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Abstract
The characterization of subcellular protein localization provides a basis for further understanding cellular behaviors. A delineation of subcellular
localization of proteins on cytosolic membrane-bound organelles in human liver cancer cell lines (hLCCLs) has yet to be performed. To obtain
its proteome-wide view, we isolated and enriched six cytosolic membrane-bound organelles in one of the hLCCLs (SK_HEP1) and quantified
their proteins using mass spectrometry. The vigorous selection of marker proteins and a machine-learning-based algorithm were implemented
to localize proteins at cluster and neighborhood levels. We validated the performance of the proposed method by comparing the predicted
subcellular protein localization with publicly available resources. The profiles enabled investigating the correlation of protein domains with their
subcellular localization and colocalization of protein complexmembers. A subcellular proteome database for SK_HEP1, including (i) the subcellular
protein localization and (ii) the subcellular locations of protein complex members and their interactions, was constructed. Our research provides
resources for further research on hLCCLs proteomics.
Database URL: http://www.igenetics.org.cn/project/PSL-LCCL/

Introduction
The presence of subcellular compartments within eukaryotic
cells provides specialized location and physical and chemi-
cal environment for protein expression, playing an essential
role in cellular homeostasis (1). Furthermore, tight regulation
of subcellular protein localization is vital for controlling cell
physiology, and their mislocalization has been a critical fea-
ture in various cancer cells (2, 3). Thus, the knowledge of
the spatial distribution of proteins at the subcellular level is
essential for fully understanding cellular behaviors.

Spatial proteomics (4) is an emerging field for mapping all
proteins’ locations within the cell that enables a systematic
view of subcellular structure (1). Recent developments in pro-
teomics have provided an avenue for detecting thousands of
proteins in multiple subcellular compartments simultaneously
(5–7). Itzhak et al. (6) constructed an organelle map for the
HeLa cell by parsing the localization of 8710 proteins and
then identifying translocation events after EGF treatment. The
temporal and spatial changes in organelle proteome charac-
terized the interaction between the host and virus in human
cytomegalovirus-infected fibroblasts (5). An investigation for

five cancer cell lines [i.e. A431 (epidermoid carcinoma), U251
(glioblastoma), MCF7 (breast cancer), NCI-H322 and HCC-
827 (lung cancer)] revealed that most proteins have a single
primary subcellular location, and alternative splicing seldom
affects their subcellular localization (8). Davies et al. (9)
applied the dynamic organellar maps in AP-4-deficient cells
to prove that AP-4 vesicles mediate the cellular distribution of
the autophagy protein (ATG9A), crucial for autophagosome
biogenesis and neuronal maintenance.

A traditional subcellular fractionation approach to spatial
proteomics enriches a particular organelle, followed by mass
spectrometry (MS) based protein identification (1). It has been
successfully used to define proteomes in individual organelles,
including lipid droplets (10), lysosome and transport vesicles
(11) andmitochondria (12). However, most organelles are not
amenable to genuine ‘purification’. For example, the ‘purified’
mitochondria contained a fraction of endoplasmic reticulum
proteins (12). The nucleosol marker PARP could be identi-
fied in the cytoplasm membrane-bound organelles (13). Thus,
subcellular fractionation may not isolate ‘pure’ fractions of
organelles but rather an enrichment (14).
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Figure 1. A graphical abstract for the present study. Six cytosolic membrane-bound organelles were isolated and enriched from SK_HEP1, and proteins
in each organelle were quantified by MS. A compiled list of marker proteins was clustered and trained using a machine-learning-based algorithm. All
proteins were localized at the cluster and neighborhood levels, respectively, as shown in a hierarchical structure. The localization of protein domains and
complexes was further investigated. The proteome for subcellular organelles was available at www.igenetics.org.cn/PSL-LCCL.

Human liver cancer is the sixth incidence and the third
leading cause of cancer-related mortality worldwide (15).
The Cancer Cell Line Encyclopedia compiled genetic aber-
rants and mRNA expression in 25 human liver cancer cell
lines (hLCCLs) (16). In addition, the liver hepatocellular
carcinoma (LIHC) cohort in TCGA characterized molecular
profiles of genomic aberrants, epigenetic and expression sig-
natures (16). Recently, an established Liver cancer cell Model
REpository, including 81 hLCCLs, provided a resource for
promoting liver cancer drug discovery (17). In addition, a pro-
teomics study on the qualitative and quantitative changes of
proteins underlying hepatocarcinogenesis has implications for
biomarker screening and therapeutic implications (18). How-
ever, the knowledge gap remains that an organelle map for
hLCCLs has yet to be portrayed.

Our previous study identified a component of the retromer
complex—VPS35—exerting its oncogenic role on LIHC
through FGFR3 recycling (19). To further investigate its role

in protein sorting and recycling, we characterized the spa-
tial proteome in six cytosolic membrane-bound organelles in
SK_HEP1 using a MS-based pipeline to separate and enrich
organelles. We clarified the subcellular protein localization in
SK_HEP1 and provided a resource for further community use
(http://www.igenetics.org.cn/project/PSL-LCCL/).

Materials and methods
The framework for the present study included isolation and
enrichment of six membrane-bound organelles, MS and data
analysis (Figure 1).

The culture of SK_HEP1 cells
The parental SK_HEP1 was obtained from the Chinese
Academy of Sciences (Shanghai, China) and was confirmed
free of mycoplasma (MycoAlert PLUS kit; Lonza, Basel,
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Switzerland). In addition, short tandem repeat profiling con-
firmed cell authentication (Beijing Microread Gene Technol-
ogy Co., Beijing, China). We have previously established a
VPS35-knockout (KO) model and demonstrated the onco-
genic role of VPS35 in the development of liver cancer (19).
Both parental and VPS35-KO SK_HEP1 cells were cultured
under the same protocol described previously (19). SK_HEP1
cells were passed for 11 generations with an available concen-
tration of 1×108.

Protein extraction and digestion
SK_HEP1 cells were mechanically lysed to release organelles.
Six targeted membrane-bound organelles, including the
plasma membrane, endoplasmic reticulum, endosome, lyso-
some, Golgi apparatus and mitochondria, were extracted
using the Minute organelle Protein Isolation Kit (Invent
Biotechnologies Inc., MN), respectively. These organelles
were derived from the cultured cells in simultaneous batches
in technical triplicate. The organelle was lysed in lysis buffer
(8M urea, 100mM ammonium bicarbonate and pH 8.0)
supplemented with protease inhibitors for 20min on ice. Sam-
ples were then sonicated for 2min (3 s on and 3 s off)
on ice and centrifuged at 14 000 g for 10min. The super-
natants were collected, and the protein concentration was
measured using Bradford protein assay. Extracted proteins
were reduced in 10mM dithiothreitol at 56◦C for 60min and
then alkylated in 45mM iodoacetamide at room temperature
for 30min in darkness. The sample was diluted four times by
adding 25mM ammonium bicarbonate buffer, then under-
went trypsin digestion (enzyme-to-substrate ratio of 1:50 at
37◦C for 16 h) followed by desalting through C18 cartridges
(Beijing Qinglian Biotech, China) and vacuum-dried by Speed
Vac. The extracted proteins for each organelle were sub-
jected toWestern Blot analysis using organelle-specific marker
proteins for confirmation (Supplementary Figure S1A and
Supplementary Table S6).

Mass spectrometry
A 120-min gradient elution separated peptides at a flow rate
of 0.300µL/min with the EASY-nLC 1000 system, directly
interfaced with the Thermo Orbitrap Fusion mass spectrome-
ter. The analytical column was purchased from Thermofisher
(75µm ID, 150mm length; packed with C-18 resin). Mobile
phase A consisted of 0.1% formic acid, and mobile phase B
consisted of 100% acetonitrile and 0.1% formic acid. The
Orbitrap Fusion mass spectrometer was operated in the data-
dependent acquisition mode using Xcalibur3.0 software, and
there is a single full-scan mass spectrum in the Orbitrap
(350–1550m/z, 120 000 resolution) followed by 3-s data-
dependent MS/MS scans in an Ion Routing Multipole at 38%
normalized collision energy (HCD). MS was conducted in
Beijing Qinglian Biotech (Beijing, China).

The identification and quantitation of protein
The MS/MS spectra from each LC-MS/MS run were searched
against protein sequences fromUniProt usingMaxqant (Com-
putational Systems Biochemistry under Prof. Jürgen Cox,
DEU). The search criteria included that a complete tryptic
specificity was required, twomissed cleavage was allowed and
carbamidomethylation (C) was set as the fixed modifications.
The oxidation (M) was set as the variable modification, and

precursor ion mass tolerances were set at 15 ppm for all MS
acquired in an orbitrap mass analyzer. The fragment ion mass
tolerance was set at 20 mmu for all MS2 spectra acquired.
The peptide false discovery rate (FDR) was calculated using
Target Decoy PSM Validator provided by maxquant. When
searched against the reverse decoy database, FDR was deter-
mined based on PSMs. Peptides only assigned to a given
protein group were considered unique. The FDR was set to
0.01 for protein identifications.

Marker protein selection
Marker proteins specifically localized in organelles are
required to be highly replicable and have robust fractiona-
tion profiles under different conditions (8). Therefore, we
compiled marker proteins to classify subcellular protein loca-
tions using the previously suggested method (8). First, in
each organelle, the quantified protein levels were normal-
ized based on the median of each replicate. Second, pro-
teins identified in both parental and VPS35-KO cells were
selected. Third, proteins with a Pearson’s correlation coeffi-
cient (PCC) <0.8 in triplicate were filtered. Finally, proteins
with a PCC <0.8 or a Spearman correlation coefficient (SCC)
<0.6 between parental andVPS35-KO cells were filtered (Sup-
plementary Figure S2B). The remaining 1481 proteins were
used as marker proteins for subsequent classifications.

Annotation of marker proteins
To map marker proteins into a three-dimensional space, we
used the t-distributed stochastic neighborhood embedding
(t-SNE) implemented in the ‘rtsne’ (v0.15) in R (20). Two
hyperparameters of the perplexity (estimating how many
elements each cluster may have) of 50 and the theta (the
speed/accuracy trade-off) of 0.5 were optimized. We clustered
the t-SNE coordinates of marker proteins (n=1481) using
mClust (v5.4.6), which assigned proteins to different clus-
ters with probability based on the expectation-maximization
algorithm on a mixture of Gaussians model (21). A total of
18 clusters were generated according to Bayesian Informa-
tion Criteria (Supplementary Figure S2D). The identities of
marker proteins and their cluster membership were available
in Supplementary Table S1.

We performed two rounds of annotation on the clusters of
marker proteins. First, we used proteins with a unique subcel-
lular location from UniProt, Gene Ontology, and an optimal
marker set from mouse (22) according to the following five
strategies: (i) proteins annotated exclusively in UniProt; (ii) in
Gene Ontology; (iii) in either UniProt or Gene Ontology; (iv)
in the intersection between UniProt and Gene Ontology and
(v) in the intersection of ‘the union of UniProt and GO’ and
‘the marker protein set of the mouse’. Eleven subcellular com-
partments/organelles were annotated, including cytoskeleton,
cytosol, nucleus, endosome, endoplasmatic reticulum, Golgi
apparatus, lysosome, plasma membrane, mitochondrion, per-
oxisome and the ribosome. The fold change was calculated
as FC= (b/n)/(B/N), where b is the protein number of the
target organelle in the cluster, n is the total number of pro-
teins in the cluster, B is the total protein number of the
target organelle and N is the total number of proteins in all
clusters. Significance levels were estimated using the hyper-
geometric test (‘Phyper’ in R) and were corrected for multi-
ple testing (Benjamini–Hochberg) (Supplementary Table S2).
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Figure 2. The annotation of the selected 1481 marker proteins. (A) A three-dimensional visualization for 18 clusters of marker proteins. Different colors
represent clusters or neighborhoods. The number of marker proteins classified in each cluster was shown in brackets. Annotation for the subcellular
compartments/organelles and their corresponding neighborhoods was present. ED, endosome; ER, endoplasmic reticulum, G, golgi apparatus; LY,
lysosome; PM, plasma membrane; Mito, mitochondria; Mito. M., mitochondria membrane. (B) Differential expression of the selected marker proteins in
organelles. R, replicate.

We assigned the subcellular compartment to a given cluster if
the FC for the given cluster is ≥2 and the significance level
is <0.05. The subcellular protein localization was required
to be consistent in three out of five strategies. We success-
fully assigned endoplasmatic reticulum, lysosome and plasma
membrane (Cluster 1), endoplasmatic reticulum, Golgi appa-
ratus and lysosome (Cluster 2), endoplasmatic reticulum
(Cluster 3), mitochondria (Clusters 4–8), nucleus (Clusters
9–11), cytoskeleton and cytosol (Cluster 12), cytosol (Clusters
13–17) and ribosome (Cluster 18) (Supplementary Table S2).
Second, the 18 clusters were further annotated by a compre-
hensive gene ontology (GO) based cellular component enrich-
ment analysis (i.e. a target-background approach) in Gorilla
(23). The analysis resulted in the enrichment of endosome
and Golgi apparatus in Cluster 1, plasma membrane in Clus-
ter 3, the mitochondrial matrix in Cluster 4, mitochondrial

membrane andmitochondrial ribosome in Cluster 5 andmito-
chondrial membrane and mitochondrial matrix in Clusters
6–8 (Supplementary Table S2, and Figure 2A).

We followed the definition of neighborhoods as ‘secretory’
(Clusters 1–3), ‘mitochondria’ (Clusters 4–8), ‘nuclear’ (Clus-
ters 9–11) and ‘cytosol’ (Clusters 12–17) according to the
known relationship of subcellular compartments (8). In addi-
tion, we classified ‘ribosome’ into one cluster (Cluster 18) and
designated it as the ‘ribosome’ neighborhood (Supplementary
Table S1).

Machine-learning-based classification of
subcellular protein localization
We used the support vector machine (SVM) with a Gaussian
radial basis function kernel to classify the identified proteins
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by inputting the relative quantification of marker proteins.
To build a classifier, we randomly split the marker pro-
teins into the training (n=984) and testing (n=497) sets.
Ten-fold cross-validation was used to avoid over-fitting on
training data. We searched the best-fit parameters of the cost
(i.e. misclassification rate) from 10−10 −1010 and gamma
(i.e. controlling the shape of the segmented hyperplane) from
10−10 −10 across all classifiers using the ‘turn.svm’ function.
The corresponding models were then applied to both marker
and non-marker proteins to predict protein localization and
its probability by the ‘e1071’ package (v1.7.4) in R. Proteins
were preliminarily assigned to the cluster with the highest
probability.

We retained the protein with the cluster assignment con-
sistent in any two from triplicate; otherwise, the protein was
labeled as ‘unclassified’. The prediction probability for each
protein was averaged. Next, we set thresholds for the classifi-
cation probability of clusters and neighborhoods based on the
performance in the testing set. A true positive was defined if a
protein of interest was correctly classified, and a false positive
if incorrectly classified. A true negative was defined if a protein
of non-interest was correctly classified, and a false nega-
tive if incorrectly classified. Finally, we plotted the precision
(TP/(TP+FP)) and the recall rate (TP/(TP+FN)) for the
cutoff and defined individual thresholds for each cluster. We
selected the threshold to enable the probability maximizing
the recall when the precision rate reaches 0.9.

For the neighborhood, the probabilities of the correspond-
ing clusters were summed, and proteins were preliminarily
assigned to the neighborhood with the highest probability.
The threshold enabled the probability of maximizing the recall
when the precision rate reached 0.95.

Since the precision rate was <0.9 or 0.95 for Cluster 11
and the ‘nucleus’ neighborhood, we used the F1 value (F1=
2∗(precision ∗ recall)/(precision+ recall)) to set the thresh-
old. A total of 30 proteins appeared to be inconsistent between
the cluster and the neighborhood level (e.g. it is classified
as Cluster 10 at the cluster level but not classified to the
nucleus at the neighborhood level). In this case, we assigned
these proteins as ‘unclassified’ at both the cluster and neigh-
borhood levels. The output of the cluster and neighborhood
classifications and individual thresholds were available in
Supplementary Table S3.

Subcellular component localization network
The localization network was constructed based on proteins
with a single neighborhood classification (n=3803). Proteins
classified into a single cluster were displayed as correspond-
ing clusters, and proteins without cluster classifications were
designated as neighborhood classifications. The network was
visualized in Cytoscape (v.4.0.1).

Localization of the protein domain and complex
We first obtained proteins with signal peptides, transit pep-
tides and transmembrane domains from UniProt. Then, we
searched the Pfam database (Pfam-A.hmm.gz) for annotating
other protein domains using ‘hmmscan’ in HMMER (v3.3.2)
(24). Significantly enriched domains were identified by fold
enrichments and hypergeometric test (corrected for multiple
testing using the Benjamini–Hochberg method). We identified
36 enriched domains considerably using the log2 (fold change)

cutoff of 2 and a q-value of 0.05 (Supplementary Table S5).
Next, we compared the similarity of the protein sequences of
50–3000 AA in the five neighborhoods using a clustering and
comparison program of CD-HIT (v4.6.7) (http://weizhong-
lab.ucsd.edu/cd-hit/). We obtained the proteins with sequence
similarity >40% and then extracted the domains for proteins
in each cluster in the Pfam database. The domains enriched
in each neighborhood and the number of occurrences of the
domains are obtained, and domains that appear to be less than
three times in each neighborhood were filtered.

A list of human core complexes was obtained from the
Comprehensive Resource of Mammalian Protein Complexes
(CORUM) database, which collected experimentally verified
mammalian protein complexes (25). For each member in the
protein complex, the Pearson correlation was calculated, and
proteins with the correlation values <0.8 were prefiltered out.
The remaining 269 full-coverage protein complexes that all
members identified after filtration were retained for subse-
quent analysis. We plotted the protein–protein interaction
networks between the protein complex members using the
‘networkD3’ package (v0.4) in R.

PSL-LCCL portal
For visualization and access to the subcellular protein local-
ization, we created the PSL-LCCL portal developed by the
shiny framework for R, which is available at http://www.igene
tics.org.cn/project/PSL-LCCL/. The database provided access
to both the raw fractionation data and the prediction for
subcellular protein localization.

Results
Quantification of proteins in six membrane-bound
organelles
The framework for the present study is illustrated in Figure 1.
Six membrane-bound organelles were separated and enriched
individually, and their proteins were qualitatively and quanti-
tatively measured by MS. Western blotting for the organelle-
specific markers validated the enrichment of each organelle
(Supplementary Figure S1A). A total of 4464 proteins in six
organelles with a high overlapping ratio of 92% (n=4097) in
triplicate showed the robustness of the proposedmethod (Sup-
plementary Figure S1B). Furthermore, both principal com-
ponent analysis (Supplementary Figure S1C) and heat map
(Supplementary Figure S1D) showed a clear resolution of six
different clusters based on the isolated organelles, further sup-
porting the reproducibility of the subcellular fractionation by
isolating and enriching specific organelles.

Of note, non-targeted organelle proteins were identified in
‘unexpected’ organelles, partly due to that the individual sep-
aration of organelles does not result in entirely pure fractions
but rather an enrichment (Supplementary Figure S2A), as well
as a relatively higher sensitivity of MS, as previously reported
(12, 13). Therefore, we combined the identified proteins from
six organelles and implemented a machine-learning algorithm
to predict the subcellular protein location.

Classification of marker proteins and their
localizations
The classification based on a machine-learning algorithm
depends strongly on the available markers. However, there
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is no widely accepted canonical organelle marker set. In
addition, subcellular protein localization is often cell type-
specific and dependent on the physiological context, further
complicating the selection (6). A previous study suggested
that marker proteins specifically localized in organelles were
required to be highly replicable and have robust fraction-
ation profiles under different conditions (8). Accordingly,
1481 marker proteins were selected by a quantitatively pow-
erful method (Supplementary Figure S2B and Supplementary
Table S1).

The marker proteins were classified into 18 clusters
(Figure 2A and Supplementary Figure S2D), which were fur-
ther annotated as different subcellular compartments. The
distribution of proteins in t-SNE space indicated an internal
connection between clusters; therefore, several clusters were
adjacent (e.g. Clusters 1–3, Clusters 4–8, Clusters 9–11 and
Clusters 12–17). Based on the known relationship of sub-
cellular compartments (8), we used the definition of ‘neigh-
borhood’ to merge adjacent clusters, i.e. ‘secretory’ (Clus-
ters 1–3), ‘mitochondria’ (Clusters 4–8), ‘nuclear’ (Clusters
9–11) and ‘cytosol’ (Clusters 12–17). Cluster 18 of ‘ribosome’
was defined as the ‘ribosome’ neighborhood (Supplementary
Table S1). The distinct expression profiles for the marker pro-
teins among different organelles (Figure 2B) indicated the
reliability of the selected marker proteins.

A cluster-based subcellular protein localization
For a rigorous assignment of all proteins into clusters, we used
an SVM, a supervised machine-learning-based approach, to
classify the proteins in each replicate (26). The marker pro-
teins were divided into training (n=984) and testing (n=497)
sets, balanced to cover the 18 clusters. Of the identified pro-
teins in triplicate (n=4464), we successfully classified 2510
(56%) proteins into clusters (Figure 3A), highly consistent in
triplicate (Figure 3B). To improve the classification accuracy,
we merged the classifications from triplicate and used the test-
ing set marker proteins to set thresholds for each cluster. The
prediction accuracy for marker proteins at the cluster levels
was increased from 86.0 to 93.4% with the cutoff thresh-
old for each cluster (Figure 3C and Supplementary Table S4;
see Methods and Supplementary Table S3.1). The accuracy
for cluster-based marker prediction indicated higher robust-
ness for the overall prediction accuracy. We then compared
the predicted single-localized proteins (n=2510) with those
having single localization in the UniProt (n=7147) or GO
(n=6664) and noted that 44% of proteins (n=1105) were
consistent as single-localization proteins (Figure 3D). Enrich-
ment analysis verified that subcellular components were cor-
rectly assigned at the cluster level (Figure 3E), e.g. S1 was
annotated with ‘endoplasmic reticulum’, ‘lysosome’, ‘Golgi’
and ‘plasma membrane’, consistent with our classification.

A neighborhood-based subcellular protein
localization
Due to the cluster relatedness and a limited coverage depth
of proteins, only half (56%) were classified as the clus-
ter level. We followed the definition of ‘neighborhoods’
(8) to classify proteins at a higher level according to the
known relationship of subcellular compartments (Figure 4A),
where neighborhoods were well distinguished. As a result,
an increased proportion of 85% proteins (n=3803) were

classified into neighborhoods, i.e. approximately 1300 pro-
teins were rescued at the neighborhood level, significantly
greater than the coverage of 56% at the cluster level. A
localized network demonstrated an overview of the classifi-
cation by mapping proteins into specific clusters or neigh-
borhoods, as well as their relationship (Figure 4B). The
neighborhood-based classification had obtained high consis-
tency in triplicate (Figure 4C). The classification accuracy
indicated by marker proteins was increased from 95.2% to
96.7% by a cutoff threshold for each neighborhood, respec-
tively (Figure 4D and Supplementary Table S4). We compared
the proteins classified in a single location annotated in the
neighborhood (n=3803) with proteins having single local-
ization in UniProt or GO, and 45% (n=1710) proteins were
consistent (Figure 4E). Organelle was also correctly enriched
at the neighborhood level (Figure 4F), e.g. the ‘secretory’
neighborhood was annotated to include ‘endosome’, ‘endo-
plasmic reticulum’, ‘lysosome’, ‘Golgi’, ‘plasma membrane’
and ‘peroxisome,’ consistent with our classification.

Comparison of subcellular protein localization with
public resources
To further evaluate our classification, we assessed proteins
classified into a single neighborhood (n=3803) against single-
localization proteins annotated in the public database. The
protein localization of the public database was first assigned
to the five defined neighborhoods. Of the 1686 proteins over-
lapped with UniProt and GO, an agreement was increased
from 65.9% to 70.6% for proteins with the same localiza-
tion annotated in both UniProt and GO (Figure 5A). We also
compared the classification with that assigned a single sub-
cellular location in the Cell Atlas (27) (n=4647) (Figure 5B).
The overall agreement was relatively lower (59.0%) than GO
or UniProt (65.9%). However, the consistency was associ-
ated with the reliability score, e.g. an agreement of 70% for
proteins with the highest score of ‘Enhanced’ (n=243), 64%
with ‘Supported’ (n=319), 41% with ‘Approved’ (n=144)
and 27% with ‘Uncertain’ (Figure 5B). The overall concor-
dance with SubCellBarCode (8) was 62% (Figure 5C). In
the ‘Cytosol’ neighborhood, there was a consistent rate of
89%. It should be noted that inconsistency may be due to
the ‘ribosome’ being classified into the ‘nuclear’ neighbor-
hood in SubCellBarCode. Of the 799 proteins localized in
mitochondria, 61% (n=487) were present in the mitochon-
drial database (28) (MitoCarta 3.0) (Figure 5D). In summary,
our external validation of the classifications confirmed the
classified subcellular protein localization.

Subcellular distribution of protein domains and
complex
Protein domains may play a role in subcellular protein local-
ization, e.g. a protein with a transit peptide can be transported
to the mitochondria (29), and a signal peptide targets the
protein to the ‘secretory’ neighborhood (8). The mapping
of proteins with various domains (e.g. transmembrane, sig-
nal and transit) into the localization network showed that
proteins with different domains were enriched in expected
neighborhoods (Figure 6A and Supplementary Figure S3).
The association between protein domains and their localiza-
tions showed that 36 domain families annotated in Pfam were
significantly enriched in specific clusters or neighborhoods
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Figure 3. Subcellular localization of all identified proteins (n=4464) at the cluster level. (A) The t-SNE classification for all proteins in a three-dimensional
space. (B) The consistency of the classified proteins in replicate. (C) The classification accuracy of marker proteins at the cluster level. Classified: the
number of marker proteins retained at each cluster level after filtering by threshold; predicted: the number of marker proteins correctly predicted. (D)
The overlap of proteins classified with single cluster and proteins annotated with a single location in GO and UniProt. (E) Evaluation of
single-cluster-classified proteins against proteins with single subcellular localization annotation from GO or UniProt.

(q < 0.05) (Figure 6B, C and Supplementary Table S5). Of
note, the cytosol demonstrated the most enriched domains,
consistent with its function as a protein storage reservoir
(Figure 6D).

We also clustered proteins in each neighborhood using CD-
HIT. For protein clusters with sequence similarity >40%, 27
domains appeared to more than three times in secretory, 2
in mitochondria, 10 in nucleus, 22 in cytosol and 2 in ribo-
some (Supplementary Table S5). We showed that protein with
AAA, AAA_lid_3 or Prot_ATP_ID_OB domains were more
likely to be localized in cytosol and proteins with Arf domain
might be localized in secretory. In addition, RRM, KH_1 or
Annexin domains might play a role in nucleic transportation

and Tublin or Tublic_C domains were involved in ribosome
transportation.

We next investigated the domains and their localiza-
tion of the members in the retromer complex, which
comprises a VPS26-VPS29-VPS35 heterotrimer implicated
in cargo recognition and various combinations of sorting
nexin (SNX) proteins, contributing to membrane recruit-
ment and formation of recycling tubules (30). The SNX
protein family has different domains (Figure 6E), binding
with VPS35-VPS26-VPS29 trimer to mediating distinct endo-
somal trafficking pathways. We showed that members in
the retromer complex and its associated proteins were pri-
marily located in the cytosol (Figure 6E). Of the domains
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Figure 4. Subcellular localization of the identified proteins (n=4464) at the neighborhood level. (A) A projection of all identified proteins in a
three-dimensional space at the neighborhood level. (B) A hierarchical network of the classification at both cluster and neighborhood levels. (C) The
consistency of the classified proteins in replicate. (D) The classification accuracy of marker proteins at the neighborhood level. Classified: the number of
marker proteins retained at each neighborhood level after threshold filtering; predicted: number of marker proteins correctly predicted. (E) The overlap of
single-neighborhood-classified proteins and proteins annotated with a single location in GO and UniProt. (F) Evaluation of single neighborhood classified
against proteins with single subcellular localization annotation from GO or UniProt.

of cargo protein for the retromer complex, >300 mem-
brane proteins depending on retromer for their localization
at the cell surface were identified (31). In addition, the
annotated ‘MFS_1’ and ‘Mito_carr’ domain was significantly
enriched in the ‘secretory’ and ‘mitochondria’ neighborhood,
respectively.

Protein complexes composed of multiple proteins play
critical roles in various biological processes (32). Using
the CORUM database, we assessed the colocalization of
members from protein complex and their correlation (25)
(Figure 7A), which was significantly greater than that in a ran-
dom sampling of nonprotein complex members (Figure 7B).
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Figure 5. The evaluation of subcellular protein localization in PSL-LCCL against the public databases. (A) An agreement of neighborhood-based
classification of proteins in PSL-LCC with proteins having unique localization annotated in UniProt or GO (upper). An agreement between PSL-LCC
classifications and UniProt and GO single-location proteins of each neighborhood (below). Union, the union of UniProt and GO; Intersection, the overlap
proteins in UniProt and GO. (B) An agreement of the neighborhood-based classifications in PSL-LCCL and proteins having unique localization annotated
in Human Cell Atlas (upper) and their corresponding reliability score (below). (C) An agreement of the neighborhood-based classification in PSL-LCCL and
proteins localized in SubCellBarCode Orre et al. (8). (D) An agreement of proteins localized in mitochondria in PSL-LCCL with MitoCarta Rath et al. (28).

Furthermore, proteins in some complexes located in the
same neighborhood exhibited high interactions with each
other (Figure 7C). For example, proteins in the TOM and
TIM complex, localized in the outer and inner mitochon-
drial membranes, respectively (33), showed apparent colo-
calization (the correlation between any two members was
>0.8) (Figure 7D). However, not all proteins in complexes
were located in the same neighborhood (Figure 7C), e.g.
five members (Q12906, P13010, P78527, Q12905 and
P12956) in the DNA-PK-Ku-eIF2-NF90-NF45 complex are
localized in the nucleus (Figure 7E). In comparison, three
members (P41091, P05198 and P20042) were classified into
the cytosol, poorly correlated with other members. One pos-
sible explanation was that proteins in the nucleus are related
to DNA double-strand break repair (34), and proteins in
the cytoplasm are the subunits of the Eukaryotic transla-
tion initiation factor 2, involved in the early steps of protein
synthesis.

A database of protein subcellular location
We created a database of PSL-LCCL, including two layers of
information. At the protein level, it included the classification
probabilities of proteins in the 18 clusters and 5 neighbor-
hoods. For demonstration purpose, we created a simple cell
map to visualize the localization of a given protein by key-
word query. Users can also view the proteins of interest in the
organelles. Whenmultiple proteins are inquired, the classifica-
tion for all proteins will be displayed simultaneously, enabling
a convenient way to compare the localization of various pro-
teins. Examples of well-known compartment markers were

shown (Supplementary Figure S4). At the complex level, our
resources provided information on the location of members in
the protein complex and their interaction from the CORUM
database (25). Users can view the protein complex of interest
by inquiring about the name of the complex or the included
members (e.g. Fig. 7D, E). The database is accessible via a web
interface (http://www.igenetics.org.cn/project/PSL-LCCL/).

Discussion
We isolated and enriched six cytosolic membrane-bound
organelles individually and implemented a machine-learning-
based algorithm. We predicted the subcellular protein local-
ization for the identified proteins in the SK_HEP1 cell line.
We successfully classified 2510 (56%) and 3803 (85%) out of
4464 identified proteins into 18 clusters and 5 neighborhoods,
respectively. The prediction accuracy for marker proteins and
the comparison of the subcellular protein localization with
the well-known public resources confirmed the reliability of
our results. Furthermore, the classification enabled investi-
gating the association between subcellular localization with
protein domains and complexes. For resource convenience,
a user-friendly subcellular proteome database of ‘PSL-LCCL’
for SK_HEP1 was provided.

Recently, MS and machine-learning algorithms have been
used to study subcellular protein localization (5, 6, 8, 35). The
machine-learning-based algorithm is a ‘boundary’ method,
and thus marker proteins near the edge of clusters are essential
for distinguishing clusters (6). Since there lack of canoni-
cal organelle-specific marker proteins, compiling a suitable

http://www.igenetics.org.cn/project/PSL-LCCL/
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Figure 6. The effects of domains on subcellular proteins localization. (A) The localization of proteins with transmembrane domain in the hierarchical
structure. Enriched locations (P <0.05) are indicated. (B). Enrichment analysis for Pfam domains in our neighborhoods. The cutoff for fold enrichment
was two (*adjusted P -value*<0.05). (C). Protein domains significantly enriched in PSL-LCCL. (D) The number of protein domains that are significantly
enriched in neighborhoods. (E) The domain of the retromer complex.

set of marker proteins played a vital role for downstream
analysis. A recent meta-analysis demonstrated the benefits of
combining various data sources for selecting markers (22). We
therefore compiled a list of marker proteins by incorporating
unbiased annotations of single-localization proteins from dif-
ferent sources (22), and the prediction errors based on a
single annotation could be reduced. For example, when single-
localization proteins were annotated in either GO or UniProt,
Cluster 15 was classified into ‘nucleus’ or ‘cytosol,’ respec-
tively; however, it was correctly classified as ‘cytosol’ when
single-localization proteins were annotated from both GO
and UniProt. Marker proteins were selected based on the prin-
ciple that proteins with high reproducibility and robustness
under different conditions can be used as marker proteins for
subcellular localization [8]. Here, we used the protein stably
expressed in the parental and VPS35-KO cells as the marker
proteins, strengthening the application of the selected marker
proteins.

The annotation for each cluster (i.e. the assignment
of organelle based on the public resources) may not be
unique (Figure 2). Organelles may share similar components

since proteins are frequently transported between cytosolic
organelles (6); e.g. lysosomes are reformed from endolyso-
somes. Since distinguishing these organelles remains a chal-
lenge, we merged them as the ‘secretory’ neighborhood.
The number of successfully classified proteins increased
from 56% (cluster-based) to 85% (neighborhood-based)
(Figures 3A and 4A). In addition, the classification in triplicate
obtained high consistency at both the cluster and neighbor-
hood levels (Figures 3B and 4C). Different technologies and
statistical approaches may also result in different subcellu-
lar protein localizations (1), thus evaluating the prediction
accuracy remains difficult. Usually, the evaluation of the sub-
cellular protein localization was to compare that annotated
in protein databases (e.g. UniProt, GO and HPA) (27) as well
as single-organelle proteome databases. The external verifica-
tion also confirmed the robustness of our subcellular protein
localization (Figure 5).

Previous studies have shown that protein domains have
implications in the localization of proteins, e.g. signal pep-
tide (8) and transit peptide (29). Of the 36 protein domains
that were significantly enriched (Figure 6B), 9 (out of 15
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Figure 7. Subcellular localization for the protein complex. (A) The coverage of CORUM complexes in PSL-LCCL. CORUM: the comprehensive resource of
mammalian protein complexes; full: all the protein complex members were present in our data; no coverage: members in the protein complex were not
identified in our study. (B) A cumulative plot of the correlation for the protein complex members in CORUM. Random sampling was from a random
sampling of correlations for nonprotein complex members. (C) The consistency of the localization of the protein complex members. (D) Examples of
members of protein complexes located in the same neighborhood. (E) Examples of members of protein complexes located in different neighborhoods.

identified) were consistent with the classified subcellular local-
ization in SubCellBarCode (8). These findings suggested an
association between protein domain and subcellular localiza-
tion. Protein crystallography revealed that protein domain as
the fundamental unit of protein may have strong combina-
torial capabilities to form new proteins (36). Our findings
also showed a greater correlation between the members of the
protein complexes than that between noncomplex members
(Figure 7B), suggesting a prominent colocalization among the
complex members (8, 37).

The present study has several limitations. First, proteins
in ‘unexpected’ organelles were identified under the pro-
posed method. An impure subcellular fractionation for six
membrane-bound cytosolic organelles may include proteins
in unseparated cytosolic or nucleic components. A consistent
rate of 89% cytosolic proteins classified in the present study
and SubCellBarCode was obtained. However, the lack of sep-
aration for cytosolic and nucleic components resulted in a
relatively lower protein coverage. Separating more organelles
could improve the classification accuracy and the coverage
depth. Second, although our method can determine the single
dominant localization for proteins, proteins with multilo-
calization remain undetermined. A previous study showed

that multilocalization of proteins was uncommon, and<10%
of proteins were multilocalized (8). Although the Human
Cell Atlas reported that >50% of proteins were localized
in multiple subcellular locations (27), these proteins were
associated with low-reliability scores. Moreover, some pro-
teins may be incorrectly classified into multiple compartments
due to different qualities and sensitivities imposed by various
methods. Further study of multilocalized proteins needs more
attention. Third, an experimental validation in vitro could
improve the reliability of the localization, especially for pro-
teins with inconsistent annotations. However, it may be
beyond the scope of the present study. Finally, protein relo-
cation is essential for cell signal transmission and rapid adap-
tation to environmental changes. A dynamic organelle map
can be used to identify global translocation proteins for our
further study.

In conclusion, our study characterized subcellular pro-
tein localization of proteins identified in six membrane-bound
cytosolic organelles for the SK_HEP1 cell line. A protein
complex interaction map integrating member localization and
protein–protein interactions was provided. Our resources
have implications for further research on the proteomics of
liver cancers.
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