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KEY WORDS Abstract The AMP-activated protein kinase (AMPK) is a sensor of cellular energy status that is almost

AT i universally expressed in eukaryotic cells. While it appears to have evolved in single-celled eukaryotes to

regulate energy balance in a cell-autonomous manner, during the evolution of multicellular animals its

Enelr(;}l/azz’lance; role has become adapted so that it also regulates energy balance at the whole body level, by responding to
AMP; hormones that act primarily on the hypothalamus. AMPK monitors energy balance at the cellular level by
AMPK activator; sensing the ratios of AMP/ATP and ADP/ATP, and recent structural analyses of the AMPK heterotrimer
Mitochondrial function; that have provided insight into the complex mechanisms for these effects will be discussed. Given the
Regulatory mechanism central importance of energy balance in diseases that are major causes of morbidity or death in humans,

such as type 2 diabetes, cancer and inflammatory disorders, there has been a major drive to develop
pharmacological activators of AMPK. Many such activators have been described, and the various
mechanisms by which these activate AMPK will be discussed. A particularly large class of AMPK
activators are natural products of plants derived from traditional herbal medicines. While the mechanism
by which most of these activate AMPK has not yet been addressed, I will argue that many of them may be
defensive compounds produced by plants to deter infection by pathogens or grazing by insects or
herbivores, and that many of them will turn out to be inhibitors of mitochondrial function.
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1. Introduction

The 5'-adenosine monophosphate (AMP)-activated protein kinase
(AMPK) is a sensor of cellular energy that helps to maintain
energy balance at both the cellular and whole body levels' ™. Since
type 2 diabetes, which affects 5% — 10% of the world population,
can be regarded as a disorder of energy balance caused by over-
nutrition, there has been much interest in AMPK as a drug target.
It is also becoming apparent that two other major causes of human
death and morbidity, i.e., cancer and inflammatory disease, can be
viewed as metabolic derangements. Thus, tumor cells and cells,
involved in inflammation, tend to display a glycolytic phenotype
(termed the Warburg effect or aerobic glycolysis), whereas
quiescent cells and cells involved in the resolution of inflammatory
responses tend to utilize oxidative metabolism®. Since AMPK
inhibits cell growth and proliferation, and also promotes the more
glucose-sparing and energy-efficient mitochondrial oxidative
metabolism rather than glycolysis, interest in the system as a drug
target in the fields of cancer and inflammatory disease has been
steadily increasing.

Following its initial definition by our group in the late 1980s%,
over 9000 papers have been published on the AMPK system, and it is
not possible to give a full coverage of the field in a single article. In this
review I will focus on its structure and evolution, its regulation by
metabolites, and its modulation by synthetic compounds that are being
developed as pharmacological AMPK activators and by natural
products that are being tested as medicines.

2. AMPK—subunit structure and evolution

AMPK appears to exist in almost all eukaryotic species as hetero-
trimeric complexes comprising a catalytic @ subunit and regulatory S
and y subunits. In humans and other mammals, the a subunits are
encoded by two genes (PRKAAI/PRKAA2, encoding al/a2), the
subunits by two (PRKABI/PRKAB2, encoding f1/2) and the y
subunits by three (PRKAGI/PRKAG2/PRKAG3, encoding y1/y2/y3).
All twelve combinations of a, # and y subunit isoforms are able to form
heterotrimeric complexes when co-expressed, although certain combi-
nations appear to be favored in vivo’. Genes encoding orthologs of
AMPK-a, -f and -y subunits are readily found in all eukaryotes where
genome sequences have been completed. The one known exception to
this is the microsporidian Encephalitozoon cuniculi, an obligate
intracellular parasite that lives inside other mammalian cells including
those of humans, and which has no free-living form other than
metabolically inert spores'’. While a genuine eukaryote, E. cuniculi has
an extremely small genome encoding only 29 conventional protein
kinase catalytic subunits, and lacks genes encoding the «, f and y
subunits of AMPK''. It does contain genes encoding the enzymes
required for a complete glycolytic pathway'’, but lacks adenosine-
triphosphate (ATP)-generating mitochondria although having mito-
chondrial remnants termed mitosomes'”. Interestingly, E. cuniculi
expresses unusual transmembrane ATP/adenosine diphosphate (ADP)
translocases, some of which appear to be located in the plasma
membrane'”. The implication of this is that the organism may utilize
these translocases to “steal” ATP from the host cell in exchange for
ADP. E. cuniculi may therefore have been able to afford to lose genes
encoding AMPK, because its host cell does express the kinase and can
regulate energy homeostasis on its behalf.

Given that AMPK is found in essentially all present day
eukaryotes, it seems likely that it evolved soon after the develop-
ment of the first eukaryote. It is widely believed that the key event

that led to the first eukaryotic cell was the endosymbiotic acquisition
by an archaeal host cell of aerobic bacteria, which eventually
became mitochondria. One can speculate that the host cell would
have needed a system to monitor the output of their newly acquired
oxidative organelles, and to regulate the ability of those organelles
to supply ATP according to the demands of the host. AMPK fits the
bill to be such a system: for example, in the budding yeast
Saccharomyces cerevisiae the AMPK ortholog is not required for
growth by the fermentative metabolism (i.e., glycolysis) that is
utilized in high glucose, but is required for the switch to oxidative
metabolism that occurs when glucose run low'?. Similarly, mito-
chondrial biogenesis is one of the key downstream effects of AMPK
activation in mammalian cells'>™"".

Most energy-requiring processes in eukaryotic cells are driven,
either directly or indirectly, by hydrolysis of ATP to ADP, and it is
possible to draw an analogy between these nucleotides and the
chemicals in a rechargeable battery. A high ratio of ATP to ADP is
equivalent to a fully charged battery, while if this ratio is falling the
cellular battery is becoming flat. Extending this analogy, AMPK can
be regarded as the biological equivalent of the system within a cell-
phone or laptop computer that monitors the battery charge. As
discussed in more detail in Section 3, it is activated by increasing
ratios of AMP/ATP and ADP/ATP. An increase in either ratio
signifies falling cellular energy, but if the reversible reaction
catalyzed by adenylate kinase (2ADP < ATP+AMP) is at equili-
brium (as seems to be the case in most eukaryotic cells) it is easy to
show that the AMP/ATP ratio will vary as the square of the ADP/
ATP ratio'®, making the former a much more sensitive signal of
falling energy status than the latter. A full description of the
downstream targets for AMPK is beyond the scope of this article,
and readers interested in that aspect should consult other reviews
(e.g., Ref. 19). However, once activated by energy stress, AMPK
attempts to restore cellular energy homeostasis by activating
catabolic pathways that generate ATP, while switching off ATP-
consuming processes not essential to short-term cell survival,
including almost all anabolic pathways. Although AMPK almost
certainly arose in single-celled eukaryotes as a cell-autonomous
mediator of energy balance, it is intriguing that role of the system
seems to have become adapted during the evolution of multicellular
eukaryotes so that it also regulates energy balance at the whole body
level. It does this particularly by mediating effects of hormones
acting on the hypothalamus of the brain that control energy intake
(i.e., feeding) and energy expenditure'™.

3. Canonical regulation by phosphorylation and by adenine
nucleotides

AMPK is normally only significantly active after phosphorylation of a
conserved threonine residue within the activation loop of the kinase
domain on the a subunit. This threonine residue is usually referred to
as Thr172 due to its position in the rat a2 subunit where originally
identified”, although the precise numbering may differ in other
isoforms and species. Following a long search, the primary upstream
kinase that phosphorylates Thrl72 in vivo was shown to be a
heterotrimeric complex between the tumor suppressor kinase liver
kinase B1 (LKB1), the pseudokinase STE20-related adaptor (STRAD)
and the scaffold protein mouse protein 25 (MO25)*' >, This complex
appears to be constitutively active in that its activity is not regulated
under situations of energy stress when AMPK is activated in an LKB1-
dependent manner’*”. Nevertheless, binding of AMP to AMPK can
regulate both the phosphorylation of Thr172 by LKBI, and its
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dephosphorylation (see below). Almost as soon as it was found that
LKB1 was the primary upstream kinase, it was realized that there was
some phosphorylation of Thr172 even in tumor cells that had lost
LKBI, and this was traced to the calmodulin-dependent protein
kinase, calcium/calmodulin-dependent protein kinase kinase S
(CaMKKp)***. This provides an alternate Ca>™-mediated upstream
pathway for AMPK activation, which mediates effects of hormones
and mediators acting through G4/Gy;-coupled receptors that trigger
release of Ca®" from intracellular stores via the second messenger
inositol-1,4,5-trisphosphate (IP5)”. Such hormones include thrombin
acting on endothelial cells via the protease-activated receptor’’,
and ghrelin acting on hypothalamic neurons via the glutathione
reductase 1 (GSHR1) receptor’'. Thr172 can also be phosphorylated,
and AMPK activated, in intact cells by the protein kinase transforming
growth factor-B-activated kinase-1 (TAK1)***, although the
physiological relevance of that mechanism currently remains
unclear.

Allosteric activation of the phosphorylated kinase by 5'-AMP was
originally demonstrated in 1980** (before AMPK acquired its current
name), but in the early 1990s it was shown that AMP binding
to AMPK not only caused allosteric activation but also promoted its
net phosphorylation at Thr172*. It is now clear that AMP binding has
three effects on AMPK’® that activate the system in a synergistic
manner, making the final response very sensitive to even small changes
in AMP:

(i) promotion of phosphorylation by LKB1, but not CaMKKf

(although this selectivity for LKB1 has been disputed®”);
(ii) protection against dephosphorylation of Thr172 by protein
phosphatases; and
(iii) allosteric activation of the phosphorylated kinase.

Of these three effects, it has been reported that mechanisms (i)37
and (ii)*® are also mimicked by binding of ADP. Given that ADP
is present in unstressed cells at concentrations ten times higher
than AMP, and that allosteric activation (which is only caused by
AMP binding) is often reported as being small in magnitude ( < 2-
fold), this led to proposals that ADP rather than AMP might be the
crucial activator of AMPK®"~*°. However, our group®® reported
that while mechanism (ii) can indeed be caused by binding of
ADP, AMP is about 10-fold more potent. Moreover, using a native
preparation of mammalian AMPK rather than a bacterially
expressed complex, allosteric activation by AMP can be substan-
tial (> 10-fold), even in the presence of concentrations of ATP that
are 1 —2 orders of magnitude higher and within the physiological
range (5 mmol/L)*®. Thus, while ADP may contribute to activa-
tion, we would argue that AMP remains the primary regulator
of AMPK.

4. Pharmacological activators of AMPK

Since the realization in the late 1990s that activation of AMPK
might be useful for treatment of type 2 diabetes’, numerous
pharmacological activators have been developed. Based on their
mechanism of action, they can be divided into four classes that are
discussed in Sections 4.1-4.4.

4.1.  Activators that act indirectly by inhibiting cellular ATP
synthesis

Since depletion of ATP always causes increases in AMP and ADP,
AMPK is activated by any compound that inhibits ATP synthesis.

In cells that are primarily using glycolysis to generate ATP (as in
most rapidly proliferating cells), AMPK is activated by inhibitors
of glycolysis such as 2-deoxyglucose*'. A much larger class of
activators, some of which are shown in Fig. 1A, are those that
inhibit mitochondrial ATP synthesis by inhibiting the respiratory
chain at Complex I (e.g., metformin or phenformin****) or
Complex III (e.g., antimycin A*), or that inhibit Complex V,
the mitochondrial F1 ATP synthase (e.g., oligomycin or resvera-
trol*'*). All of these agents will increase cellular ADP/ATP
and/or AMP/ATP ratios, although correlations between such
ratios and changes in AMPK activity do not prove on their
own that activation by AMP or ADP is the sole mechanism. The
best method to confirm this is to use a cell line expressing an
AMP/ADP-insensitive mutant of AMPK such as the R531G
mutation in y2*' or the equivalent R299G mutation in y14°.
Any agent that activates AMPK solely by increasing the
cellular levels of AMP or ADP will fail to activate such mutants.
Further discrimination can be obtained by measuring cellular
oxygen uptake and acidification of the medium using an extra-
cellular flux analyzer. Compounds that inhibit mitochondrial
function should inhibit oxygen uptake, while those that inhibit
glycolysis should reduce lactate output and hence extracellular
acidification. For example, the compound PT-1, which was
originally proposed to act by direct binding to AMPK"*’, was
recently shown using these methods to act instead by inhibiting the
respiratory chain®’.

In the last few years well over 100 natural products or extracts
derived from plants, many of which are used in traditional Asian
medicines, have been reported to activate AMPK. These are considered
in more detail in Section 7. However, it is worth stating here that
several of them, including berberine™*® and arctigenin®, appear to
activate AMPK by inhibiting the mitochondrial respiratory chain, as
does galegine, a natural product from the medicinal plant Galega
officinalis from which metformin and phenformin were derived*'~’
(Fig. 1A). At least one potent synthetic compound, derived from a
high-throughput screen designed to detect compounds that activate
AMPK in cell-based assays, has also been shown to activate AMPK by
inhibiting Complex I of the respiratory chain’'.

4.2.  Pro-drugs that are converted into AMP analogs inside cells

It is clear that the regulatory adenine nucleotide-binding sites on
the y subunits of AMPK, which are discussed in more detail
below, require the presence of negatively charged phosphate
groups on bound nucleotides, and it therefore may be difficult to
develop cell-permeable AMP analogs that bind these sites.
However, a related approach is to develop pro-drugs that are cell
permeable but are converted following their uptake into AMP
analogs by cellular enzymes. In fact, S5-aminoimidazole-4-
carboxamide ribonucleoside, the first pharmacological AMPK
activator to be developed*”’, works by this mechanism. This
compound is often referred to as AICAR and I adopt this usage
below, although this can cause confusion because researchers in
the field of nucleotide metabolism use the same acronym to
describe the phosphorylated ribotide form, which I will refer to
instead as ZMP (AICAR monophosphate). AICAR is an adenosine
analog that is taken up into cells by adenosine transporters®” and
phosphorylated by intracellular adenosine kinase into ZMP
(Fig. 1B). ZMP is an AMP analog that binds to AMPK at the
same sites as AMP” and mimics all of the effects of AMP on the



David Grahame Hardie

A AMPK activators that inhibit mitochndrial ATP synthesis and increase cellular AMP

HN it Ho
_H:?_N%—NH{ \>‘ 5 )\L OH /,:;N(’ jf@

Metformin Phenformm Galegme

B Pro-drugs converted inside cells into AMP analogs

Resveratrol

© Berberine Arctigenin

(C Compounds that bind between g-CBM and a-KD

o] 5 0 o N
HO/\S_IN\/N 0. p ol\g_I ~ H a
HO OH o—(\ O
A-769662 X O‘
AICAR N 991 (ex229)
o b
)\?O N-O
o
o\\ g N-O ) 'o.'E;Wo- N Salicylate
o.p_o KA ~o o\ HO o
o WY c2 MT 63-78 R Ho
C13 H
D Mechanism by which antifolate drugs (methotrexate and pemetrexed) increase cellular AMP /—NH
N NH,
Antifolates 0 oum N
¢} 0 HN N 0-p'. ~
S| s T L € gt
= = — HO OH
o o} 0
_>’°'5-o’\$iZ’N</N W‘°~é'.o’\§i(N"N +*o F.’"o/\SiZ’N\?N **
© on © o GMP
N'-formyl THF HO OH HO OH
ZMP THF FIACAR IMP

Figure 1 Structures of AMPK-activating compounds that act via: (A) inhibiting mitochondrial ATP synthesis; (B) pro-drugs converted to active
agents inside cells, as shown; and (C) direct activators. (D) shows the mechanism by which antifolate drugs activate AMPK by causing accumulation
of ZMP, an intermediate in the synthesis of the purine nucleotides inosine monophosphate (IMP), AMP and guanosine monophosphate (GMP).

AMPK system’®. In fact, ZMP has low potency compared with
AMP*, but AICAR nevertheless activates AMPK in most primary
cells and tissues because AICAR is rapidly converted to ZMP,
which is then metabolized much more slowly. ZMP therefore
accumulates within many cells to concentrations within the
millimolar range (even higher than the external AICAR concen-
tration), which is necessary for it to activate AMPK. It is important
to note that ZMP is a natural intermediate in purine nucleotide
synthesis, and some immortalized cell lines have a high rate of
purine synthesis such that ZMP does not accumulate in response to
extracellular AICAR, and AMPK is therefore not activated.
Interestingly, however, antifolate drugs that are used to treat
cancer, or inflammatory disorders such as rheumatoid arthritis,
inhibit the transformylase that catalyzes the first step in the
metabolism of ZMP to purine nucleotides, thus causing accumula-
tion of ZMP (Fig. 1D). For example, the antifolate methotrexate
dramatically sensitizes cells to the activating effects of AICAR,
while pemetrexed can activate AMPK even in the absence of
exogenous AICAR®®,

Recently, a synthetic compound that activates AMPK by a pro-
drug mechanism has been developed. C13 is a phosphonate diester
that is taken up into cells and converted by cellular esterases into
C2 (Fig. 1B), an AMP analog that is 2—3 orders of magnitude
more potent as an allosteric activator of AMPK than AMP, and 4
orders of magnitude more potent than ZMP>’. Another major
advantage of C13 over AICAR is that C2, unlike ZMP, does not
modulate other AMP-sensitive enzymes such as glycogen phos-
phorylase, phosphofructokinase or fructose-1,6-bisphosphatase™
C2 is, however, selective for AMPK complexes containing the al

rather than the a2 isoform”, an interesting finding that is

considered in more detail in Section 5.3 below. Finally, 3'-
deoxyadenosine (cordycepin) is a bioactive compound derived
from the fungus Cordyceps militaris, which is an analog of
adenosine lacking oxygen on the 3' position of the ribose ring.
Although it has been shown to activate AMPK in intact cells and
to bind directly to the AMPK-y subunit®>, it is perhaps more
likely that the true activator is cordycepin-5'-monophosphate
generated from cordycepin within the cell.

4.3.  Allosteric activators that bind directly to AMPK at sites
distinct from the AMP sites

The first compound in this class was A-769662 (Fig. 1C), developed
by Abbott laboratories from a high throughput screen searching for
allosteric activators of purified AMPK. Although it has poor oral
availability, when administered by intraperitoneal injection it was found
to have favorable effects on the metabolism of an insulin-resistant
animal model, the oblob mouse®'. A-769662 did not increase cellular
ADP/ATP or AMP/ATP ratios®!, still activated AMPK in cells
expressing an AMP-insensitive mutant*', and did not displace AMP
from its binding sites on the 7 subunit®’, suggesting that it bound at a
different site from AMP even though, like AMP, it caused both
allosteric activation and protection against Thr172 dephosphoryla-
tion®>*, A-769662 is also selective for activation of 1 rather than 42
complexes®, and its effects are abolished by an S108A mutation in 41
that prevents the autophosphorylation of that serine residue®, suggest-
ing that the binding site involved the f subunit. As discussed in
Section 5.2 below, the binding site has now been identified by
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structural biology to be a cleft located between the N-lobe of the kinase
domain on the o subunit and the carbohydrate-binding module on the
f-subunit. Another, more potent activator that binds at this site, 991%
(also known as ex229°), has emerged from high-throughput screens
(Fig. 1C). Like A-769662, this compound shows some selectivity for
Sl complexes although it will activate 2 complexes at higher
concentrations. A third compound, MT 63-78% (Fig. 1C), also shows
selectivity for 1 complexes and may therefore bind this site, although
this has not yet been formally demonstrated. None of these compounds
has yet entered clinical trials. However, it should be noted that, of these
compounds, only A-769662 has been available for a prolonged period,
and enthusiasm for its entry into clinical trials may have been
dampened in part by poor oral availability®’ and in part by the
occurrence of AMPK-independent, “off-target” effects®.

A key question regarding the binding site for A-769662 is whether
it binds any naturally occurring ligands. One natural product derived
from plants that does bind to this site is salicylate™, which has been
used as a medicinal compound by humans since ancient times’’.
Acetyl salicylic acid (ASA or aspirin), which is broken down to
salicylate within minutes of its adsorption into the bloodstream, is a
synthetic derivative developed in the 1890s as a less iritating
formulation to deliver salicylate orally. Aspirin is a potent inhibitor
of the cyclo-oxygenases’' (COXI and COX2) that catalyze the key
initial steps in the biosynthesis of prostaglandins and other eicosanoids;
irreversible inhibition of synthesis of the eicosanoid thromboxane A2
in platelets is the mechanism by which it inhibits platelet aggregation
and hence blood clotting’”. However, since aspirin and salicylate have
equal potency as anti-inflammatory agents, yet salicylate is a very poor
COX inhibitor, it remains unclear whether all of the anti-inflammatory
actions of aspirin can be attributed to COX inhibition’. In 2012 we
reported that salicylate, but not aspirin, activated AMPK®. Like
A-769662, salicylate is a poor activator of 52 complexes and its effect
were abolished by an S108A mutation in f1, so it seemed likely that it
bound to the same site as A-769662%°, a proposal recently confirmed
by a crystal structure of the human alflyl complex with bound
iodosalicylate’*. When salicylate or A-769662 were injected into wild
type mice, they promoted a more rapid switch from carbohydrate to fat
oxidation on food withdrawal, as would be expected for an AMPK
activator that triggered phosphorylation and inactivation of both
isoforms of acetyl-CoA carboxylase (ACC1 and ACC2) and hence
caused a rapid switch from fat synthesis to fat oxidation. However,
these effects were lost in AMPK-#1 knockout mice; since salicylate
and A-769662 do not activate 2-containing complexes, this provided
strong evidence that these metabolic effects were mediated by
AMPK".

When AMP and A-769662 are added to AMPK together, they
cause a synergistic allosteric activation even of “naive” AMPK
complexes that are not phosphorylated on Thr172, although prior
autophosphorylation of Ser108 (or a phosphomimetic ST08E mutation)
is required for a maximal effect, as well as for a maximal response to
A-769662 alone’”. Synergism between these activating sites may also
be relevant in intact cells, because metformin (which increases
cellular AMP) and salicylate act synergistically to activate AMPK
and inhibit fat synthesis in isolated mouse and human hepatocytes—
while little AMPK activation was observed with metformin or
salicylate on their own at concentrations (100 pmol/L. and 300— 500
pumol/L, respectively) observed in human plasma following normal
doses, significant effects were observed when they were given
together®. There were also additive effects of low doses of metformin
and salicylate in vivo to activate AMPK in livers of high-fat fed mice,
accompanied by reduced liver triglycerides and increased hepatic

. . ee ., 69
insulin sensitivity”".

4.4.  Oxidative stress

It was reported in 2001 that oxidative stress produced by hydrogen
peroxide increased Thr172 phosphorylation and activated AMPK;
this was accompanied by increases in AMP/ATP ratios, suggesting
that the effect might be AMP-dependent (i.e., the mechanism
described in Section 4.1)’°. More recently, Zmijewski et al.”” used
glucose oxidase to generate H,O, from glucose present in the
medium—this appears to be a better model for physiological
oxidative stress, because it generates a constant low level of H,O,
in the medium (<20 pmol/L) rather than a transient spike of much
higher concentrations that is obtained by adding H,O, directly’®.
Zmijewski et al. reported that glucose oxidase treatment of HEK-
293 cells did not cause decreases in ATP levels, and presented
evidence that AMPK activation was caused instead by oxidation of
two conserved cysteine residues (Cys299 and Cys304) present in
the auto-inhibitory domain of the a subunit (see Section 5.1).
However, our group’® reported that glucose oxidase treatment did
increase AMP/ATP ratios in the same cell line, and that AMPK
activation was largely abolished in HEK-293 cells expressing the
AMP-insensitive R531G mutant of y2. While this suggested that
the effect was primarily AMP-dependent, there was a small
residual effect observed with the R531G mutant that might be
explained by the mechanism described by Zmijewski et al.””. More
recently, Shao et al.”’ reported that AMPK was inactivated rather
than activated by oxidative stress in primary cardiomyocytes, and
that this was prevented by thioredoxin. Inactivation was traced to
oxidation of two cysteine residues within the kinase domain of
AMPK (Cys130 and Cys174), distinct from those whose oxidation
was proposed by Zmijewski et al.”’ to cause activation of AMPK.
Cys174 is almost adjacent to Thrl172, and unmodified cysteine
residues at these positions were shown to be necessary for
activation by LKBI. Shao et al.”’ suggested that the activation
of AMPK caused by oxidative stress in HEK-293 cells’””’® may
occur because higher levels of anti-oxidant enzymes in this
immortalized cell line may prevent the inactivation that they
observed in primary cardiomyocytes.

4.5.  Why do different pharmacological activators of AMPK have
different effects?

Some of the pharmacological activators of AMPK discussed above
have been used as medicines by humans for decades (metformin),
centuries (berberine) or even millennia (salicylate). Why are their
pharmacological effects so different? One potential explanation is
pharmacokinetics—for example, metformin is a cation with poor cell
permeability, and it requires expression of transporters of the organic
cation transporter (OCT) family, such as OCT1, for cellular uptake.
Because OCT1 is highly expressed in hepatocytes, 24% of an
intravenous dose of metformin was found in the liver of wild type
mice ten minutes after injection, compared with <1% in Octl ~'~
knockout mice®’. Thus, the effects of metformin in vivo are likely to
be restricted to the liver, whereas other compounds will also activate
AMPK in other organs or cell types. In addition, since metformin
activates AMPK indirectly by inhibiting the respiratory chain and thus
increasing cellular AMP and ADP"', it is likely that it has many “off-
target” or AMPK-independent effects; indeed the acute effects of
metformin on hepatic glucose production®, as opposed to its longer-
term effects on hepatic insulin sensitivity™”, appear to be independent
of AMPK. Similarly, although salicylate does bind directly to AMPK,
being a particularly small molecule it is unlikely to bind to any target
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with high affinity, and it almost certainly has several AMPK-
independent effects. Acetyl salicylate (aspirin) is, of course, already
known to inhibit cyclo-oxygenases and hence prostanoid biosynthesis,
although salicylate itself is a relatively poor cyclo-oxygenase inhi-
bitor®™. The different pharmacological effects of these AMPK
activators may therefore be due to a combination of different
pharmacokinetics, and distinct AMPK-independent effects.

5. Domain architecture and structure of AMPK
5.1. The a subunits

Each AMPK-a subunit contains at the N-terminus a typical eukaryotic
kinase domain, with a conventional small N-lobe consisting mainly of
f-sheets, followed by the larger C-lobe consisting mainly of a-helices.
In the most recent crystal structures3x’65‘74’x4, such as that shown in
Fig. 2, the kinase had been crystallized in the presence of the non-
specific, ATP-competitive kinase inhibitor staurosporine, and as
expected this was located in the ATP-binding cleft between the N-
and C-lobes. The critical phosphorylation site, Thr172, is located in the
“activation loop”, a sequence region that must be phosphorylated in
many kinases before they become active. Most of the crystal structures
of AMPK were obtained with Thrl172 phosphorylated and the
activation loop was well ordered, although in at least one structure
in the unphosphorylated state the activation loop was partially

a=KD

Staurosporine
(in catalytic site)

Catalytic module

Auto-inhibitory (EREERE
domain (c-AlD) JSSEE

y-Subunit

disordered®. The a subunit kinase domain (a-KD) is immediately
followed by the auto-inhibitory domain (a-AID), so-called because
bacterially expressed a-KD:a-AID constructs are about 10-fold less
active than constructs containing the a-KD only, even when both have
been phosphorylated on Thr172°**°, There is now good evidence that
the a-AlD inhibits the a-KD when AMP is not bound to the y subunit,
thus explaining the 10-fold allosteric activation by AMP. Crystal
structures of a-KD:a-AID constructs from the AMPK ortholog from
the fission yeast Schizosaccharomyces pombe®®, and more recently
from humans®*, show that in this low activity state the a-AID, a bundle
of three short a-helices, binds to the a-KD on the opposite surface to
the catalytic cleft, with the a3 helix of the a-AID interacting with the
N-lobe and the hinge between the N- and C-lobes (Fig. 3A). By
comparing many structures of kinase domains in active and inactive
conformations, it has been found that four hydrophobic residues termed
the “regulatory spine” are universally aligned in active conformations,
indicating that the active site is correctly disposed for activity, but that
these residues are out of alignment in inactive conformations®’. In the
structures of the inactive a-KD:a-AlID constructs of AMPK, the four
residues that form the “regulatory spine” (Leu68 and Leu79 from the
N-lobe, and His137 and Phel58 from the C-lobe) are not aligned
(Fig. 3A). By contrast, in all structures of AMPK heterotrimers in
active states, which are phosphorylated on Thr172 and have AMP
bound to the y subunit (see below), the a-AID has undergone a rotation
such that helix a3 now interacts primarily with the y subunit rather than
with the N-lobe of the a-KD. At the same time the a-KD switches to

B-Cyclodextrin
(in glycogen-binding site)

B Carbohydrate-binding
8 module (5-CBM)

A-769662/991/salicylate
«— binding cleft

pT172 (hidden)

a-KD -
(C-lobe)

a-CTD

B-CTD

a-Linker
(remaining
portions)

y-CBS1

Nucleotide-binding module

Figure 2 Structure of complete a1$2y1 heterotrimer of AMPK. The model was created with MacPyMol using PDB file 4RER®". All molecules
are shown in “sphere view”, omitting hydrogen atoms. Domains of the heterotrimer are color coded and labeled as decribed in the text, whereas
ancillary ligands (f-cyclodextrin, staurosporine and AMP) are shown with carbon atoms in light gray, oxygen in red and nitrogen in blue. AMP in
site 3 is just visible beneath a-RIM2, while AMP in sites 1 and 4 are located around the other side of the y1 subunit.
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A B
(a=AID) o2
a=KD
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adkD P
(Ndobe) 2§ )

a-Linker

Regulatory Regulatory
spine spine
(not aligned) (aligned)

Figure 3 Two views of the kinase and auto-inhibitory domains of the a subunit (a-KD:a-AID) in inactive (A) and active (B) conformations.
Note the major rotation of the a-AID relative to the a-KD between the two models; in (A), a-AID helix a3 interacts mainly with the a-KD small
lobe (and with the hinge between the small and large lobes), but in (B) it interacts mainly with the y subunit (not shown) instead. Note also that the
four side chains of the “regulatory spine” (in white, red, magenta and blue) are out of alignment in (A) but are stacked in alignment in (B),
indicating an active conformation®’. The models were created with MacPyMol using PDB files 4RED (A) and 4RER (B)**, and are shown in
“cartoon” view except for the four residues that form the “regulatory spine” which are in “sphere” view. The view in (A) is of a structure derived
from a construct containing only the a-KD and a-AID of human AMPK-al. The structure crystallized as a dimer, and the a-KD shown is from one
molecule while the a-AID shown is from the other molecule within the dimer. Nevertheless, the a-KD:a-AlID construct behaved as a monomer in
solution®*, and the structure is very similar to that of an a-KD:a-AID from S. pombeg(’, where the arrangement of the a-AID and a-KD from the
same molecule were very similar to that shown here. The view in (B) is of the same structure shown in Fig. 2, but only the a-KD and a-AID

are shown.

an active conformation, where the four residues of the regulatory spine
are now stacked in alignment (Fig. 3B).

The a-AID is connected to the a subunit C-terminal domain (a-
CTD) by the a-linker, a region of extended polypeptide that wraps
around one face of the y subunit (Fig. 2) and is crucial in the
mechanism for activation by AMP (discussed in more detail in
Section 5.3). The a-CTD is a small globular domain that forms the
interface with the C-terminal domain of the f subunit. An interesting
feature of the a-CTD is that it ends in both the a1 and a2 isoforms
with well-defined nuclear export sequences, although these have only
been shown to be functional in the case of a2, Both isoforms also
contain serine/threonine-rich sequences of about 50 residues that we
term the ST loops™, which are discussed in Section 6 below.

5.2.  The p subunits

When £ subunit sequences are compared across isoforms and species,
they contain two conserved regions, a central carbohydrate-binding
module (#-CBM) and the C-terminal domain (f-CTD). The latter is a
small compact domain that interacts with the o-CTD, and also
contributes to an intrasubunit f-sheet containing two strands from the
p-CTD and one from the N-terminus of y. This architecture for
assembling the three subunits is highly conserved throughout eukar-
yotes, from budding yeast™ to fission yeast’' and humans’”. The f-
CTD can be considered to form the core of the heterotrimeric AMPK
complex, bridging the a and y subunits.

The f-CBM is interesting because it is a member of the CBM48
family of carbohydrate-binding modules, non-catalytic domains usually

found in enzymes that metabolize al —6 linkages in carbohydrates,
such as glycogen-branching enzymes and isoamylases™. The f-CBM
causes a proportion of cellular AMPK to bind to glycogen parti-
cles™™”, particularly in the case of the /2 isoform™ whose CBM
appears to have a higher affinity for glycogen than that in $1°°. The
carbohydrate-binding site is well defined, since crystal structures of
isolated f-CBMs and a heterotrimeric al42y1 complex (Fig. 2) have
been solved in the presence of fS-cyclodextrin, a circular heptasacchar-
ide of al —4-linked glucose units***"*®. Until recently it had been
unclear why only a proportion of AMPK in the cell is bound to
glycogen, especially in skeletal muscle where $2 is the main f subunit
isoform and where glycogen content can be very high. However, a
recent paper shows that activated AMPK can autophosphorylate at
Thr148 located within the f-CBM of $1%, a residue known to be
directly involved in the carbohydrate-binding site”’. Phosphorylation at
Thr148 prevents AMPK from binding to glycogen, although AMPK
already bound to glycogen appears to be protected against autopho-
sphorylation at this site”.

CBMs are present within the subunits of all eukaryotic AMPK
orthologs, although higher plant orthologs contain unusual “gy”
subunits that contain a CBM fused at the N-terminus of a y
subunit, as well as more conventional f subunits with central
CBMs'”. The universal occurrence of CBMs within AMPK
orthologs suggest that they have key physiological functions,
although these remain incompletely understood. Since both the
skeletal muscle (GYSD)''"'" and liver (GYS2)'”" isoforms of
glycogen synthase are physiological targets that are inactivated
after phosphorylation by AMPK, one function may be to co-
localize AMPK with this glycogen-bound substrate. It has also
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been suggested that the f-CBM may allow AMPK to sense the
structural state of glycogen and regulate glycogen synthesis
according to the status of glycogen stores'**'%, although further
work is required to confirm that hypothesis.

Despite the uncertain role of glycogen binding, another function of
the f-CBM has become clear with exciting findings that a cleft
between it and the N-lobe of the a-KD form the binding site for
A-769662, 991 and salicylate®”*. This cleft forms between the surface
of the /-CBM opposite to the known carbohydrate-binding site, and
the surface of the KD N-lobe opposite to the catalytic site. In the
structure shown in Fig. 2, where the cleft was unoccupied, an
electrostatic  interaction between Lys29 and Lys31 from the
N-lobe and the phosphate group on Serl08 of the f-CTD appeared
to stabilize the interaction between the two domains™. In other
structures, the side chain of Lys29 interacts with the carboxylate group
at one end of 991, while the side chains of Lys29 and Lys31 are
involved with the interaction with A-769662°". These findings help
to explain the requirement for autophosphorylation of Ser108 for full
activation by A-7696627. Based on a crystal soaked with iodosalicy-
late, salicylates also appear to bind in this site, although the resolution
was not sufficient to analyze the detailed molecular interactions’.

5.3.  The y subunits

The y subunits contain at their C-terminal end four tandem repeats,
termed cystathionine-beta-sythase 1 (CBS1) through CBS4, of a
sequence motif of around 60 residues known as a CBS repeat. First
recognized by bio-informatic analysis'*’, CBS repeats also occur in a
small number of other proteins in the human genome. Most CBS-
containing proteins have only two repeats that assemble into a structure
known as a Bateman domain, with the cleft between the repeats often
binding regulatory ligands containing adenosine, such as ATP or S-
adenosyl methionine'”’. The y subunits of AMPK and its orthologs are
unusual in that they contain four repeats, thus generating two Bateman
domains formed by CBS1/CBS2 and CBS3/CBS4 respectively. These
assemble in a head-to-head manner to form a disc-like shape, with one
CBS repeat in each quadrant of the disk; these are color-coded in
Fig. 2, although much of CBS1, CBS2 and CBS3 are hidden in the
view shown. This arrangement generates four pseudosymmetrical clefts
in the center where ligands might bind, two accessible from one side of
the disc and two from the other. Isolated y subunits were originally
reported to competitively bind just two molecules of AMP or ATP'”7,
but when the core of the AMPK heterotrimer was crystallized in the
presence of AMP, it was found to have three molecules of AMP bound
in sites 1, 3 and 4 (the sites are numbered by convention according to
the CBS repeat bearing an aspartate side chain that interacts with the
ribose ring of the nucleotide; site 2 lacks an aspartate and appears to be
unused). In the view shown in Fig. 2, part of a molecule of AMP is just
visible in site 3, while sites 1 and 4 are hidden around the back of the y
subunit. Soaking of ATP into crystals made with AMP displaced AMP
by ATP in sites 1 and 3, but not 4, leading to the idea that site 4
contains a permanently bound, “non-exchangeable” AMP’* and
perhaps explaining why only two sites were detected in the original
binding studies'”’. However, when another group crystallized the core
complex with ATP (as opposed to soaking ATP into crystals made
with AMP), they found that ATP was bound at sites 1 and 4, while site
3 was empty'*.

The extended a-linker that connects the AID to the a-CTD (see
Section 5.1) can be seen from the viewpoint of Fig. 2 to wrap around
the front face of the y subunit. One conserved region within this linker
termed a-regulatory subunit interacting motif-1 (a-RIM1) interacts with

the unused site 2, while another (a-RIM2) interacts with site 3. A

highly conserved glutamate in @-RIM2 (Glu364 in human 1) interacts

with Arg70 and Lys170 in yl, which in turn interact with the

phosphate group of AMP bound in site 3. This AMP- and site 3-

dependent interaction between the y subunit and the o-linker is

proposed to cause the AID to move away from its inhibitory position
behind the N-lobe of the kinase domain (Fig. 3A) into the position
shown in Fig. 3B, thus explaining allosteric activation by AMP. If
binding of ATP at site 3 did not allow the interaction with a-RIM2, this

would also explain how ATP antagonizes activation by AMP. A

variety of evidence now strongly supports this model:

(1) Mutations in both a-RIM1 and a-RIM2 expected to reduce

interaction with the y subunit (including mutation of
Glu364), or their replacement by a shorter artificial linker,
abolished allosteric activation by AMP’*'%°.
Singlet oxygen-mediated luminescence energy transfer (AlphaSc-
reen) assays, which can monitor changes in the distance between
donor and acceptor probes, were used to analyze interactions
between a core a12y1 heterotrimer (consisting of just the a- and
p-CTDs and full length y1) and a construct containing the AID,
a-RIM1 and a-RIM2 from al. Addition of AMP increased the
interaction, whereas ATP decreased it.

(3) As mentioned in Section 4.2, the AMP analog C2 is rather
selective for al complexes, with which it causes both allosteric
activation and protection against dephosphorylation of Thrl72.
However, both effects of C2 could be transferred to a2
complexes merely by replacing a-RIM2 and the remainder of
the a-linker from a2 with the equivalent region from al. These
results emphasize the importance of the a-linker in the dual
mechanisms of activation by this AMP analog.

Q@

~

This model was also supported by AlphaScreen assays in which the
donor and acceptor probes were attached to the N-termini of the @ and
y subunits in a complete heterotrimer™. Addition of AMP yielded
changes indicating that the probes moved together, suggesting the
formation of a more compact conformation for the heterotrimer in the
presence of AMP, as suggested by previous results obtained by small
angle X-ray scattering in solution''. On the other hand, addition of
ATP caused the probes to move apart, indicating a less compact
conformation. This is consistent with the idea that the o-linker
dissociates from the y subunit in the inactive conformation in the
presence of ATP, allowing the whole heterotrimer to adopt a more
extended structure in which the AID interacts with and inhibits the
kinase domain. These AlphaScreen assays also allowed the concentra-
tion dependence of the effects of AMP and ATP on these conforma-
tional changes to be measured, independently of their binding at the
catalytic site. The results showed that the half-maximal effect (ECsg)
for the effect of AMP (measured in the absence of ATP) occurred at
0.95 pmol/L, whereas the ECsoy for the effect of ATP was at
0.85 mmol/L, almost 1000-fold higher®. For comparison (although it
is not possible to measure allosteric activation in the absence of ATP)
the estimated ECs values for allosteric activation of y1 complexes by
AMP in the presence of 0.2, 1 and 5 mmol/L. ATP were 5.3, 22 and
140 pmol/L, showing that increasing concentrations of ATP compete

with AMP at the y subunit sites®.

5.4.  Remaining challenges in understanding regulation by
adenine nucleotides

Although the various crystal structures obtained over the last few years
have yielded considerable insight into the mechanism of regulation by
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adenine nucleotides, several questions remain. One is the role of
binding of AMP and other nucleotides at sites 1 and 4, especially given
the evidence discussed in Section 5.3 that binding at site 3 recruits the
a-RIM1 motif, which is crucial both for allosteric activation and for
protection against dephosphorylation. Interestingly, mutation to alanine
of any one of the three aspartate residues that bind the ribose rings of
nucleotides at sites 1, 3 and 4 abolishes both allosteric activation and
promotion of Thr172 phosphorylation'''. The three nucleotide binding
sites are located close together at the center of the y subunit, and side
chains of highly conserved basic residues from the y subunit interact
with phosphate groups of nucleotides in more than one site. For
example, the side chains of His151 and His298 in human y1 interact
with phosphate groups of AMP in both sites 1 and 47?1t therefore
seems very likely that binding of nucleotides at these three sites will
show mutual dependencies on each other, either positive or negative.
Along these lines, the group who crystallized the core complex in the
presence of ATP suggested that the mode of binding of ATP at site 4
would preclude binding of AMP (or any other nucleotide) at site 3.
Thus, AMP may have to be bound at site 4 (and possibly also at site 1)
before it binds at the crucial site 3.

Another question not full answered is how binding of AMP inhibits
Thr172 dephosphorylation. Since the lack of ability of the AMP analog
C2 to protect against dephosphorylation of a2 complexes can be
restored by replacing a-RIM2 of a2 (which binds site 3 when AMP is
bound) with the equivalent region from al, it appears that it is binding
of AMP at site 3 that is crucial for the effect. However, unlike allosteric
activation by AMP, which does not require the presence of the f-
CBM™, protection against Thr172 dephosphorylation by AMP does
require it*, although the reasons for this are poorly understood.

Another puzzle is why ADP binding should provide protection
against dephosphorylation of Thr172°® yet does not, like AMP binding,
cause allosteric activation. This would be hard to explain if the effects
of ADP and AMP were due to binding at the same site. However,
studies of the budding yeast ortholog of AMPK suggest that the y
subunit SNF4 is not required for the response to glucose starvation''?,
and that binding of ADP to the catalytic site on the kinase domain,
rather than to the y subunit, may be responsible for its ability to protect
against dephosphorylation of the site equivalent to Thr172''%. In the
same study, it was reported that binding of the kinase inhibitor
staurosporine (which binds at the catalytic site®) to either the budding
yeast or mammalian kinases provides protection against Thrl72
dephosphorylation. Thus, it is possible that AMP and ADP protect
against dephosphorylation by binding at different sites.

A final question that has not yet been illuminated by the structural
studies concerns how phosphorylation of Thr172 by LKBI1, but not
CaMKKJp, is promoted by binding of AMP*®. A radical proposal to
explain this, which has been developed by Lin and colleagues''*'' at
Xiamen University, is that AMP binding to AMPK causes it to co-
localize with LKB1 due to their mutual interactions with the scaffold
protein axin, which in turn binds to late endosomal/lysosomal adaptor
and MAPK and mTOR activator (LAMTOR1) at the surface of the
lysosome. However, promotion by AMP of Thr172 phosphorylation
by LKB1 can be observed on reconstitution of highly purified LKB1
and AMPK™, suggesting that the effect does not strictly require any of
these additional components.

6. Non-canonical regulation by phosphorylation of the ST
loop and other sites

The hormone insulin represents a signal that nutrients are avail-
able, with those nutrients (glucose, amino acids and fats) either

directly triggering insulin release from the f cells of the pancreas,
or doing so indirectly via release of incretins such as glucagon-like
peptide-1 from the small intestine. Insulin then stimulates target
cells to take up these nutrients and convert them to their storage
forms of glycogen, triglycerides and proteins. Insulin-like growth
factor-1 (IGF1), which acts via a signaling pathway closely related
to that of insulin, is a growth factor that promotes biosynthesis and
hence cell growth. Since AMPK is generally switched on under
the opposite circumstances to insulin and IGF1 (lack of nutrients
or energy) it is not surprising that the AKT/PKB (protein kinase B)
pathway, the principal signaling pathway downstream of insulin
and IGF1, should antagonize the AMPK pathway. In 2006 it was
reported that AKT phosphorylated rat AMPK-al at Ser485
(equivalent to Ser487 in humans, with human numbering being
used below, with the exception of Thr172). Evidence was
presented that prior phosphorylation at Ser487 by AKT reduced
subsequent phosphorylation at Thr172 and consequent activation
by LKB1, and that this mechanism explained how prior treatment
of perfused rat heart with insulin reduced AMPK activation during
subsequent ischemia''®.

Ser487 occurs within a region of around 50 — 55 residues in the
AMPK-a subunits that we now term the “ST loop”. This is a
serine/threonine rich region that is present in a-CTDs in all
vertebrates and nematodes, but not in orthologs from insects,
plants, fungi or protozoa. In all crystal structures of mammalian
complexes containing an a-CTD, the ST loop was either not
resolved, suggesting that it is disordered within the crystals
(perhaps because it is not phosphorylated during bacterial expres-
sion), or had been replaced by a short artificial spacer in the
construct crystallized, because it was thought that it might hinder
crystallization. In these structures the ST loop therefore appears as
a gap between the end of penultimate fS-strand and the start of the
last a-helix in the a-CTD. My group® has recently confirmed that
AKT efficiently phosphorylates Ser487 on AMPK-al, although
the equivalent residue on AMPK-a2, Ser491, is an extremely poor
substrate for AKT—it is therefore important not to simply assume
that the regulation of al and a2 by phosphorylation in this region
will be identical. In fact, Ser491 on a2 is efficiently autopho-
sphorylated by AMPK itself, and becomes phosphorylated in
intact cells when AMPK, rather than AKT, is activated. By
generating HEK-293 cells expressing wild type or mutant al,
we showed that prior activation of AKT using IGF1 inhibited
subsequent Thr172 phosphorylation and AMPK-al activation in
response to A-769662, and that this was blocked by a specific
AKT inhibitor or by mutation of Ser487 to alanine. We also
showed that the effect of Ser487 phosphorylation by AKT to
inhibit subsequent phosphorylation at Thr172 on AMPK-al was
identical using either LKB1 or CaMKKf as the upstream kinase,
suggesting that the mechanism may involve a simple physical
occlusion of Thr172. Consistent with this, mutation of three basic
residues in the a-C helix of the N-lobe, which are conserved in all
vertebrate AMPK-a subunits but not in closely related kinases,
abolished the inhibitory effect of AKT even though Ser487 was
still phosphorylated. This suggested that the ST loop interacts with
the a-C helix following its phosphorylation, thus reducing access
to Thr172%.

ST loops also appear to be phosphorylated by other kinases.
Hurley et al.''” reported that Ser487/491 on AMPK-al or -a2
(isoform not specified) was phosphorylated in response to cyclic
AMP elevation in INS1 cells, a pancreatic § cell line, while a
recombinant AMPK-a1 peptide was phosphorylated in cell-free
assays at Ser487 by cyclic AMP-dependent protein kinase (PKA).
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Complicating this story, however, the effects of cyclic AMP-
elevation were abolished in CaMKKp-null mouse embryo fibro-
blasts, and CaMKKf was inactivated by cyclic AMP-elevating
agents, suggesting that effects in intact cells were mediated by
modulation of CaMKK}, rather than AMPK''". Using a bacte-
rially expressed alplyl complex, PKA has been reported to
phosphorylate not only Ser487 but also Ser499 and Serl75, and
it was proposed that this limited AMPK activation, and hence
inhibition of lipolysis, when PKA was activated in white adipo-
cytes''®. Like Ser487, Ser499 is located in the ST loop, but Ser175
is immediately adjacent to Thrl174, the residue equivalent to
Thr172 in human «l. Based on analysis of various mutations,
the authors''® suggested that it was phosphorylation at Serl75
rather than Ser487 or Ser499 that blocked subsequent AMPK
activation. A puzzling feature is why they did not observe any
effects on subsequent Thr172 phosphorylation when Ser487 was
phosphorylated by PKA, even though two other groups®”''® have
shown that there is a marked effect when Ser487 is phosphorylated
by AKT. Finally, it has been reported that two residues in the ST
loop just upstream of Serd87, ie., Thr481 and Serd77, are
phosphorylated by glycogen synthase kinase 3 (GSK3) when
Ser487 has been phosphorylated''”. GSK3 often phosphorylates
serine or threonine side chains 4 residues N-terminal to a
“priming” phosphoamino acid, although the spacing between
Ser487 and Thr481 is six rather than four residues. It was proposed
that phosphorylation of Ser477 and Thr481 inhibited net Thr172
phosphorylation by promoting its dephosphorylation. While these
observations are interesting, the physiological rationale underlying
inhibition of AMPK by GSK3 is difficult to grasp, because both
GSK3 isoforms (a and f) are inactivated by phosphorylation by
AKT, and because GSK3 usually acts to inhibit rather than
promote anabolic pathways, similar to AMPK but opposite
to AKT.

7. Regulation of AMPK by natural products used in
traditional medicines

As mentioned in Section 4.1, over the last few years more than 100
different natural products have been shown to activate AMPK; a list of
these, which is almost certainly not comprehensive, is shown in
Table ]#!#4:49-50-59.6069.120249 " Atthough many of them can be classed
as polyphenols, their structures are very varied. The majority are
products of plants used in herbal remedies, particularly in traditional
Asian medicine. The mechanism by which most of them activate
AMPK is unknown, and a puzzling feature is why so many natural
plant products should all be AMPK activators. One clue is that among
the small number of these activators where the mechanism has been
established (given at the top of the list in Table 1), most are inhibitors
of mitochondrial ATP synthesis, either by inhibiting Complex I of the
respiratory chain, or by inhibiting the ATP synthase (Complex V).
Most of the natural plant products that activate AMPK appear to be
secondary metabolites, i.e., they are not required for plant growth,
development or reproduction, and a reasonable working hypothesis is
that many of them are molecules produced by plants to deter infection
by pathogens, or grazing by insect or other herbivorous animals, to
whom these molecules are toxic. In support of this idea, resveratrol is
known to be produced by grapes in response to fungal infection™,
while Galega officinalis, the source of galegine from which metformin
and phenformin were derived, is classified as a noxious weed in the
USA because it is poisonous to herbivorous animals (reflected in one
of the common names for Galega officinalis, Goat’s Rue).

Why should plants produce inhibitors of mitochondrial function
as defensive chemicals? The respiratory chain and the ATP
synthase contain five large hydrophobic multiprotein complexes,
with Complex I containing no less than 44 protein subunits, while
the ATP synthase has at least 14. It seems probable that many
different hydrophobic, xenobiotic compounds might find a binding
site in one or more of these complexes that would inhibit their
function. Many secondary metabolites of plants are stored in the
cell vacuole (equivalent to the lysosome of animal cells), and are
therefore kept away from their own mitochondria. The production
of mitochondrial poisons might therefore be a useful general
approach for plants to produce compounds that would deter
infection or grazing. However, in line with the aphorism of
Paracelsus that “the dose makes the poison”, lower doses of these
compounds that are not sufficient to fully inhibit mitochondrial
function might still have useful therapeutic effects by activating
AMPK.

It is also interesting to note that the barbiturate drug, pheno-
barbital, activates AMPK in an AMP-dependent manner by
inhibiting the respiratory chain*'. In hepatocytes, AMPK activa-
tion is required for phenobarbital to induce expression of genes
(e.g., CYP2B6) encoding enzymes of the cytochrome P450 (CYP)
family, via the constitutively active/androstane receptor, constitu-
tive active/androstane receptor (CAR)*'?*2, Some classes of CYP
enzymes (especially the CYP1/CYP2/CYP3 families) catalyze the
initial steps in metabolism of drugs and other hydrophobic
xenobiotics, making them more soluble for excretion. Plant
products that are defensive agents inhibiting mitochondrial ATP
synthesis would activate AMPK, and induction of CYP enzymes
by AMPK might then be a good general way for the animal to
mount a response to deal with potential poisoning by these
xenobiotics.

8. Conclusions and perspectives

Most indications for drugs targeting AMPK suggest that activators
rather than inhibitors would be therapeutically beneficial. In general,
development of activators is probably more difficult than development
of inhibitors, but the fact that there are already many known activators
of AMPK, acting by three or four different mechanisms, shows that
this goal is reachable. Many of the activators already known are natural
plant products, or derivatives of natural products, that originate from
traditional medicines. Two of these, metformin and salicylate, are
already among the most successful and widely used drugs of all time,
although the extent to which their therapeutic effects are mediated by
AMPK is still being debated. Of the many natural plant products
whose mechanism of activation of AMPK has not yet been elucidated,
my suspicion is that most of them will turn out to be compounds used
by plants for defensive purposes, most of which are likely to activate
AMPK indirectly by inhibiting mitochondrial ATP synthesis. In such
cases, the question must always be asked whether the new agent is
more effective than metformin, and whether it has fewer side effects.
However, there may also be some direct activators among the long list
of natural products in Table 1, and this is certainly an avenue worth
pursuing. Of the known binding sites on AMPK where ligand binding
can cause activation, the A-769662/salicylate-binding site is perhaps
the easiest to target for drug development, although the AMP-binding
sites can also be targeted by pro-drugs such as AICAR or C13. It will
be fascinating to see whether the current effort to develop novel
AMPK activators will result in any clinically useful drugs over the next
few years.
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Table 1  Partial list of natural products (mostly from plants) that have been reported to activate AMPK in intact cells or in vivo. Although
a single source species is usually listed, most of the compounds are probably also produced by related species. The author compiled this list

but has not read all of the papers cited as thoroughly as other papers discussed in this review. ?, unkown.

Natural product Source Mechanism Ref.
Antimycin A Streptoniyces (bacteria) Inhibits Complex IIT 44
Apoptolidins A/C Nocardiopsis spp. (bacteria) Inhibits ATP synthase 120
Arctigenin Arctium lappa Inhibits Complex I 49,121
Berberine Berberis spp., other plants Inhibits Complex I 41,122
Cordycepin (3'-deoxyadenosine) Cordyceps militaris (fungus) Converted to AMP 59,60,123
analog?
Galegine Galega officinalis Inhibits Complex I 50
Oligomycin Streptomyces (bacteria) Inhibits F1 ATP synthase 41
Quercetin Many plants Inhibits Complex I 124
Resveratrol Grapes, red wine Inhibits ATP synthase 41,125,126
Salicylate Salix alba (willow), other plants Binds to A-769662 site 69
Alternol Alternaria alternata ? 127
Anthocyanin fraction Purple sweet potato ? 128
Anthocyanin fraction Korean black bean ? 129
Apigenin Matricaria chamomilla ? 130
Artemisinin Artemisia annua ? 131
Aspalathin Aspalathus linearis ? 132
Bavachalcone Psoralea corylifolia ? 133
Caffeic acid All plants ? 134
Caffeic acid, phenethyl and phenylpropyl esters All plants ? 135
Celastrol Many plants ? 136
Chalcones Various plants ? 137
Chitosan Crustaceans ? 138
Chrysin Passiflora caerulea ? 139
Cucurbitane triterpenoids Siraitia grosvenorii ? 140
Curcumin Curcuma longa ? 141,142
Cyanidin Daucus carota (black carrot) ? 143
Dehydrozingerone Zingiber officinale (ginger) ? 144
Delphinidin-3-glucoside Many plants ? 145
14-Deoxyandrographolide Andrographis paniculata ? 146
Dihydromyricetin Ampelopsis grossedentata ? 147
2-(2,4-Dihydroxyphenyl)-5-(E)- Krameria lappacea ? 148
propenylbenzofuran
Emodin Rheum emodi ? 149-151
ENERGI-F704 Bamboo ? 152,153
Epigallocatechin gallate Camellia sinensis ? 124,154
Ergostatrien-3-ol Antrodia camphorata ? 155
Eugenol Clove oil, nutmeg, cinnamon, basil ? 156
Fargesin Magnolia spp. ? 157
Foenumoside B Lysimachia foenum-graecum ? 158
Fucoidan Brown seaweeds ? 159
Fungal extract Clitocybe nuda ? 160,161
Gallic acid Many plants ? 162
Geraniol Rose/palmarosa/citronella oils ? 163
GGEx18 Traditional Korean medicine ? 164
6-Gingerol Zingiber officinale (ginger) ? 165-167
Ginsenosides Panax ginseng ? 168—172
Glabridin Glycyrrhiza glabra ? 173,174
Green tea extract Camellia sinensis ? 175,176
Hispidulin Saussurea involucrate ? 177-179
Honokiol Magnolia grandiflora ? 180,181
Hugan Qingzhi tablet Chinese herbal medicine ? 182
Indazole-type alkaloids Nigella sativa ? 183
Isoquercitrin Many plants ? 184
Isorhamnetin Tagetes lucida ? 185
Jinlida granule Chinese herbal medicine ? 186
Jinqi formula Coptidis rhizomelAstragali rhadix/Lonicerae ? 187
Jjaponicae
Karanjin Pongamia pinnata ? 188
Kazinol C Broussonetia kazinoki ? 189
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Table 1 (continued)

Natural product Source Mechanism Ref.
Licochalcone Glycyrrhiza glabra (licorice) ? 190
Lindenenyl acetate Lindera strychnifolia ? 191
Luteolin Many plants ? 124
Malvidin Daucus carota (black carrot) ? 143
Mangiferin Iris unguicularis ? 192-195
Methyl cinnamate Zanthoxylum armatum ? 196
4-O-methylhonokiol analog Magnolia grandiflora ? 197
2-Methyl-7-hydroxymethyl-1,4-naphthoquinone Pyrola rotundifolia ? 198
Monascin/ankaflavin Monascus pilosus (a fungus) ? 199
Monascuspiloin Monascus pilosus (a fungus) ? 200
Naringin Citrus x paradisi ? 201
Nectrandin B Myristica fragrans (nutmeg) ? 202-204
Octaphlorethol A Ishige foliacea (a brown alga) ? 205
Oleanolic acid Many plants ? 206
Osthole Cnidium monnieri ? 207,208
Parthenolide Tanacetum parthenium (feverfew) ? 209
Persimmon tannin Diospyros kaki (persimmon) ? 210
Petasin Petasites spp. ? 211
Piperlongumine Piper longum ? 212
Plant extract Boesenbergia pandurata ? 213
Plant extract Cirsium japonicum ? 193
Plant extract Houttuynia cordata ? 214
Plant extract Impatiens balsamina ? 215
Plant extract Lycium barbarum ? 216
Plant extract Malva verticillata ? 217
Plant extract Remotiflori radix ? 218
Plant extract Rhus verniciflua Stokes ? 219
Plant extract Scutellaria baicalensis ? 220
Plant extract Sechium edule ? 221
Plant extract Taraxacum mongolicum ? 222
Plant extract Theobroma cacao (cocoa) ? 223
Plant extract Viola mandshurica ? 224
Plant extract Vitis thunbergii ? 225
Pomolic acid Chrysobalanus icaco ? 226
Pterostilbene Grapes, other fruits ? 227
Puerarin Radix puerariae ? 228
ReishiMax Ganoderma lucidum ? 229
Rhizochalin (aglycone) Rhizochalina incrustata (a sponge) ? 230
S-methylmethionine sulfonium chloride Many plants ? 231
Salidroside Rhodiola rosea ? 232
Saponins Rubus parvifolius ? 233
Scopoletin Scopolia spp. ? 234
Soybean peptides Glycine max (soybean) ? 235
Sulforaphane Brassica oleracea ? 236
Tangeretin Citrus tangerine (tangerine) ? 237
Tanshinone ITA Salvia miltiorrhiza ? 238,239
Theaflavins Camellia sinensis (tea) ? 240
Theasinsensins Camellia sinensis (tea) ? 241
Thymoquinone Nigella sativa ? 242
Tiliroside Rose hips, strawberry, raspberry ? 243
Tormentic acid Eriobotrya japonica ? 244
Trans-cinnamic acid Cinnamon ? 245
Triterpenoid saponins Stauntonia chinensis ? 246
Ursolic acid Mirabilis jalapa, other plants ? 247,248
Xanthigen Punica granatum ? 249
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