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Abstract: A novel family of [1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives was synthesized by
annulation reactions of 8-quinolinesulfenyl chloride with unsaturated heteroatom and heterocyclic
compounds. It was found that the reactions with 4-pentenoic and 5-hexenoic acids, allyl chloride
and bromide, allyl cyanate and vinyl heterocyclic compounds (N-vinyl pyrrolidin-2-one and 1-
vinylimidazole) proceeded in a regioselective mode but with the opposite regiochemistry. The
reactions with vinyl heterocyclic compounds included electrophilic addition of the sulfur atom of 8-
quinolinesulfenyl chloride to the β-carbon atom of the vinyl group. In the case of other substrates, the
annulation proceeded with the attachment of the sulfur atom to the α-carbon atom of the vinyl group.
The antibacterial activity of novel water-soluble compounds against Enterococcus durans, Bacillus
subtilis and Escherichia coli was evaluated. Compounds with high antibacterial activity were found.

Keywords: annulation reactions; [1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives; 8-quinolinesulfenyl
chloride; heterocycles; 4-pentenoic acid; 5-hexenoic acid; allyl halides

1. Introduction

Quinoline derivatives are used in the development of new drugs and exhibit a wide
spectrum of biological activity [1–5]. Many medications contain the quinoline ring includ-
ing antibacterial, antivirus and antimalarial (chloroquine, hydroxychloroquine, amodi-
aquine, primaquine) drugs [1–5]. The fluoroquinolone antibiotics (ciprofloxacin, lev-
ofloxacin, moxifloxacin, et al.) are one of most important classes of broad-spectrum
bacteriocidals, which are very effective against both Gram-negative and Gram-positive bac-
teria [1]. A number of fluoroquinolone antibiotics (rufloxacin, levofloxacin, nadifloxacin)
have a tricyclic core structure (Figure 1).

A combination of the quinoline scaffold with condensed sulfur-containing heterocycles
has proven a fruitful approach in the development of new drugs [6,7]. Valuable examples
of such combinations include penicillin and cephalosporin antibiotics, as well as the
fluoroquinolone antibiotics prulifloxacin and rufloxacin (Figure 1). Levofloxacin and
nadifloxacin represent antibiotics containing the quinoline scaffold condensed with six-
membered cyclic structures (Figure 1).

A quinoline core structure fused with a thiazine heterocycle is a valuable scaffold
for the development of derivatives with possible biological activity [8–11]. The 2H,3H-
[1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives show various biological activities [12–20]
including anticancer [18], antibacterial [19] and anti-tuberculosis [20] properties. The
commonly used antibiotic rufloxacin can be also considered a 2H,3H-[1,4]thiazino[2,3,4-
ij]quinolin-4-ium derivative (Figure 1).
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Figure 1. Known biologically active tricyclic quinoline compounds structurally related to the 2H,3H-
[1,4]thiazino[2,3,4-ij]quinolin-4-ium scaffold (fluoroquinolone antibiotics [1–5], compounds with antibacterial [19] and anti-
tuberculosis [20] activity).

The development of a method for the efficient regioselective synthesis of novel hetero-
cyclic and condensed organochalcogen compounds by cyclization and annulation reactions
of chalcogen reagents is the focus of our research [21–34]. Recently we described the
annulation reactions of 8-pyridinesulfenyl halides with functionalized alkenes and cy-
cloalkenes affording a series of 2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives in
high yields [33,34]. For example, the annulation reactions with divinyl and vinyl phenyl
sulfides proceeded with the attachment of the sulfur atom of 8-pyridinesulfenyl halides at
the β-position of the vinylsulfanyl group, while the addition of the sulfur atom occurred at
the α-carbon atom of the vinylsilyl moiety in the case of tetravinyl silane with the formation
of 2-(trivinylsilyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (1) (Scheme 1).
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Scheme 1. The annulation reactions of 8-quinolinesulfenyl chloride with vinyl sulfides and
tetravinyl silane.

Despite some progress in the development of synthetic methods for the preparation of
2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives [33–41], the annulation reactions of
8-quinolinesulfenyl halides with a number of vinylic heteroatom compounds (4-pentenoic
acid, 5-hexenoic acid, allyl chloride and bromide, allyl cyanate, N-vinyl pyrrolidin-2-one, 1-
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vinylimidazole, ethyl and butyl vinyl ethers) have not been described in the literature. The
synthesis of novel families of compounds with potential biological activity and evaluation
of their antimicrobial properties represent urgent tasks.

The goal of this research is the development of a method for the regioselective synthesis
of a novel family of [1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives based on the annulation
reactions of 8-quinolinesulfenyl chloride with unsaturated heteroatom and heterocyclic
compounds (4-pentenoic acid, 5-hexenoic acid, allyl chloride and bromide, allyl cyanate,
N-vinyl pyrrolidin-2-one, 1-vinylimidazole, 2,3-dihydrofuran, ethyl and butyl vinyl ethers)
and the evaluation of their antibacterial activity.

2. Results and Discussion

The action of sulfuryl chloride on di(8-quinolinyl) disulfide (2) in methylene chlo-
ride or chloroform led to the generation of 8-quinolinesulfenyl chloride (3), which was
used in situ without isolation in further reactions with unsaturated heteroatom com-
pounds (Scheme 2).
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Condensed water-soluble organic salts containing carboxyl function are very promis-
ing with respect to possible biological activity. We obtained [1,4]thiazino[2,3,4-ij]quinolin-
4-ium derivatives based on the annulation reactions of 8-quinolinesulfenyl chloride 3 with
terminal alkenes bearing the carboxylic acid function: 4-pentenoic and 5-hexenoic acids.
When the annulation of 8-quinolinesulfenyl chloride with 4-pentenoic acid and 5-hexenoic
acids was carried out in methylene chloride at room temperature, the reaction was found
to be very sluggish. However, refluxing the reaction mixture in chloroform for 8 h made it
possible to obtain 2-(3-carboxyethyl)- and 2-(3-carboxypropyl)-2H,3H-[1,4]thiazino[2,3,4-
ij]quinolin-4-ium chlorides 4 and 5 with 70–72% yields (Scheme 3). Refluxing the reaction
mixture in methylene chloride for 8 h gave products 4 and 5 with only 49–52% yields.
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Scheme 3. Synthesis of 2-(3-carboxyethyl)- and 2-(3-carboxypropyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chlorides 4
and 5 from sulfenyl chloride 3, 4-pentenoic and 5-hexenoic acids.

Compounds 4 and 5 are light yellow water-soluble powders with a melting point
above 160 ◦C.

Allylchloride and allylbromide were involved in the annulation reactions with 8-
quinolinesulfenyl chloride 3. By carrying out the reaction of sulfenyl chloride 3 with
allylchloride and allylbromide under the same conditions as the synthesis of compounds
4 and 5 (refluxing the reaction mixture in chloroform for 8 h), 2-chloromethyl- and 2-
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(bromomethyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chlorides 6 and 7 were synthe-
sized with 98% and 90% yields, respectively (Scheme 4).
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The presence of carboxyl function and halogen atoms in structure of compounds
4–7 opens up opportunities for their functionalization by esterification, the nucleophilic
substitution of halogen and other reactions.

The reaction of 8-quinolinesulfenyl chloride 3 with allyl cyanate was very sluggish at
room temperature in methylene chloride. However, carrying out the reaction of sulfenyl
chloride 3 with allyl cyanate for 8 h in refluxing chloroform made it possible to obtain
2-cyanomethyl-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chlorides 8 with a 96% yield
(Scheme 5). Refluxing the reaction mixture in methylene chloride for 8 h led to product 8
with only a 67% yield.
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Scheme 5. Synthesis of 2-cyanomethyl-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride 8 from
sulfenyl chloride 3 and allylcyanate.

Compounds 6–8 are light yellow water-soluble powders with melting points of 138–
140 ◦C, 162–164 ◦C and 183–185 ◦C, respectively.

The involvement of substrates bearing potentially pharmacophoric heterocycles in
annulation reactions is important in terms of the possible manifestation of biological activity.
1-Vinylimidazole and N-vinyl pyrrolidin-2-one, which contain a vinyl group bonded to a
nitrogen atom, were involved in the annulation reactions with 8-quinolinesulfenyl chloride
3. The latter compound is an example of a heterocycle bearing a vinyl amide moiety in
its structure.

The annulation reaction of 8-quinolinesulfenyl chloride 3 with 1-vinylimidazole was
carried out at room temperature in methylene chloride, affording 3-(1H-imidazol-1-yl)-
2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (9) with a 75% yield (Scheme 6).

Under the same conditions, the annulation reaction of 8-quinolinesulfenyl chloride
3 with N-vinyl pyrrolidin-2-one gave the annulation products with a 59% yield along
with some by-products. It was found that this reaction proceeded more efficiently and
selectively in the presence of potassium perchlorate.

3-(2-Oxopyrrolidin-1-yl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium perchlorate (10)
was obtained with a 70% yield by the reaction of 8-quinolinesulfenyl chloride 3 with N-vinyl
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pyrrolidin-2-one in the presence of an equimolar amount of potassium
perchlorate (Scheme 6).
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Scheme 6. Synthesis of 3-(1H-imidazol-1-yl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride 9 and 3-(2-oxopyrrolidin-
1-yl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium perchlorate (10) from sulfenyl chloride 3 and 1-vinylimidazole and N-vinyl
pyrrolidin-2-one.

Attempts were made to increase the yields by refluxing the reaction mixture in methy-
lene chloride or chloroform. This made it possible to obtain products 9 and 10 with
90–94% yields; however, the selectivity of the reactions decreased, and compounds 9 and
10 were contaminated with by-products (6–10%), from which it was difficult to separate
the target compounds.

The reactions with 4-pentenoic and 5-hexenoic acids, allylchloride, allylbromide and
allyl cyanate included the electrophilic addition of the sulfur atom from sulfenyl chloride
3 to the α-carbon atom of the vinyl group (“anti-Markovnikov direction”), while the
annulation reactions with N-vinyl pyrrolidin-2-one and 1-vinylimidazole proceeded with
the attachment of the sulfur atom to the β-carbon atom of the vinyl group (“Markovnikov
direction”). We presume that the reactions of sulfenyl chloride 3 with N-vinyl pyrrolidin-
2-one and 1-vinylimidazole proceed via linear intermediates B (Scheme 7) which are
stabilized by the nitrogen atom (the nitrogen atom’s ability to stabilize adjacent carbocation
is well known [42]).
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It is known that the electrophilic addition of sulfenyl chlorides [43–52] to linear 1-
alkene leads predominantly to anti-Markovnikov products [43–46] and thiiranium cations
are regarded as intermediates in these reactions [43–48]. In the cases of 4-pentenoic and
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5-hexenoic acids, allylchloride, allylbromide and allyl cyanate, there are no heteroatoms
(adjacent to the double bond) which could stabilize the intermediates, and the reactions take
place via thiiranium intermediate A. Taking into account the steric factor, the nucleophilic
attack of the nitrogen atom of the quinoline ring occurs at the unsubstituted carbon atom
of thiiranium intermediate A and this course determines the “anti-Markovnikov direction”
of the reactions (Scheme 7).

Vinyl ethers are promising substrates for annulation reactions due to the high reactivity
of these compounds in electrophilic additions. The reactions of sulfenyl chloride 3 with
ethyl vinyl and butyl vinyl ethers proceeded smoothly at room temperature in methylene
chloride, producing 3-ethoxy- and 3-butoxy-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium
chlorides 11 and 12 in quantitative yields (Scheme 8).
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Scheme 8. Synthesis of 3-ethoxy- and 3-butoxy-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chlorides 11 and 12 from sulfenyl
chloride 3 and ethyl vinyl and butyl vinyl ethers.

Like the synthesis of products 9 and 10, the reactions of sulfenyl chloride 3 with
ethyl vinyl and butyl vinyl ethers are believed to occur via linear intermediates (similar
to intermediate B, Scheme 7), which are stabilized by the oxygen atom (the oxygen atom
exhibits a strong ability to stabilize adjacent carbocation [53]).

Finally, based on the reaction of sulfenyl chloride 3 with cyclic vinyl ether, 2,3-
dihydrofuran, we synthesized the condensed four-membered heterocycle 13, which is
of interest for evaluation of antibacterial activity and comparison with the antibacterial
properties of products 11 and 12, obtained from ethyl vinyl and butyl vinyl ethers. The
reactions of sulfenyl chloride 3 with 2,3-dihydrofuran was carried out in the presence of
an equimolar amount of KClO4 at room temperature in methylene chloride, leading to
perchlorate 13 with a 72% yield (Scheme 9).
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Scheme 9. Synthesis of 7aH,8H,9H,10aH-furo[2′,3′:5,6][1,4]thiazino[2,3,4-ij]quinolin-11-ium perchlo-
rate (13) from sulfenyl chloride 3, 2,3-dihydrofuran and potassium perchlorate.

Similarly to the reactions with ethyl vinyl and butyl vinyl ethers (Scheme 8), synthesis
of compound 13 was regioselective and the sulfur atom of sulfenyl chloride 3 bonded to
the β-carbon atom of the vinyloxy group.

The antibacterial activity of the synthesized compounds was evaluated. The minimal
inhibitory concentration (MIC) was determined using the broth standard microdilution
method [54].

Compounds 1, 4–13 were tested in vitro for antibacterial activity against bacterial
strains of gram-positive Enterococcus durans B-603, Bacillus subtilis B-406 and gram-negative
Escherichia coli B-1238 (the bacterial strains were taken from the All-Russian Collection
of Microorganisms) and the obtained results were compared to the activity of standard
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aminoglycoside antibiotic gentamicin (the minimal inhibitory concentrations are 25, 50 and
100 µg/mL against E. durans, B. subtilis and E. coli, respectively). The obtained results are
presented in the Table 1.

The activities of compounds 4 and 5, which differ only in one CH2 group, are sig-
nificantly different. Compound 5, with its longer carbon chain, exhibited considerably
higher activity against gram-positive E. durans and B. subtilis and is superior to antibiotic
gentamicin in this respect (Table 1).

Table 1. Evaluation of the antibacterial activity of compounds 1, 4–13.

No Compound
Minimum Inhibitory Concentration (µg/mL)

Enterococcus
durans

Bacillus
subtilis

Escherichia
coli

1
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3.1 12.5 250

Gentamicin *
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* Antibiotic gentamicin was used as a control compound.

Compounds 6 and 7 differ only in the halogen atom. Bromo-containing compound 7
was 40 times more effective than its chlorine analogue 6 against E. durans. However, product
6 was the most effective among the obtained compounds against gram-negative bacteria
E. coli. Silicon-containing product 1 and compound 8 showed low activity. Compound 9
exhibited average activity against all tested bacteria (Table 1).

The comparison of compounds 11–13 revealed higher activity in products 11 and 13
(obtained from ethyl vinyl ether and 2,3-dihydrofuran), at levels which were superior to
the activity of gentamicin against gram-positive bacteria.

The highest activity was shown by product 10 (obtained from N-vinyl pyrrolidin-2-
one), which significantly exceeded the activity of gentamicin and all obtained compounds
against gram-positive bacteria and was more than a hundred times superior to this antibi-
otic against B. subtilis (Table 1).

The structural assignments of synthesized compounds were made using 1H and 13C-
NMR spectroscopy, including two-dimensional experiments (Supplementary Materials
containing examples of NMR spectra are available online), and confirmed by elemen-
tal analysis.

The products with the opposite regiochemistry show the characteristic signals of
carbon atoms bonded with a charged nitrogen (N+) atom and a sulfur atom. The number
of protons (one or two) bonded to the carbon atoms adjacent to the charged nitrogen
atom and to the sulfur atom is important (the number of protons is determined by NMR
experiments). For example, the CHS moiety and the CH2N+ methylene group manifested
themselves in the regions of 32–43 ppm and 58–64 ppm, respectively, in the 13C-NMR
spectra of compounds 4–8 (the products derived from anti-Markovnikov addition of the
sulfur electrophile to the double bond). Signals of the one-proton-containing OCHN+

moiety were observed in the downfield region of 91–92 ppm in the 13C-NMR spectra
of compounds 11–13 (the products derived from Markovnikov addition of the sulfur
electrophile to the double bond).

3. Experimental Section
3.1. General Information

The 1H (400.1 MHz) and 13C (100.6 MHz) NMR spectra were recorded on a Bruker
DPX-400 spectrometer (Bruker BioSpin GmbH, Rheinstetten, Germany) in 2–5% solution
in D2O, DMSO-d6, methanol-d4 or acetone-d6.

1H and 13C chemical shifts (δ) were reported
in parts per million (ppm), relative to tetramethylsilane (external) or to the residual solvent
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peaks of D2O (δ = 4.79), acetone-d6 (δ = 2.05 and 29.84 ppm), methanol-d4 (δ = 3.31 and
49.0 ppm) and DMSO-d6 (δ = 2.50 and 39.52 ppm for 1H and 13C NMR, respectively).
The term “quino” in spectral data indicates belonging to the quinoline ring. The ele-
mental analysis was performed on a Thermo Scientific FLASH 2000 Organic Elemental
Analyzer (Thermo Fisher Scientific Inc., Milan, Italy). Melting points were determined on a
Kofler Hot-Stage Microscope PolyTherm A apparatus (Wagner & Munz GmbH, München,
Germany). Absolute solvents were used in the reactions.

3.2. Synthesis of Compounds 4–8

2-(3-Carboxyethyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (4). A solution
of sulfuryl chloride (0.076 g, 0.56 mmol) in chloroform (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.180 g, 0.56 mmol) in chloroform (10 mL), and the
mixture was stirred for 10 min at room temperature. A solution of pentenoic acid (0.112 g,
1.12 mmol) in chloroform (10 mL) was added dropwise, and the reaction mixture stirred for
1 h at room temperature and 8 h at reflux temperature. After cooling in the refrigerator, the
formed precipitate was filtered off and dried in a vacuum, producing the product (0.232 g,
70% yield) as a yellow powder, mp 170–172 ◦C.

1H-NMR (400 MHz, D2O): δ 1.80–1.90 (m, 1H, CH2), 2.13–2.22 (m, 1H, CH2), 2.65 (t,
J = 7.2 Hz, 2H, CH2), 3.85–3.86 (m, 1H, SCH), 5.07 (dd, J = 14.2, 6.8 Hz, 1H, NCH2), 5.31 (d,
J = 14.3 Hz, 1H, NCH2), 7.74–7.77 (m, 1H, Cquino), 7.93–7.94 (m, 1H, Cquino), 8.00–8.04 (m,
2H, Cquino), 9.06–9.12 (m, 2H, Cquino).

13C-NMR (101 MHz, D2O): δ 27.21 (CH2), 31.81 (CH2), 36.86 (SCH), 63.72 (NCH2),
122.83 (Cquino), 126.27 (Cquino), 128.26 (Cquino), 130.55 (Cquino), 131.91 (Cquino), 134.43
(Cquino), 134.50 (Cquino), 150.26 (Cquino), 150.40 (Cquino), 177.83 (COOH).

Anal. Calcd for C14H14ClNO2S: C 56.85, H 4.77, N 4.74, Cl 11.99, S 10.84. Found: C
56.97, H 4.91, N 4.96, Cl 12.35, S 11.21.

2-(3-Carboxypropyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (5). A solution
of sulfuryl chloride (0.087 g, 0.64 mmol) in chloroform (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.206 g, 0.64 mmol) in chloroform (10 mL), and the
mixture was stirred for 10 min at room temperature. A solution of hexenoic acid (0.147 g,
1.28 mmol) in chloroform (10 mL) was added dropwise, and the reaction mixture stirred for
1 h at room temperature and 8 h at reflux temperature. After cooling in the refrigerator, the
formed precipitate was filtered off and dried in a vacuum, producing the product (0.286 g,
72% yield) as a yellow powder, mp 161–162 ◦C.

1H-NMR (400 MHz, D2O): δ 1.68–1.86 (m, 4H, CH2), 2.36 (t, J = 6.7 Hz, 2H, CH2),
3.70–3.77 (m, 1H, SCH), 4.97 (dd, J = 14.2, 7.8 Hz, 1H, NCH2), 5.26 (d, J = 14.2 Hz, 1H,
NCH2), 7.69–7.73 (m, 1H, Cquino), 7.88–7.90 (m, 1H, Cquino), 7.95–7.99 (m, 2H, Cquino),
9.02–9.09 (m, 2H, Cquino).

13C-NMR (101 MHz, D2O): δ 21.41 (CH2), 30.36 (CH2), 33.06 (CH2), 36.27 (SCH), 62.91
(NCH2), 121.78 (Cquino), 125.90 (Cquino), 127.18 (Cquino), 129.60 (Cquino), 131.06 (Cquino),
133.43 (Cquino), 133.67 (Cquino), 149.16 (Cquino), 149.25 (Cquino), 178.03 (COOH).

Anal. Calcd for C15H16ClNO2S: C 58.15, H 5.21, N 4.52, Cl 11.44, S 10.35. Found: C
58.73, H 5.61, N 4.69, Cl 11.89, S 10.91.

2-(Chloromethyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (6). A solution of
sulfuryl chloride (0.065 g, 0.48 mmol) in chloroform (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.154 g, 0.48 mmol) in chloroform (10 mL), and the
mixture was stirred for 10 min at room temperature. A solution of allyl chloride (0.073 g,
0.96 mmol) in chloroform (10 mL) was added dropwise, and the reaction mixture stirred
for 1 h at room temperature and 8 h at reflux temperature. The mixture was filtered and the
solvent was removed by rotary evaporator. The residue was dried in a vacuum, producing
the product (0.260 g, 98% yield) as a yellow powder, mp 138–140 ◦C.
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1H-NMR (400 MHz, D2O): δ 3.66–3.71 (m, 1H, CH2), 4.03 (dd, J = 11.7, 5.6 Hz, 1H,
CH2), 4.20 (s, 1H, SCH), 5.34 (d, J = 14.3 Hz, 1H, NCH2), 5.48 (dd, J = 14.3, 4.7 Hz, 1H,
NCH2), 7.84–7.88 (m, 1H, Cquino), 8.03–8.12 (m, 3H, Cquino), 9.12–9.20 (m, 2H, Cquino).

13C-NMR (101 MHz, D2O): δ 36.56 (CH2), 42.69 (SCH), 58.84 (NCH2), 121.86 (Cquino),
124.05 (Cquino), 127.31 (Cquino), 129.57 (Cquino), 130.95 (Cquino), 131.73 (Cquino), 133.43
(Cquino), 149.40 (Cquino), 149.60 (Cquino).

Anal. Calcd for C12H11Cl2NS: C 52.95, H 4.07, N 5.15, Cl 26.05, S 11.78. Found: C
53.13, H 4.17, N 5.39, Cl 26.46, S 12.21.

2-(Bromomethyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (7). A solution of
sulfuryl chloride (0.082 g, 0.60 mmol) in chloroform (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.194 g, 0.60 mmol) in chloroform (10 mL), and the
mixture was stirred for 10 min at room temperature. A solution of allyl bromide (0.147 g,
1.2 mmol) in chloroform (10 mL) was added dropwise, and the reaction mixture stirred
for 1 h at room temperature and 8 h at reflux temperature and 16 h at room temperature.
The mixture was filtered and the solvent was removed by rotary evaporator. The residue
was dried in a vacuum, producing the product (0.342 g, 90% yield) as a yellow powder,
mp 162–164 ◦C.

1H-NMR (400 MHz, D2O): δ 3.70–3.76 (m, 1H, CH2), 4.04–4.09 (m, 1H, CH2), 4.25 (s,
1H, SCH), 5.38 (d, J = 14.7 Hz, 1H, NCH2), 5.38 (d, J = 14.7 Hz, 1H, NCH2), 7.90–7.92 (m,
1H, Cquino), 8.09 (s, 2H, Cquino), 8.14–8.16 (m, 1H, Cquino), 9.16–9.18 (m, 1H, Cquino), 9.22 (s,
1H, Cquino).

13C-NMR (101 MHz, D2O): δ 36.53 (CH2), 42.65 (SCH), 58.81 (NCH2), 121.83 (Cquino),
124.34 (Cquino), 127.24 (Cquino), 129.51 (Cquino), 130.89 (Cquino), 132.62 (Cquino), 133.35
(Cquino), 149.34 (Cquino), 149.58 (Cquino).

Anal. Calcd for C12H11BrClNS: C 45.52, H 3.50, N 4.42, Br 25.23, Cl 11.20, S 10.13.
Found: C 45.83, H 3.71, N 4.59, Br 25.64, Cl 11.56, S 10.69.

2-(Cyanomethyl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (8). A solution of
sulfuryl chloride (0.059 g, 0.44 mmol) in chloroform (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.140 g, 0.44 mmol) in chloroform (10 mL), and the
mixture was stirred for 10 min at room temperature. A solution of allyl cyanide (0.059 g,
0.88 mmol) in chloroform (10 mL) was added dropwise, and the reaction mixture stirred for
1 h at room temperature and 8 h at reflux temperature. After cooling in the refrigerator, the
formed precipitate was filtered off and dried in a vacuum, producing the product (0.223 g,
96% yield) as a yellow powder, mp 183–185 ◦C.

1H-NMR (400 MHz, (CD3)2CO): δ 2.97 (qd, J = 17.5, 7.0 Hz, 1H, CH2), 4.18 (dd, J = 12.8,
6.7 Hz, 1H, SCH), 5.11 (dd, J = 14.3, 6.7 Hz, 1H, NCH2), 5.48 (d, J = 14.3 Hz, 1H, NCH2),
7.71–7.75 (m, 1H, Cquino), 7.88–8.00 (m, 3H, Cquino), 8.99–9.02 (m, 2H, Cquino).

13C-NMR (101 MHz, (CD3)2CO): δ 20.65 (CH2), 31.61 (SCH), 60.67 (NCH2), 117.26
(CN), 121.58 (Cquino), 123.30 (Cquino), 125.36 (Cquino), 127.45 (Cquino), 129.43 (Cquino), 130.64
(Cquino), 133.53 (Cquino), 149.33 (Cquino), 149.45 (Cquino).

Anal. Calcd for C13H11ClN2S: C 59.42, H 4.22, N 10.66, Cl 13.49, S 12.20. Found: C
59.83, H 4.47, N 10.99, Cl 14.00, S 12.74.

3.3. Synthesis of Compounds 9–13

3-(1H-Imidazol-1-yl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (9). A solution of
sulfuryl chloride (0.081 g, 0.60 mmol) in methylene chloride (10 mL) was added dropwise to
a solution of di(8-quinolinyl) disulfide (0.192 g, 0.60 mmol) in methylene chloride (10 mL),
and the mixture was stirred for 10 min at room temperature. A solution of 1-vinylimidazole
(0.113 g, 1.2 mmol) in methylene chloride (10 mL) was added dropwise, and the reaction
mixture was stirred for 48 h at room temperature. The formed precipitate was filtered
off, washed with cold hexane and dried in a vacuum, producing the product (0.263 g,
75% yield) as a dark yellow powder, mp 127–129 ◦C.
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1H-NMR (400 MHz, methanol-d4): δ 3.69 (dd, J = 14.2, 3.9 Hz, 1H, SCH2), 3.82 (dd,
J = 14.2, 1.4 Hz, 1H, SCH2), 6.41 (s, 1H, NCH), 7.25 (s, 2H, CH=CH), 7.87 (t, J = 7.9 Hz, 1H,
NCHN), 8.06–8.18 (m, 4H, Cquino), 9.27–9.29 (m, 1H, Cquino), 9.51–9.52 (m, 1H, Cquino).

13C-NMR (101 MHz, methanol-d4): δ 29.45 (t, JC–H 145.7 Hz, SCH2), 94.35 (d, JC–H
168.6 Hz, NCH), 121.41 (CH=CH), 122.50 (Cquino), 128.31 (Cquino), 128.49 (Cquino), 130.65
(Cquino), 133.19 (Cquino), 133.62 (Cquino), 134.00 (Cquino), 135.89 (Cquino), 150.05 (Cquino),
152.11 (N=CHN).

Anal. Calcd for C14H12N3ClS: C 58.03, H 4.17, Cl 12.23, N 14.50, S 11.07. Found: C
55.94, H 4.52, Cl 12.69, N 5.23, S 11.51.

3-(2-Oxopyrrolidin-1-yl)-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium perchlorate (10). A
solution of sulfuryl chloride (0.107 g, 0.79 mmol) in methylene chloride (10 mL) was added
dropwise to a solution of di(8-quinolinyl) disulfide (0.254 g, 0.79 mmol) in methylene
chloride (10 mL), and the mixture was stirred for 10 min at room temperature. Anhydrous
KClO4 (0.219 g, 1.58 mmol) was added and the mixture was stirred for 10 min. A solution
of N-vinylpyrrolidone (0.176 g, 1.58 mmol) in methylene chloride (10 mL) was added
dropwise, and the reaction mixture was stirred for 24 h at room temperature. After
filtration the solvent was removed by rotary evaporator. The residue was recrystallized
from methanol/ether 1:1 and dried in a vacuum, producing the product (0.41 g, 70% yield)
as a orange powder, mp 149–150 ◦C.

1H-NMR (400 MHz, D2O): δ 2.06–2.25 (m, 2H, CH2), 2.61–2.67 (m, 2H, CH2), 3.37–3.42
(m, 1H, SCH2), 3.80–3.88 (m, 2H, CH2), 3.97–4.00 (m, 1H, SCH2), 7.19 (s, 1H, NCH), 7.92–
7.96 (m, 1H, Cquino), 8.10–8.15 (m, 1H, Cquino), 8.18–8.22 (m, 1H, Cquino), 9.21–9.25 (m,
2H, Cquino).

13C-NMR (101 MHz, D2O): δ 18.24 (CH2), 26.61 (CH2), 30.73 (CH2), 45.32 (SCH2),
72.01 (NCH), 122.28 (Cquino), 125.66 (Cquino), 128.45 (Cquino), 129.91 (Cquino), 132.00 (Cquino),
134.39 (Cquino), 134.96 (Cquino), 147.10 (Cquino), 151.10 (Cquino), 180.49 (C=O).

Anal. Calcd for C15H15N2O5ClS: C 48.59, H 4.08, N 7.55, Cl 9.56, S 8.65. Found: C
48.69, H 4.21, N 7.75, Cl 9.70, S 8.91.

3-Ethoxy-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (11). A solution of sulfuryl
chloride (0.045 g, 0.33 mmol) in methylene chloride (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.106 g, 0.48 mmol) in methylene chloride (5 mL),
and the mixture was stirred for 10 min at room temperature. A solution of vinyl ethyl
ether (0.048 g, 0.66 mmol) in methylene chloride (10 mL) was added dropwise, and the
reaction mixture stirred for 20 h at room temperature. The solvent was removed by
rotary evaporator and the residue was dried in a vacuum, producing the product (0.177 g,
~100% yield) as an orange oil.

1H-NMR (400 MHz, D2O): δ 1.19 (t, J = 7.0 Hz, 3H, CH3), 3.66–3.74 (m, 2H, SCH2,
OCH2), 3.81 (dd, J = 14.3, 1.9 Hz, 1H, SCH2), 4.00 (dd, J = 9.2, 7.0 Hz, 1H, OCH2), 6.52 (d,
J = 1.9 Hz, 1H, NCH), 7.81–7.85 (m, 1H, Cquino), 8.04–8.06 (m, 1H, Cquino), 8.10–8.15 (m, 2H,
Cquino), 9.21–9.24 (m, 1H, Cquino), 9.38–9.40 (m, 1H, Cquino).

13C-NMR (101 MHz, D2O): δ 13.81 (CH3), 28.51 (SCH2), 66.27 (OCH2), 91.48 (NCH),
121.24 (Cquino), 125.52 (Cquino), 127.44 (Cquino),128.09 (Cquino), 129.39 (Cquino), 131.55 (Cquino),
133.08 (Cquino), 148.21 (Cquino), 151.05 (Cquino).

Anal. Calcd for C13H14NClOS: C 58.31, H 5.27, N 5.23, Cl 13.24, S 11.97. Found: C
58.60, H 5.36, N 5.54, Cl 13.61, S 12.42.

3-Butoxy-2H,3H-[1,4]thiazino[2,3,4-ij]quinolin-4-ium chloride (12). A solution of sulfuryl
chloride (0.077 g, 0.57 mmol) in methylene chloride (10 mL) was added dropwise to a
solution of di(8-quinolinyl) disulfide (0.183 g, 0.57 mmol) in methylene chloride (5 mL),
and the mixture was stirred for 10 min at room temperature. A solution of vinyl butyl
ether (0.114 g, 1.14 mmol) in methylene chloride (10 mL) was added dropwise, and the
reaction mixture stirred for 24 h at room temperature. The solvent was removed by
rotary evaporator and the residue was dried in a vacuum, producing the product (0.338 g,
~100% yield) as a light yellow powder, mp 139–140 ◦C.
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1H-NMR (400 MHz, D2O): δ 0.72 (t, J = 7.4 Hz, 3H, CH3), 1.16 (dt, J = 15.5, 7.5 Hz, 2H,
CH2), 1.50 (s, 2H, CH2), 3.58 (d, J = 7.8 Hz, 1H, OCH2), 3.72 (d, J = 14.0 Hz, 1H, SCH2), 3.82
(d, J = 14.0 Hz, 1H, SCH2), 3.94 (d, J = 8.8 Hz, 1H, OCH2), 6.49 (s, 1H, NCH), 7.87–7.91 (m,
1H, Cquino), 8.07–8.16 (m, 3H, Cquino), 9.22–9.24 (m, 1H, Cquino), 9.34–9.36 (m, 1H, Cquino).

13C-NMR (101 MHz, D2O): δ 12.64 (CH3), 18.26 (CH2), 28.44 (CH2), 30.12 (SCH2),
69.95 (OCH2), 91.51 (NCH), 121.09 (Cquino), 124.41 (Cquino), 125.11 (Cquino), 127.42 (Cquino),
129.47 (Cquino), 131.64 (Cquino), 133.10 (Cquino), 148.08 (Cquino), 151.08 (Cquino).

Anal. Calcd for C15H18NClOS: C 60.90, H 6.13, N 4.73, Cl 11.98, S 10.84. Found: C
61.20, H 6.36, N 5.04, Cl 12.29, S 11.10.

7aH,8H,9H,10aH-Furo[2′,3′:5,6][1,4]thiazino[2,3,4-ij]quinolin-11-ium perchlorate (13). A
solution of sulfuryl chloride (0.079 g, 0.58 mmol) in methylene chloride (10 mL) was added
dropwise to a solution of di(8-quinolinyl) disulfide (0.187 g, 0.58 mmol) in methylene
chloride (10 mL), and the mixture was stirred for 10 min at room temperature. Anhy-
drous KClO4 (0.162 g, 1.17 mmol) was added and the mixture was stirred for 10 min.
A solution of 2,3-dihydrofuran (0.082 g, 1.17 mmol) in methylene chloride (10 mL) was
added dropwise, and the reaction mixture was stirred for 48 h at room temperature. After
filtration the solvent was removed by rotary evaporator. The residue was recrystallized
from methanol/ether 1:1 and dried in a vacuum, producing the product (0.278 g, 72% yield)
as an orange powder, mp 219–220 ◦C.

1H-NMR (400 MHz, DMSO-d6): δ 1.81–1.92 (m, 1H, CH2), 2.60–2.64 (m, 1H, CH2),
4.10–4.15 (m, 1H, SCH), 4.22–4.33 (m, 2H, CH2O), 6.52 (d, J = 4.7 Hz, 1H, NCH), 7.82–7.86
(m, 1H, Cquino), 8.02–8.04 (m, 1H, Cquino), 8.15–8.20 (m, 1H, Cquino), 9.19–9.21 (m, 1H,
Cquino), 9.57–9.58 (1H, Cquino).

13C-NMR (101 MHz, DMSO-d6): δ 28.50 (CH2), 37.36 (SCH), 68.90 (CH2O), 91.62
(NCH), 121.84 (Cquino), 122.15 (Cquino), 127.44 (Cquino), 129.19 (Cquino), 130.24 (Cquino),
132.91 (Cquino), 133.40 (Cquino), 146.62 (Cquino), 149.24 (Cquino).

Anal. Calcd for C13H12NClO5S: C 47.35, H 3.67, N 4.25, Cl 10.75, S 9.72. Found: C
47.82, H 3.52, N 4.75, Cl 11.25, S 10.08.

4. Conclusions

Unsaturated heteroatom (4-pentenoic and 5-hexenoic acids, allyl chloride and bromide,
allyl cyanate, ethyl vinyl and butyl vinyl ethers) and heterocyclic (N-vinyl pyrrolidin-
2-one, 1-vinylimidazole and 2,3-dihydrofuran) compounds were used for the efficient
regioselective synthesis of a novel family of [1,4]thiazino[2,3,4-ij]quinolin-4-ium derivatives
by annulation reactions with 8-quinolinesulfenyl chloride.

The reactions with 4-pentenoic and 5-hexenoic acids, allylchloride, allylbromide and
allyl cyanate included the electrophilic addition of the sulfur atom of sulfenyl chloride to
the α-carbon atom of the vinyl group (“anti-Markovnikov direction”), while the annulation
reactions with N-vinyl pyrrolidin-2-one, 1-vinylimidazole, 2,3-dihydrofuran, ethyl vinyl
and butyl vinyl ethers proceeded with the attachment of the sulfur atom to the β-carbon
atom of the vinyl group (“Markovnikov direction”). We presume that in the latter case the
reactions proceed via linear intermediates (Scheme 7) which are stabilized by the nitrogen
or oxygen atom. In the case of the anti-Markovnikov direction of the reactions, there are no
heteroatoms adjacent to the double bond which could stabilize the intermediates, and the
reactions take place via thiiranium intermediates.

The antibacterial activity of novel water-soluble compounds against E. durans, B. subtilis
and E. coli was evaluated and the compounds with high antibacterial activity have been
found (Table 1). Compound 5, with its longer carbon chain, exhibited considerably higher
activity against gram-positive E. durans and B. subtilis and was superior to antibiotic gen-
tamicin in this respect. Bromo-containing compound 7 was 40 times more effective than
its chlorine analogue 6 against E. durans. A comparison of compounds 11–13 revealed that
products 11 and 13 (obtained from ethyl vinyl ether and 2,3-dihydrofuran) displayed supe-
rior activity compared to gentamicin against gram-positive bacteria. The highest activity
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was shown by product 10 (obtained from N-vinyl pyrrolidin-2-one), which significantly
exceeded the activity of gentamicin and all obtained compounds against gram-positive
bacteria and was more than a hundred times superior to this antibiotic against B. subtilis.

Supplementary Materials: The following are available online. Examples of NMR spectra of the
obtained compounds.
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