
Indian Journal of Endocrinology and Metabolism / 2012 / Vol 16 / Supplement 3 S601

Insulin and insulin-like growth factor prevent brain 
atrophy and cognitive impairment in diabetic rats
Predrag Šerbedžija, Douglas N. Ishii1

Department of Pharmacology, University of Colorado, Aurora, CO 80045, 1Department of Biomedical Sciences, Colorado State University, 
Fort Collins, CO 80523, USA

A B S T R A C T

There are an estimated 36 million dementia patients worldwide. The anticipated tripling of this number by year 2050 will negatively 
impact the capacity to deliver quality health care. The epidemic in diabetes is particularly troubling, because diabetes is a substantial 
risk factor for dementia independently of cerebrovascular disease. There is an urgent need to elucidate the pathogenesis of progressive 
brain atrophy, the cause of dementia, to allow rational design of new therapeutic interventions. This review summarizes recent tests 
of the hypothesis that the concomitant loss of insulin and insulin-like growth factors (IGFs) is the dominant cause for age-dependent, 
progressive brain atrophy with degeneration and cognitive decline. These tests are the fi rst to show that insulin and IGFs regulate adult 
brain mass by maintaining brain protein content. Insulin and IGF levels are reduced in diabetes, and replacement of both ligands can 
prevent loss of total brain protein, widespread cell degeneration, and demyelination. IGF alone prevents retinal degeneration in diabetic 
rats. It supports synapses and is required for learning and memory. Replacement doses in diabetic rats can cross the blood–brain 
barrier to prevent hippocampus-dependent memory impairment. Insulin and IGFs are protective despite unabated hyperglycemia in 
diabetic rats, severely restricting hyperglycemia and its consequences as dominant pathogenic causes of brain atrophy and impaired 
cognition. These fi ndings have important implications for late-onset Alzheimer’s disease (LOAD) where diabetes is a major risk factor, 
and concomitant decline in insulin and IGF activity suggest a similar pathogenesis for brain atrophy and dementia.
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INTRODUCTION

Both type 1 diabetes (T1D) and type 2 diabetes (T2D) are 
associated with brain atrophy and cognitive impairments. 
Progressive age-dependent accelerated brain atrophy with 
cell degeneration is the cause of  cognitive impairments 
that may progress to dementia, particularly in elderly T2D 
patients, independently of  cerebrovascular disease. Brain 
atrophy and cognitive disturbances are not correlated 
with poor glycemic control or hypoglycemic episodes. 
This review will discuss the relationship between brain 

atrophy and concomitant decline in insulin and insulin-like 
growth factor (IGF) levels in diabetes independently of  
hyperglycemia. Age-dependent concomitant loss of  insulin 
and IGF is also associated with brain atrophy and dementia 
in Late Onset Alzheimer’s Disease (LOAD).

BRAIN ATROPHY AND COGNITIVE 
IMPAIRMENTS IN TYPE 1 DIABETES

Pancreatic beta-cell degeneration results in a defect in insulin 
production in T1D. Children with early onset and long 
duration T1D exhibit greater impairments in intellectual 
and reading skills compared with age-matched nondiabetic 
subjects.[1] Performance is poorer in auditory verbal learning 
tests involving verbal mastery and longer disease duration 
predicts poorer learning over time.[2] In tests requiring 
sustained attention, rapid analysis of  visuospatial detail, and 
hand–eye coordination, T1D patients perform signifi cantly 
worse; poor performance may not be correlated with a 
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history of  hypoglycemic episodes.[3] The incidence of  
anxiety, depression, and antisocial personality disorders is 
higher[4-7] and increased prevalence of  dementia is reported 
among elderly T1D patients.[3,8]

Autopsy studies show structural lesions in the CNS of  
long-term T1D subjects[9] and brain atrophy is detected 
with magnetic resonance imaging (MRI). As many as 70% 
of  young T1D patients have enlarged brain lateral ventricles 
and subarachnoidal spaces.[10] Sub-cortical and brain stem 
lesions[11] as well as “high-intensity rounded lesions and 
cortical atrophy are found in long duration T1D patients, 
suggestive of  premature aging of  the brain”.[12]

BRAIN ATROPHY AND COGNITIVE 
IMPAIRMENTS IN TYPE 2 DIABETES

T2D is characterized by insulin resistance with partially 
diminished capacity to produce insulin. Compared with age-
matched control subjects, T2D patients perform signifi cantly 
worse when tested for effective attention-concentration-
working memory or when faced with tasks requiring 
mathematical problem solving, constructional abilities, verbal 
fl uency, psychomotor speed, mental fl exibility, complex 
psychomotor functioning, abstract reasoning, or storage 
and retrieval of  new information. [13- 16] Population-based 
studies show that T2D patients have signifi cantly greater 
risk for dementia.[17,18] A longitudinal, prospective, cross-
sectional population-based study with over 6300 elderly 
type II diabetic subjects showed a near doubling of  the risk 
for dementia after adjusting for age, sex, cerebrovascular 
disease, hypertension, and other confounders.[19] The risk 
of  dementia is independent of  cerebrovascular disease, and 
diabetes is a separate and major risk factor.

Electrophysiological abnormalities in the CNS, including 
slowing of  saltatory conduction, occur in both T1D 
and T2D.[20,21] MRI studies demonstrate brain atrophy 
in T2D patients to be more frequent, particularly in 
the 6th and 8th decades of  life.[22] Like dementia, brain 
atrophy occurs independently of  vascular disease. In a 
study controlled for age, sex, hypertension, and level of  
education, impairments in attention, executive functioning, 
information processing, and memory in T2D patients 
were associated with brain atrophy and white matter 
hyperintensities (lesions characterized by partial loss of  
myelin, axons, and oligodendrocytes).[23] Computerized 
tomography[24] and postmortem autopsy investigations[25] 
confi rm these fi ndings.

These data show that brain atrophy in both types of  
diabetes is associated with cognitive, behavioral, and 
electrophysiological impairments. There is increased risk for 

dementia, principally among the elderly. Glycemic control 
is not correlated with impaired cognition in diabetes[8] 
and cognitive function in T1D patients was found to be 
unaffected by hyperglycemia.[26] Repeated episodes of  
severe hypoglycemia were correlated with neither cognitive 
impairment nor brain atrophy in young T1D patients.[27]

BRAIN INSULIN AND INSULIN-LIKE GROWTH 
FACTOR ACTIVITY IS DIMINISHED IN DIABETES

Diabetes is a complex disorder, and various hypotheses have 
been proposed to account for neurological dysfunction. 
These mainly include, but are not limited to, pathogenic 
effects of  hyperglycemia, polyol accumulation, protein 
glycation, accumulation of  advanced glycation end 
products, ischemia, and reactive oxygen species. The 
focus of  our research has been to elucidate the normal 
neurobiological actions of  insulin and IGFs, as well as to 
test the hypothesis that diminished levels of  these ligands 
is pathogenic for neural dysfunction.[28,29]

Availability of  insulin to the brain in T1D is diminished 
due to a decline in circulating levels of  insulin. T2D, on the 
other hand, is characterized by insulin resistance with partial 
failure of  insulin secretion. Insulin crosses the blood–brain 
barrier (BBB), and such transport is inhibited by a high fat 
diet which also causes insulin resistance. Low cerebrospinal 
fl uid (CSF) insulin levels are found in T2D patients.[30]

IGF-I and IGF-II are members of  the insulin gene family 
that structurally resemble pro-insulin. Both IGFs bind to 
and activate the type 1 IGF receptors that are ubiquitously 
present in brain. IGF levels gradually decline with aging[31] 
and are partially reduced even in the prediabetic state 
prior to frank hyperglycemia. Compared with age-
matched nondiabetic subjects, IGF levels are reduced 
by approximately half  in both T1D and T2D diabetic 
populations.[32] This decline is reported to be greater in 
diabetic patients with progressive peripheral neuropathy.[33] 
IGF availability is diminished even further due to altered 
binding to IGF binding proteins (IGFBPs), which normally 
regulate IGF bioavailability.[34] The predominant IGF in 
adult mammalian brain is IGF-II, and we have shown that 
IGF-II mRNA levels decline in both T1D and T2D rats.[35] 
Depending on duration and severity of  diabetes, circulating 
IGF-II levels may also be reduced.[36,37]

SOURCE OF BRAIN INSULIN AND PROPERTIES 
OF NEURONAL INSULIN RECEPTORS

Brain insulin is primarily derived from the circulation by 
saturable receptor-mediated transport across the BBB. [38,39] 
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Perhaps the best understood physiological role of  insulin 
in the brain is the regulation of  feeding and satiety through 
the hypothalamus. The insulin receptor (IR) is widespread 
in brain[40] and several attributes distinguish the neuronal 
IR from its peripheral counterpart, suggesting special 
functions. The neuronal IR exhibits reduced glycosylation 
and smaller subunit size[41-43] and, unlike its peripheral 
counterpart, it does not down-regulate in response to 
excess insulin.[44,45] Physiological concentrations of  insulin 
are sufficient to elicit half-maximal response of  the 
receptor.[41,46] The IRs are localized to neuronal soma, 
neurites, and nerve terminals and their roles may include 
electrophysiological modulation of  neurons. Interestingly, 
glia display the peripheral tissue-type IR.

Physiological doses of  insulin do not signifi cantly infl uence 
global brain glucose utilization. Intravenous infusion of  
insulin under steady-state normoglycemic conditions does 
not increase brain glucose utilization in humans[47] nor rats,[48] 
except at the hypothalamic satiety centers.[49] In a key study, 
selective inactivation of  the neuronal IR in mice has no 
effect on brain glucose utilization,[50] indicating that insulin 
is not the principal mediator of  glucose uptake in brain.

INSULIN-LIKE GROWTH FACTORS 
REGULATE LEARNING AND MEMORY

Liver is the principal source of  brain IGF-I.[51] To show that 
IGFs cross the BBB, 125I-labeled IGF was injected into rat 
carotid artery. Subsequent autoradiography of  brain slices 
revealed radioactivity of  ambiguous molecular identity in 
the brain parenchyma.[52] A more conclusive study in our 
lab sampled CSF and showed using  protein electrophoresis 
that some of  the radioactivity co-migrated with authentic 
IGF.[53] The dose-dependent saturable uptake of  IGF-I 
from blood into CSF is neither IGF-I receptor nor IGFBP-
dependent.[54] A multicargo endocytic receptor, megalin, is 
believed to mediate the uptake of  both insulin and IGF-I 
into brain.[55] As is the case with insulin, most of  the IGF-I 
present in CSF is derived from blood.[53]

IGF gene expression is closely correlated with 
synaptogenesis[56] and establishment of  polyneuronal 
innervation during nerve regeneration.[57,58] Likewise, IGF 
treatment increases synaptic spine density in brain slices. [59] 
Consequently, our laboratory tested the hypothesis that 
brain IGF normally supports Learning and Memory (L&M) 
in adult healthy rats. Infusion of  an IGF antiserum into 
the lateral brain ventricle caused the impairment of  L&M 
in a passive-avoidance test, whereas preimmune serum 
had no effect.[60] Others have found that injection of  a 
cDNA viral vector encoding a dominant-negative IGF-I 

receptor into healthy adult rat brain lateral ventricle resulted 
in disruption of  receptor activity whereupon the animals 
exhibited cognitive impairments.[61]

Diminished serum IGF levels in normal aging and disease 
may disturb cognitive function as a consequence of  reduced 
IGF fl ux across the BBB. Human cognitive performance 
correlates with serum IGF-I levels and with age;[62,63] 
elderly subjects with low circulating IGF-I levels perform 
more poorly on standard cognitive tests. The hypothesis 
that diminished IGF levels in diabetes may be a cause of  
impaired L&M was tested (see below).

THE STREPTOZOTOCIN-DIABETIC RAT 
AS A MODEL FOR BRAIN ATROPHY 
WITH IMPAIRED LEARNING AND MEMORY

Streptozotocin (STZ) is a structural glucose analogue that 
is selectively taken up by beta-pancreatic cells, resulting 
in destruction of  insulin-producing capacity. Peripherally 
administered STZ does not cross the BBB and is not 
expected to directly affect the CNS. Depending on dose and 
route of  STZ administration, circulating insulin levels can 
decline by 40–80% or more.[64,65] IGF levels are also reduced, 
as hepatic IGF-I mRNA content decreases rapidly over a 
period of  3 days following STZ injection.[66,67] Circulating 
IGF-I levels are lowered 50% to more than 80%.[68-70]

The STZ-diabetic rat shares with clinical diabetes both 
brain atrophy and L&M impairments. STZ-injected 
rodents exhibit cell degeneration and loss of  brain 
mass,[71,72] affecting a wide range of  cell populations 
including neurons,[73,74] astrocytes,[75] oligodendrocytes,[76] 
and microglia.[77] There is evidence of  impaired synaptic 
plasticity and myelination, reduced neurite arborization, 
and increased cell death, as well as electrophysiological 
impairments.[78] STZ-diabetic animals perform signifi cantly 
worse on L&M tests compared with nondiabetic littermates 
and advancing age exacerbates that defi cit.[60,78]

SUBCUTANEOUS INSULIN-LIKE GROWTH 
FACTOR-I REPLACEMENT DOSES PREVENT 
LEARNING AND MEMORY DEFICITS 
IN STREPTOZOTOCIN-DIABETIC RATS 
INDEPENDENTLY OF HYPERGLYCEMIA

Is hyperglycemia or the decreased levels of  IGFs the 
primary cause of  cognitive impairment in diabetes? IGF 
levels are lower in diabetes, and IGFs regulate synapses. 
Synaptic spine density and arborization are reduced in the 
brains of  diabetic rats.[73] The hypothesis was tested that 
IGF-I administered from a subcutaneous site can cross 
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the BBB and prevent hippocampus-dependent spatial 
orientation defi cits in STZ-diabetic rats irrespective of  
persisting hyperglycemia.[60] Nondiabetic and diabetic rat 
groups were subjected to Morris water maze testing 11 
weeks after the onset of  diabetes, where diabetic rats were 
implanted with subcutaneous minipumps that continuously 
administered either vehicle or a replacement dose of  
IGF-I during the last 6 weeks of  diabetes. Compared with 
nondiabetic rats, diabetic rats performed more poorly in 
the water maze task. On the other hand, IGF-I treatment 
prevented L&M impairment in diabetic rats, irrespective 
of  uncorrected hyperglycemia and ongoing catabolic state.

All rats irrespective of  test group were capable of  swimming 
with the same velocity, showing that diabetes did not cause 
motor or proprioceptive disturbances suffi cient to impair 
swim performance. However, when tests were performed 
using a visible platform, greater latency among diabetic rats 
receiving vehicle was uncovered, suggesting mild impairment 
in comprehension, motivation, executive function, or vision. 
Biessels et al., did not detect hippocampus-dependent L&M 
impairments in STZ-diabetic rats after 4 weeks of  disease 
progression,[79] suggesting that they arise between 4 and 11 
weeks after disease onset.

BRAIN ATROPHY IS LARGELY 
UNCORRECTED BY INSULIN-LIKE GROWTH 
FACTOR ADMINISTRATION

To assess the effect of  IGF-I treatment on brain atrophy, 
the same animals discussed in the foregoing section were 
euthanized and brains collected for analysis 12 weeks after 
STZ injection.[72] Brain wet weight was signifi cantly reduced 
in diabetic rats. Brains were homogenized in buffer and 
lyophilized to determine water and dry weights. Aliquots of  
homogenate were used to measure total mRNA transcripts, 
18S rRNA, and total protein content. Brain total DNA 
content was measured using a fl uorometric protocol. All 
measured parameters were signifi cantly reduced in diabetic 
animals, showing a severely catabolic state that involves 
perturbations in the protein regulatory pathway as well as 
signifi cant cell loss.

Among the earliest biochemical changes in brain is a 
reduction in total mRNA content in whole brain, 
hippocampus, and hypothalamus as well as a selective 
decrease in IGF-II mRNA content per total mRNA that 
is observed after 2 weeks of  STZ-induced diabetes. [35] 
Interestingly, peripheral administration of  IGF-I can 
prevent these decreases independently of  hyperglycemia, 
showing that brain IGF-II gene expression is regulated by 
IGF-I. A loss of  brain weight is not yet evident 2 weeks 

after STZ injection, and this loss of  transcripts precedes 
brain atrophy and impaired cognition. After 10 weeks, total 
brain protein content was reduced, although cell loss was 
not yet evident (unpublished observations). Signifi cant 
DNA loss appears to emerge only after approximately 
12 weeks of  unabated diabetes. Thus, there is progressive 
loss of  total brain mRNA and protein in diabetes. These 
perturbations in the protein regulatory pathway, when 
suffi ciently severe and prolonged, most likely lead to loss 
of  cells.

It is interesting that subcutaneous IGF-I administration 
in diabetic rats prevented impairment of  L&M, but not 
brain atrophy.[72] IGF may have selective effects on L&M by 
infl uencing synaptic spine density, spine plasticity, synaptic 
protein turnover, and/or on long-term potentiation. 
However, these IGF experiments did not reveal whether 
the cause of  brain atrophy was hyperglycemia or loss of  
insulin and IGF activities.

INSULIN-LIKE GROWTH FACTORS PREVENT 
RETINAL DEGENERATION IN DIABETES

While IGF treatment did not by itself  prevent gross brain 
atrophy in diabetic rats, it is possible that it may prevent 
cell degeneration in limited regions of  the CNS. To test 
this, the eye was studied. It is formed developmentally as an 
outpocketing of  the brain, and is a CNS tissue. Diabetes is 
a prominent cause of  vision loss and blindness.[80,81] Retinal 
degeneration is observed in both clinical and experimental 
diabetes[82,83] and the progression of  diabetic retinopathy is 
not correlated with glycemic control.[84,85]

Armed with the knowledge that IGF-I and certain of  its 
structural analogues can cross the BBB,[53,54] it was tested 
whether IGF can cross the blood–retinal barrier and 
prevent predegenerative changes in retina in diabetic rats. 
Adult rats rendered diabetic with STZ were implanted 
with subcutaneous minipumps that released either 
vehicle or des(1-3)IGF-I, an IGF-I analogue that lacks 
the N-terminal tripeptide and whose sequestration by 
IGFBPs is consequently greatly diminished. After 2 weeks 
of  diabetes, animals were euthanized, eyes were collected, 
and processed for immunohistochemistry. There was a 
signifi cant increase in IGF-I receptor immunoreactivity in 
the inner nuclear and ganglion cell layers in STZ diabetic 
rat retina compared with nondiabetic controls,[86] consistent 
with observations by others.[87] Such increase may be the 
result of  a homeostatic mechanism up-regulating the IGF 
receptor as a consequence of  decreased IGF-I levels. This 
up-regulation was prevented in diabetic rats treated with 
des(1-3)IGF-I despite hyperglycemia. 
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Abnormalities in the apoptosis-stress response enzyme 
Akt were observed in the same two retinal layers. Akt 
phosphorylation at residue Thr308 was significantly 
increased in diabetic compared with nondiabetic controls, 
showing preapoptotic degenerative changes.[86] Treatment 
with des(1-3)IGF-I prevented this increase in Akt 
phosphorylation. This study establishes that an IGF-I 
analogue crossed the blood–retinal barrier and prevented 
biochemical abnormalities associated with predegenerative 
changes in the retina of  diabetic rats.

In apoptotic cell death there is fragmentation of  DNA 
detectable by the terminal deoxyuridine nick end labeling 
TUNEL method. In long-term diabetic rats there is an 
increase in TUNEL-positive cells in the retina after 4 weeks 
of  diabetes.[82] In our experiments, there was a 6-fold 
increase in TUNEL staining in the photoreceptor cell 
layer and an 8-fold increase in the inner nuclear layer 
after 12 weeks of  STZ-diabetes. Subcutaneous IGF-I 
administration crossed the blood–retinal barrier and 
prevented such increases.[88] Qualitative results showed 
that pro-apoptotic caspase-3 and BAD immunoreactivities 
were also elevated, and these abnormalities were likewise 
prevented with the IGF-I treatment.

Taken together, these data show that predegenerative and 
degenerative changes in the retina of  diabetic rats can 
be prevented by replacement of  IGF-I or des(1-3)IGF-I 
despite persisting hyperglycemia. Although IGF-I does not 
prevent the loss of  bulk brain mass in diabetes,[72] it does 
selectively prevent the loss of  certain types of  neurons 
within the adult CNS.

INSULIN AND INSULIN-LIKE GROWTH 
FACTOR ARE NEUROTROPHIC FACTORS 
THAT ACTIVATE A COMMON BIOCHEMICAL 
PATHWAY

IGFs were discovered to be neurotrophic factors based 
on their capacity to increase the expression of  axonal 
cytoskeletal genes, stimulate neurite outgrowth, increase 
RNA synthesis, and support cell survival.[89-91] Early 
studies with extremely large doses of  impure insulin 
reported its actions on cultured neural tissues,[90,91] however, 
the fi rst unequivocal demonstration that physiological 
concentrations of  insulin had neurotrophic activity 
came when highly purifi ed biosynthetic insulin became 
available. [89,90] Our laboratory was able to show that insulin 
and IGF, each through its own receptor on the same 
cloned cell, could activate a common biochemical pathway 
regulating neurotrophic activity.[89,92] This is highly pertinent 
to understanding how they prevent brain atrophy.

IGF-I treatment alone does not prevent the loss of  bulk 
brain mass in diabetic rats.[72] Interestingly, conditional 
inactivation of  the neuronal IR in mice not only has no 
effect on brain glucose utilization, but also there is no sign 
of  neurodegeneration in brain.[50,93] It would initially appear 
that neither insulin nor IGF play a substantial role in adult 
brain atrophy. However, because both IGF and insulin 
activate a common biochemical pathway, loss of  one ligand 
may be compensated by the other. We proposed that the 
risk for brain atrophy is greatest when there is concomitant 
decline in insulin and IGF activities, such as in diabetes.[94] 

INSULIN IS A POTENT REGULATOR OF 
ADULT BRAIN MASS AND ITS COMBINATION 
WITH INSULIN-LIKE GROWTH FACTOR-I 
PREVENTS BRAIN ATROPHY IN DIABETES

We tested the inter-related hypotheses that (1) small 
replacement doses of  both insulin and IGF can prevent 
brain atrophy in diabetes, (2) the combination of  these 
ligands is more effective than insulin alone, and (3) insulin 
and IGF can prevent brain atrophy and degeneration 
irrespective of  ongoing hyperglycemia.[94] Adult rats 
were rendered diabetic with STZ and implanted with 
osmotic minipumps to deliver either artificial CSF, a 
small dose of  insulin, or insulin in combination with 
IGF-I directly into brain lateral ventricles over a period 
of  12 weeks. Tiny ligand doses were used that did not 
prevent hyperglycemia, and that were suffi ciently small that 
cross-occupancy of  insulin or IGF receptors was highly 
unlikely. Brains were homogenized in buffer and aliquots 
were removed for analysis of  total water and dry mass, 
DNA content, and relative abundance of  cell-type specifi c 
proteins using western blots. All results were calculated on 
a per brain basis. Other brains were fi xed and sliced for 
immunohistochemical examination.

This study is notable in that a loss of  9% of  total brain 
DNA was found in diabetic rats, showing the remarkable 
extent of  cell loss. Virtually all previous studies measured 
cell degeneration in a few brain tissue sections, and such 
data do not reveal the global magnitude of  cell death. 
Magnitude is important, because due to massive parallel 
processing, loss of  a few brain cells may not lead to 
functional signifi cance.

Administration of  insulin alone prevented the loss of  
brain wet, water, and dry weights per brain in diabetic rats, 
revealing insulin as a substantial regulator of  brain mass.[94] 
Insulin’s effect on brain water content is of  considerable 
interest with regard to brain edema, which is known 
to sometimes develop during overly aggressive insulin 
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treatment in uncontrolled diabetic patients. Insulin also 
signifi cantly prevented the loss of  proteins unique to 
glia. This included loss of  glial fi brillary acidic protein in 
astrocytes and loss of  myelin basic protein and proteolipid 
protein in oligodendrocytes. The latter two polypeptides 
together comprise 80% of  myelin proteins, and myelin 
constitutes a signifi cant fraction of  brain mass. On the 
other hand, insulin treatment had no signifi cant impact on 
loss of  the particular neuronal marker proteins selected for 
study, nor did insulin alone have a detectible infl uence on 
loss of  total brain DNA.

In addition to preventing the loss of  brain wet, water, and 
dry weight, insulin in combination with IGF-I completely 
prevented the loss of  total brain DNA in diabetic rats. 
The combination treatment was clearly more effi cacious 
than insulin alone. Prevention of  loss of  brain dry weight 
included preserving levels of  highly abundant proteins 
such as actin and alpha and beta tubulins. In addition 
to preventing loss of  proteins selectively expressed in 
astrocytes and oligodendrocytes, the combination prevented 
the loss of  neuron-specifi c neurofi lament proteins (regulate 
diameter of  axons) and class III beta-tubulin (localized to 
dendrites).

Immunohistochemical studies on brain slices showed 
that visible loss of  glia- and neuron-specifi c proteins was 
prevented by treatment with the combination of  ligands. 
This was studied in two brain regions of  importance to 
cognition; the cortex and the hippocampus.

Thus, progressive cognitive impairment in diabetes is 
proposed to be primarily a consequence of  age- and 
disease-dependent loss of  insulin and IGF activities 
followed by progressive decline in protein levels, including 
those necessary for synaptic plasticity, synapses, axonal 
maintenance, myelin, neurotransmitter levels, and cell 
survival. Not all brain proteins are expected to be regulated 
by insulin and IGFs, however, and selective susceptibility of  
particular brain regions to atrophy is well to be expected.

INSULIN AND INSULIN-LIKE GROWTH 
FACTOR REGULATE BRAIN MASS 
INDEPENDENTLY OF HYPERGLYCEMIA

All of  the above described effects of  insulin and its 
combination with IGF in diabetic rats were independent 
of  persisting plasma and CSF hyperglycemia. Body weight 
is highly sensitive to metabolic disturbances, and the 
treatments did not prevent the severe decrease in body 
weights. This revealed that the combined loss of  insulin 
and IGF, rather than hyperglycemia, is the main risk factor 

for brain atrophy in diabetes. Because hyperglycemia was 
unabated for 12 weeks in these rats, it is expected that 
there would be elevated levels of  polyols, protein glycation, 
advanced glycation end products, and other disturbances 
linked to hyperglycemia. This study severely constrains the 
importance of  these factors in the pathogenesis of  diabetic 
neurological complications.

INSULIN PREVENTS BRAIN ATROPHY IN MICE

In agreement with our fi ndings in diabetic rats, using MRI 
Francis et al. found that intranasal insulin administration 
averted brain atrophy in diabetic mice.[95] The study also 
demonstrated presence of  white matter hyperintensities in 
brains of  diabetic mice and insulin administration prevented 
such hyperintensities independently of  hyperglycemia. 
These results, taken together with our fi ndings that insulin 
prevents loss of  myelin basic protein and proteolipid 
protein,[94] provide strong experimental evidence that insulin 
is a major regulator of  myelin in adult brain. These results 
are directly relevant to the clinical observation by MRI of  
white matter hyperintensities in diabetic patients.[11,96,97]

EFFECT OF INSULIN ON LEARNING AND 
MEMORY

Others have shown that subcutaneous treatment of  
STZ-diabetic rats with insulin reverses or prevents L&M 
defi cits as well as electrophysiological impairments.[79,98] 
However, since insulin treatment alleviated hyperglycemia 
in these studies, it remains unclear whether insulin directly 
prevents impaired L&M. In other studies, where high doses 
of  insulin were used to prevent cognitive disturbances, 
adequate controls are needed to exclude cross-occupancy 
of  IGF receptors as a potential mechanism for enhancing 
cognitive function. Conditional knock-out of  the neuronal 
IR has no effect on L&M in mice.[50]

CONCOMITANT DECLINE OF INSULIN 
AND INSULIN-LIKE GROWTH FACTOR 
ACTIVITIES IN ALZHEIMER’S DISEASE

LOAD comprises approximately 95% of  nongenetic 
Alzheimer’s cases where progressive brain atrophy is the 
cause of  dementia. White matter hyperintensities are 
present[99,100] and dementia correlates best with synapse 
loss.[101] Neuritic plaques and neurofi brillary tangles were 
shown to emerge with aging independently of  dementia 
status[102-104] and immunization against amyloid-beta 
successfully reduces or eliminates neuritic plaque burden, 
yet has no effect on dementia nor life expectancy.[105]
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There is signifi cant evidence for concomitant decline of  
insulin and IGF activities in LOAD. The dominant risk 
factors for LOAD are advancing age and a mid-life clinical 
history of  either diabetes or impaired fasting glucose 
(insulin resistance).[106] Elderly type II diabetic patients 
are at a signifi cantly higher risk for developing LOAD 
compared with age-matched controls.[19,107] Compared 
with nondemented subjects, LOAD patients exhibit 
perturbations in insulin activity and glucose disposal, a 
pattern consistent with insulin resistance observed in type 
II diabetes.[108] Serum IGF-I levels are reduced in patients 
with LOAD as well[109,110] and progressive stages of  LOAD 
are associated with greater decline in mRNA levels of  brain 
insulin, IGF, IR, and IGF-I receptor in postmortem frontal 
lobe.[111] Thus, diminished levels of  insulin and IGFs in 
brain may contribute to the pathogenesis for brain atrophy 
in LOAD as well.

CONCLUSIONS

Our studies have shown that insulin is a potent regulator 
of  adult brain mass and that IGF is essential for L&M. 
We have also demonstrated that IGF acts protectively 
in the retina. These fi ndings were made in the context 
of  the STZ-diabetic rat which exhibits progressive CNS 
degeneration and concomitant decline of  both insulin and 
IGF, which allows for investigating the roles of  one peptide 
independently of  the other. Importantly, our fi ndings 
were made despite persisting hyperglycemia and body 
weight loss characteristic of  unabated diabetes. Insulin 
and IGFs clearly potentiate one another’s effects, which 
may be mediated in part through activation of  a shared 
intracellular signaling pathway (Path B) that is distinct 
from hyperglycemia (Path A) [Figure 1]. Path A represents 
the classical hypothesis implicating hyperglycemia and its 
secondary consequences such as accumulation of  polyols 

and generation of  advanced glycation end products as 
main culprits for brain atrophy. Path B, on the other hand, 
represents the alternative hypothesis that insulin and IGFs 
are master switches regulating numerous proteins necessary 
for synaptic plasticity, synapses, myelination, neurites, and 
cell survival. We have tested and confi rmed the Path B 
hypothesis while keeping Path A constant. These fi ndings 
have important implications for treatment and prevention 
of  brain atrophy and dementia in diabetes and possibly in 
LOAD as well.
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