) in the paw skin. Naringenin treatment inhibited
these deleterious effects of KO2 by restoring GSH levels (Fig 4a), and antioxidant capacity (Fig
4b), and inhibiting lipid peroxidation (Fig 4c) and O2

− production (Fig 4d). Corroborating the
results on oxidative stress (Fig 4a–4d), naringenin also inhibited KO2-induced gp91

phox mRNA
expression, a component of NADPH oxidase, an important source of O2

− production (Fig 4e).

Naringenin inhibits KO2-induced cytokine production and mRNA
expression
The protocol of this section was the same as for Fig 4, with samples analyzed by ELISA and
RT-qPCR. Naringenin treatment inhibited KO2-induced TNFα (Fig 5a) and IL-10 (Fig 5b)
production, and IL-33 mRNA expression (Fig 5c).

Naringenin inhibits KO2-induced COX-2 mRNA expression
The protocol of this section was the same as for Fig 4, with samples analyzed by RT-qPCR.
Naringenin treatment inhibited KO2-induced COX-2 mRNA expression (Fig 6).

Naringenin inhibits KO2-induced preproET-1 mRNA expression
The protocol of this section was the same as for Fig 4, and samples analyzed by RT-qPCR. Nar-
ingenin treatment inhibited KO2-induced preproET-1 mRNA expression (Fig 7).

Naringenin increases Nrf2/HO-1 mRNA expression
The protocol of this section was the same as for Fig 4, with samples analyzed by RT-qPCR.
Naringenin inhibited the KO2-induced decrease in Nrf2 mRNA expression (Fig 8a), whilst
enhancing KO2-induced HO-1 mRNA expression (Fig 8b).

Discussion
Pain is a multisensory experience, which occurs in response to stimulation of the channels/
receptors that depolarizes nociceptor terminals, thereby generating an action potential, which
activates synaptic transmission in the dorsal horn of spinal cord. Such processes induce a char-
acteristic set of responses, including hyperalgesia (an increased response to a stimulus that nor-
mally provoke pain) and allodynia (pain due to a stimulus that does not normally provoke
pain) [1].

Free radicals in biological systems are natural products during interactions between cells, as
well as between tissues and organs. However, an imbalance between endogenous oxidants and
antioxidants can alter cell homeostasis. Oxidants target proteins, thereby inducing cell damage
and contributing to cell death [35]. Free radicals also cause inflammation [36]. Consequently,
treatment with antioxidants is a promising approach to control a wide array of pathophysiolog-
ical events. KO2 is a O2

− donor, and its injection resulting in nociceptive responses, such as

injection of KO2. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2
independent experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. Repeated measures two-way
ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g003
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Fig 4. Naringenin inhibits KO2-induced oxidative stress and gp91phox mRNA expression. (a-e) Mice received naringenin (50 mg/kg, po) treatment 1 h
before ipl injection of 30 μg of KO2. Paw skin samples were collected 3 h after ipl KO2 injection. Sample analyses were (a) GSH levels, (b) total antioxidant
capacity (FRAP assay), (c) lipid peroxidation (TBARS assay), (d) O2

− production (NBT assay), and (e) gp91phox mRNA expression by RT-qPCR. β-actin was
a reference gene to normalize mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent
experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g004
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Fig 5. Naringenin inhibits KO2-induced cytokine production andmRNA expression. (a-c) Mice received
naringenin (50 mg/kg, po) treatment 1 h before ipl injection of 30 μg of KO2. Paw skin samples were collected
3 h after ipl KO2 injection. Sample analyses were (a) TNFα, and (b) IL-10 production by ELISA, and (c) IL-33
mRNA expression by RT-qPCR. β-actin was a reference gene to normalize mRNA expression data. Results
are mean ± SEM of 6 mice per group per experiment, and are representative of 2 independent experiments.
*p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. One-way ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g005
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overt pain-like behavior, as well as mechanical and thermal hyperalgesia, which can be inhib-
ited by analgesics [6]. Data indicates that O2

−-induced pain depends on both direct superoxide
anion effects, and indirect effects, partly via the production of peroxynitrite [37]. O2

− injection
triggers inflammatory pain by mechanisms involving cytokine, COX-2 and ET-1 synthesis
[6,38,39]. Oxidative stress is involved in the pain of varied inflammatory diseases such as rheu-
matoid arthritis [40,41], gout [42], delayed onset muscle soreness [43] and diabetes [44].

Fig 6. Naringenin inhibits KO2-induced COX-2 mRNA expression.Mice received naringenin (50 mg/kg,
po) treatment 1 h before ipl injection of 30 μg KO2. Paw skin samples were collected 3 h after ipl KO2 injection
and analyzed for COX-2 mRNA expression by RT-qPCR. β-actin was a reference gene to normalize mRNA
expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative of 2
independent experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. One-way ANOVA followed
Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g006

Fig 7. Naringenin inhibits KO2-induced preproET-1mRNA expression.Mice received naringenin (50 mg/
kg, po) treatment 1 h before ipl injection of 30 μg of KO2. Paw skin samples were collected 3 h after ipl KO2

injection for preproET-1 mRNA expression analysis by RT-qPCR. β-actin was a reference gene to normalize
mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are representative
of 2 independent experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. One-way ANOVA followed
Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g007
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Therefore, KO2-induced inflammatory pain is a useful model to study the action of analgesics
that target oxidative stress-dependent events [12].

The therapeutic properties of naringenin include antinociception [15–17], as well as antioxi-
dant [22,23,44–48] and anti-inflammatory activities [18,19,21,22]. However, the analgesic
effect and mechanisms of action of naringenin in a model o oxidative stress-triggered inflam-
matory pain remained to be determined. Herein, we provide the first evidence that naringenin
inhibits KO2-induced overt-pain like behavior, MPO activity, mechanical hyperalgesia and
thermal hyperalgesia via reduction of cytokine production and oxidative stress.

The activation of the NO−cGMP−PKG−KATP channel signaling pathway leads to nocicep-
tor hyperpolarization, thereby reducing nociceptor neuronal transmission [25–28]. The pres-
ent results show that naringenin inhibits the KO2-induced mechanical and thermal
hyperalgesia, at least in part, by activating the NO−cGMP−PKG−KATP channel signaling path-
way. Free radical damage to membrane components leads to cellular dysfunction [49], which,
by exposing neoepitopes, will contribute to an autoimmune response, which is receiving
increasing interest as to its role in longer-term nociception. GSH is an important redox cellular
system, with efficacy partly driven by the direct interactions of sulfhydryl groups (-SH) with
ROS, thereby promoting a direct detox reaction [50]. Naringenin was able to restore GSH lev-
els, as well as inhibiting other indicants of oxidative stress, such as FRAP, TBARS, and NBT in
the paw skin. The KO2 solution releases O2

− for up to 10 min [6], however, NBT reduction
(O2

− production) occurred in paw skin samples collected 3 h after KO2 injection. Therefore,
O2

− injection induces further O2
−. This is corroborated by the results showing KO2-induced

the gp91phox mRNA expression, which was inhibited by naringenin. The gp91phox subunit of
NADPH oxidase participates in the electron transfer to oxygen, thereby generating O2

− [51].
O2

−-induced pain also depends on hyperalgesic cytokines, with TNFR1 deficiency reducing
O2

−-induced pain and oxidative stress. TNFα-induced hyperalgesia depends on NADPH oxi-
dase activation [38]. Not all cytokines are nociceptive, with IL-10 having anti-hyperalgesic
effects [43]. IL-33 is a hyperalgesic cytokine that regulates the production of TNFα and IL-10
[52–55] Naringenin inhibited O2

−-induced production of TNFα and IL-10, as well as IL-33
mRNA expression.

Cytokine-induced inflammatory hyperalgesia in turn, depends, at least in part, on COX-
2-dependent production of prostanoids such as prostaglandin E2 and prostacyclin [1]. O2

− also
induces COX-2 mRNA expression, with celecoxib (a selective COX-2 inhibitor) diminishing
O2

−-induced pain [6]. Naringenin inhibited O2
−-induced COX-2 mRNA expression. There is

also a close relationship between cytokines and ET-1. Endothelin receptor antagonists inhibit
cytokine-induced hyperalgesia and cytokines induce preproET-1 mRNA expression and ET-1

Fig 8. Naringenin increases Nrf2 and HO-1mRNA expression. (a-b) Mice received naringenin (50 mg/kg,
po) treatment 1 h before ipl injection of 30 μg KO2. Paw skin samples were collected 3 h after ipl KO2 injection
for (a) Nrf2, and (b) HO-1 mRNA expression analysis by RT-qPCR. β-actin was a reference gene to
normalize mRNA expression data. Results are mean ± SEM of 6 mice per group per experiment, and are
representative of 2 independent experiments. *p< 0.05 vs. saline group, #p< 0.05 vs. KO2 group. One-way
ANOVA followed Tukey’s post hoc.

doi:10.1371/journal.pone.0153015.g008
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production [56,57]. Bosentan, an endothelin receptor antagonist, inhibits O2
−-induced hyper-

algesia, and O2
− induces preproET-1 mRNA expression [39]. Naringenin inhibited O2

−-
induced prepro-ET-1 mRNA expression. Furthermore, activation of the ET receptors promotes
oxidative stress and reduces the free radical scavenging ability [58]. Therefore, it is likely that
ET-1 also contributes to the regulation of oxidative stress. In fact, bosentan inhibited O2

−-
induced oxidative stress [39].

Consistent with the naringenin inhibition of cytokine production as well as COX-2 and pre-
proET-1 mRNA expression, naringenin inhibits the activation of the pro-inflammatory tran-
scription factor, NFκB, in several models of inflammation. For instance, naringenin inhibits
NFκB activation in dextran sulphate sodium-induced colitis [59], ethanol-induced liver injury
[18], streptozotocin-induced diabetes in mice [60] and rats [61], and experimental stroke [23].
Furthermore, naringenin also inhibits NFκB DNA-binding activity in ovalbumin-induced
asthma [62] as well as in in vitro studies [63,64]. As such, it is not unlikely that naringenin
inhibits KO2-induced cytokines production, as well as COX-2 and preproET-1, by inhibiting
NFκB induction and activity. Nrf2 is an important transcriptional regulator of the antioxidant
response. In fact, Nrf2 activation is essential to the production of endogenous antioxidants
such as GSH, thioredoxin system, HO-1, and NQO1 (NAD(P)H dehydrogenase, quinone 1)
[65]. Keap-1 detects cellular environment changes such as oxidative stress, resulting in the acti-
vation of Nrf2, which readily translocates to the nucleus and upregulates downstream targets
such as HO-1 [66]. Furthermore, the activation of the Nrf2/HO-1 pathway inhibits the produc-
tion of inflammatory molecules such as TNFα [67–69], IL-6 [68,69] and IL-1β [67,68]. Nrf2
indirectly modulates NFκB activity [70], given that Nrf2 and NFκB compete for binding to the
nuclear complex, coactivator p300/CBP (E1A binding protein p300/CREB-binding protein)
[71]. Importantly, naringenin activates Nrf2 and is an agonist of the aryl hydrocarbon receptor,
contributing to reducing the production of reactive oxygen species and inflammatory media-
tors, as well as modulating specific immune cell activity [47,72]. In the present study, narin-
genin inhibited the KO2-induced decrease in Nrf2 mRNA expression and increased HO-1
mRNA expression. This mechanism might account for the analgesic effect of naringenin in
KO2-induced inflammation, by inhibiting pro-hyperalgesic cytokine production, and gp91phox

as well as inducing antioxidant molecules.
The data presented here suggest that naringenin inhibits O2

−-induced inflammatory overt
pain-like behavior, hyperalgesia, and neutrophil recruitment by activating the NO−cGMP
−PKG−KATP channel signaling pathway, as well as inhibiting oxidative stress and cytokine pro-
duction, coupled to decreasing the mRNA of gp91phox, IL-33, COX-2, and preproET-1,
and increasing Nrf2 and HO-1 mRNA expression. These data show for the first time that
naringenin inhibits inflammatory pain triggered by O2

− and its mechanisms. Therefore, sug-
gesting that naringenin is a promising therapeutic approach as an analgesic, antioxidant and
anti-inflammatory compound, requiring further investigation in nociception, as well as in the
array of other medical conditions where these pathophysiological changes are also evident
[73].
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