
Molecules 2015, 20, 11632-11659; doi:10.3390/molecules200711632 
 

molecules 
ISSN 1420-3049 

www.mdpi.com/journal/molecules 

Article 

Anion Recognition by Pyrylium Cations and Thio-, Seleno- and 
Telluro- Analogues: A Combined Theoretical and Cambridge 
Structural Database Study 

David Quiñonero 

Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5,  

07122 Palma de Mallorca, Spain; E-Mail: david.quinonero@uib.es;  

Tel.: +34-971-173-498 (ext. 3498); Fax: +34-971-173-426 

Academic Editor: Antonio Frontera 

Received: 5 June 2015 / Accepted: 18 June 2015 / Published: 24 June 2015 

 

Abstract: Pyrylium salts are a very important class of organic molecules containing a 

trivalent oxygen atom in a six-membered aromatic ring. In this manuscript, we report a 

theoretical study of pyrylium salts and their thio-, seleno- and telluro- analogues by means 

of DFT calculations. For this purpose, unsubstituted 2,4,6-trimethyl and 2,4,6-triphenyl cations 

and anions with different morphologies were chosen (Cl–, NO3
– and BF4

–). The complexes 

were characterized by means of natural bond orbital and “atoms-in-molecules” theories, and 

the physical nature of the interactions has been analyzed by means of symmetry-adapted 

perturbation theory calculations. Our results indicate the presence of anion-π interactions 

and chalcogen bonds based on both σ- and π-hole interactions and the existence of very 

favorable σ-complexes, especially for unsubstituted cations. The electrostatic component is 

dominant in the interactions, although the induction contributions are important, particularly 

for chloride complexes. The geometrical features of the complexes have been compared with 

experimental data retrieved from the Cambridge Structural Database. 

Keywords: chalcogen bond; anion-π interaction; noncovalent interactions; pyrylium 

complexes; anion recognition; DFT 

 

1. Introduction 

Noncovalent interactions have a constitutive role in the science of intermolecular relationships.  

In particular, those involving aromatic rings play a vital role in chemistry and biology [1], which 
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becomes prominent in drug-receptor interactions, crystal engineering and protein folding [2]. In recent 

years, the contact between an anion and the region above the plane of an electron-deficient aromatic ring 

has also been recognized as a noncovalent bonding interaction. The nature of this interaction, designated 

an “anion-π bond” [3], has been described by numerous theoretical studies, which demonstrate that it is 

energetically favorable [3–8], in addition to several experimental investigations [9–12]. 

While anion-π interactions continue to gain attention as their role in chemical processes is being 

increasingly recognized [13–18], studies of cationic oxygenated aromatic rings involved in anion-π 

bonding were absent in the literature until very recently [19], where the authors report an experimental 

and theoretical study for pyrylium-based tri-arylated series of compounds with a tetrafluoroborate anion. 

Pyrylium salts are a very important class of cationic organic molecules containing a trivalent oxygen 

atom in a six-membered aromatic ring [20,21]. They can act as intermediates for a variety of syntheses [22] 

and have been exploited to design sensors for anions [23], amines, amino acids and chameleon labels 

for quantifying proteins [24], as well as a kind of ionic liquid crystal material, which can be used in the 

display industry [25,26]. 

In this work, we present a systematic computational study on unsubstituted, trimethyl and triphenyl 

pyrylium cations (Scheme 1) interacting with Cl–, NO3
– and BF4

–. We chose a monoatomic, a trigonal 

planar and a tetrahedral anion to account for different shapes and to analyze the effects that this would 

have in the formation of the complexes. Moreover, we also included in our study the thio-, seleno- and 

telluro- analogues of the pyrylium cations previously mentioned to analyze the effect of the chalcogen 

atom in such complexes (Scheme 1). The variation of the chalcogen atom comes also from the idea of 

studying the existence of chalcogen bonds. These noncovalent contacts belong to the σ-hole interaction 

family, as tetrel, pnicogen, halogen and aerogen bonds, which has attracted considerable attention in 

recent years, and they are recognized by the scientific community as powerful tools in supramolecular 

chemistry, crystal engineering and biochemistry [27–32]. We have also carried out natural bond orbital 

(NBO), atoms in molecules (AIM) and symmetry-adapted perturbation theory (SAPT) calculations to 

characterize the complexes and to analyze the physical nature of the interactions. 

 

Scheme 1. Molecules included in our study and the numbering of C atoms. 
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2. Results and Discussion 

2.1. Preliminary Studies 

We chose different aromatic systems to interact with chloride, namely pyrylium, thiopyrylium and 

selenopyrylium (1, 2 and 3, respectively, in Scheme 1). We carried out Density Functional Theory (DFT) 

calculations at the BP86-D3/def2-TZVPD, B97-D3/def2-TZVPD levels and resolution of the identity 

(RI) second-order Møller Plesset (MP2) calculations at the RI-MP2/aug-cc-pVTZ (AVTZ) level. 

Geometry optimizations for all complexes. The geometries of the analyzed complexes are shown in 

Figure 1, and the geometric and energetic results of these calculations are gathered in Table 1. From the 

energetic point of view, regardless of the computational method used, all interaction energies are 

negative, indicating that the formation of the complexes between the aromatic systems and Cl– is 

favorable, as expected from the interaction of two ions of opposite sign. The largest binding energy 

corresponds to the complex of 3, which decreases for 2·Cl– and then again when the ring is 1. 

Comparison of the DFT energy values yields larger binding energies for the BP86 than for the B97 

results. The B97 interaction energies are in better agreement than the BP86 ones with the MP2 results, 

with energy differences as large as 2.7 kcal·mol−1. Furthermore, the agreement is even better when B97 

and CCSD(T)/CBS (CCSD(T): coupled-cluster singles doubles and non-iterative triples correction; 

CBS: complete basis set) interaction energies are compared. 

 

Figure 1. Optimized geometries of complexes of 1 (left), 2 (center) and 3 (right) with chloride. 

Table 1. Interaction energies (∆E, in kcal·mol−1) and equilibrium distances (Re, in Å) a of 

the complexes of Cl– with 1, 2 and 3 at the BP86-D3/TZVP, B97-D3/TZVP, MP2/AVTZ 

and CCSD(T)/CBS levels of theory. 

Complexes BP86-D3/TZVPD B97-D3/TZVPD MP2/AVTZ CCSD(T)/CBS 

 ∆E Re ∆E Re ∆E Re ∆E 
1·Cl– −103.2 2.90 −101.2 2.97 −98.9 2.86 −98.5 
2·Cl– −110.6 2.44 −106.4 2.50 −107.0 2.41 −104.6 
3·Cl– −112.9 2.52 −108.8 2.57 −111.5 2.49 −108.2 

a Distance between the Cl– and X atom (see Scheme 1). 

From the geometrical point of view, a comparison has also been made among the different levels of 

theory, with two points worth being mentioned. On the one hand, the equilibrium distances obtained at 

the B97 level are generally slightly longer (≥0.07 Å) than the ones obtained at the BP86 level (see  

Table 1). For instance, for the 1· Cl– complex, a 0.07 Å difference in length is observed. On the other 
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hand, the BP86 equilibrium distances are in good agreement (better than the B97 ones) with the MP2 

ones, where the former are slightly longer than the latter. 

From the results gathered in Table 1, it can be deduced that despite the small differences in 

equilibrium distances, the B97 method nicely reproduces all of the interactions. Therefore, the 

comparison of B97 and CCSD(T) results validates the use of the RI-B97-D3/TZVP level of theory to 

study the interaction of our systems with Cl–. From now on, this is the computational methodology that 

will be used throughout the manuscript. 

We have also computed the molecular electrostatic potential (MEP) surfaces of the pyrylium cations 

and analogues (except from tellurium compounds), which are represented in Figure 2. From the analysis 

of the MEPs, several considerations can be made. The pyrylium Compound 1 has the highest electrostatic 

potential (ESP = 140 kcal·mol−1) located at the center of the molecule, although a little bit displaced 

towards the location of the oxygen atom. The ESPs associated with in-plane interactions are  

5 kcal·mol−1 lower in energy. If we change the X atom, we observe how the ESP located above the molecular 

plane diminishes (to 125 and 119 kcal·mol−1 for 2 and 3, respectively). Interestingly, the highest ESP 

for 2 and 3 is located at both sides of the X atom (137 and 141 kcal·mol−1, respectively). Therefore, from 

electrostatic considerations, the most favorable anion complex of 1 would be that where the anion is 

positioned above the ring, whereas the most favorable complexes of 2 and 3 would be those where the 

anion is located in the molecular plane and close to the X atom. However, for π interactions, polarization 

effects can be important, and the prediction based only on electrostatic effects may not be adequate.  

As inferred from Figure 2, the trimethyl Derivatives 5–7 have less positive values of ESP than their 

respective unsubstituted counterparts, and likewise, the triphenyl Analogues 9–11 have less positive ESP 

values than their respective trimethyl derivatives. 

2.2. Complexes with Cl– 

First, we are going to analyze the complexes of Compounds 1–12 that are formed with chloride. After 

exploring the potential energy surface of the different complexes, four main structural configurations 

were found. Type a and b complexes are the result of a nucleophilic attack of the anion to C1 and C3 

atoms, respectively, of the heteroaromatic ring, giving rise to σ-complexes. Thus, according to our 

nomenclature, 1a will be the σ-complex of 1 with Cl–. In Type c complexes, the anion is located above 

the molecular plane, either interacting with C1 and C5 or the chalcogen atom. Lastly, Type d complexes 

are based on hydrogen bonding interactions. Several geometrical features of the complexes with chloride 

are shown in Figure 3, and their corresponding binding energies are gathered in Table 2. 

From the inspection of the results, several points arise. For either a and b type complexes and within 

every family of compounds (unsubstituted, trimethyl and triphenyl substituted), the Cl–C distance is 

shortened when going down the chalcogen group. This result is consistent with the electrophilic character 

of the heteroaromatic ring, which is increased when going from O to Te atoms. Moreover, the Cl–C 

distance is increasingly lengthened when trimethyl and triphenyl substitution is considered, in agreement 

with the electrostatic results retrieved from MEP calculations (Figure 2). Second, a complexes have 

shorter Cl–C distances than b complex. Third, 12a·Cl– and 12b·Cl– adducts could not be located. All 

attempts to find such complexes led to 12c·Cl–. For c complexes, we observe a slightly different 

placement of the anion if X = O (1c) or X = S, Se, Te (2c–4c) are considered. In Complex 1c, the anion 
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is located above the molecule and between C1 and C5, forcing the out-of-plane displacement of the 

oxygen atom opposite of Cl–. In fact, this complex is not a minimum on the potential energy surface, but 

a TS corresponding to the chloride transfer from the σ-complex on C1 (1a·Cl–) to its degenerate σ-

complex on C5 [33]. However, for 2c–4c complexes, Cl– is parallel displaced towards the X atom, giving 

rise to a ClXC3 angle of ca. 107°. Moreover, for such complexes, the X atoms are pulled from the 

molecular plane towards the anion yielding Cl–···X distances (2.50, 2.57 and 2.63 Å for 2c, 3c and 4c, 

respectively) that are remarkably much shorter than the sum of the van der Waals radii (3.91, 4.01 and 

4.17 Å, respectively) [34,35]. In fact, all intermolecular contacts reported throughout the manuscript are 

substantially shorter than the sum of the corresponding van der Waals radii. Analogously to a and b 

complexes, the Cl–···X distance in c complexes is increasingly lengthened when trimethyl and triphenyl 

substitution is considered, which could be due, on the one hand, to the decrease in electrophilic character 

of the heteroaromatic ring for the trimethyl and triphenyl systems (Figure 2) and, on the other hand,  

to the presence of CH···Cl– hydrogen bonds that slightly lower the net charge on the anion. These 

hydrogen bonds appear to be particularly important for the triphenyl derivatives, since their respective 

hydrogen bond distances are short (2.65–2.87 Å). 

 

Figure 2. Molecular electrostatic potential surfaces of Molecules 1–3, 5–7 and 9–11. Some 

molecular electrostatic potential (MEP) energy values are indicated. Energies in kcal·mol−1. 
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Figure 3. Optimized geometries of a·Cl–, b·Cl–, c·Cl– and d·Cl– complexes. Selected distances 

(in angstroms) and angles (in degrees) are shown. 

Every attempt to obtain exclusively hydrogen bond-based complexes was unsuccessful for 1–8 

compounds, and the geometry optimizations always ended up yielding one of the geometries mentioned 

above. However, hydrogen bond complexes (Type d) were obtained for 9–12, and their geometries are 

shown in Figure 3. All of these Type d complexes have the same recognition pattern, where the anion is 

interacting with two hydrogen atoms in ortho to two phenyl rings, with the hydrogen atom bonded to 

C2. The CH···Cl– distance oscillates from 2.28–2.54 Å for X = O to 2.44–2.74 Å for X = Te. 

Table 2. Interaction energies (∆E, in kcal·mol−1), electron density (ρBCP), its Laplacian  

(∇2 ρBCP) and the total electron energy density (HBCP) for the bond critical points (BCPs) of 

Cl–···C or Cl–···X contacts of complexes of Compounds 1–12 with Cl– and the number of 

imaginary frequencies (Nimag). 

Complex ∆E Nimag ρBCP × 102 ∇2 ρBCP × 102 HBCP 
1a·Cl– −116.0 0 12.43 −2.94 −5.55 
2a·Cl– −109.3 0 12.62 −3.11 −5.74 
3a·Cl– −110.9 0 13.98 −6.91 −7.10 
4a·Cl– −109.8 0 - - - 
1b·Cl– −115.2 0 11.94 −2.29 −5.26 
2b·Cl– −109.8 0 11.06 0.03 −4.48 
3b·Cl– −110.0 0 11.62 −1.35 −4.97 
4b·Cl– −107.9 0 - - - 
1c·Cl– −101.2 1 - - - 
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Table 2. Cont. 

Complex ∆E Nimag ρBCP × 102 ∇2 ρBCP × 102 HBCP 
2c·Cl– −106.4 0 6.10 8.47 −1.03 
3c·Cl– −108.8 0 5.76 7.97 −0.97 
4c·Cl– −114.0 0 - - - 
5a·Cl– −99.8 0 10.17 1.70 −3.65 
6a·Cl– −95.4 0 10.98 0.39 −4.30 
7a·Cl– −97.3 0 12.90 −4.30 −6.05 
8a·Cl– −97.6 0 - - - 
5b·Cl– −98.4 0 9.81 2.09 −3.49 
6b·Cl– −92.3 1 6.10 6.75 −1.10 
7b·Cl– −93.0 1 9.00 3.52 −2.87 
8b·Cl– −92.4 1 - - - 
5c·Cl– −93.6 1 - - - 
6c·Cl– −95.5 1 4.73 8.19 −0.51 
7c·Cl– −97.1 1 4.69 7.84 −0.52 
8c·Cl– −101.3 2 - - - 
9a·Cl– −84.9 2 - - - 

10a·Cl– −83.1 1 - - - 
11a·Cl– −84.2 1 - - - 
9b·Cl– −82.9 1 - - - 

10b·Cl– −83.7 0 - - - 
11b·Cl– −83.9 2 - - - 
10c·Cl– −88.7 0 4.12 7.46 −0.33 
11c·Cl– −91.0 0 4.24 7.32 −0.37 
12c·Cl– −96.3 0 - - - 
9d·Cl– −83.0 2 - - - 

10d·Cl– −77.5 0 - - - 
11d·Cl– −80.7 0 - - - 
12d·Cl– −79.2 0 - - - 

The interaction energies of all complexes are large and negative, as shown in Table 2, ranging from 

−116.0 kcal·mol–1 for 1a·Cl– to −77.5 kcal·mol–1 for 10d·Cl–, values than can be rationalized from the 

electrostatic point of view. The largest binding energies are generally found for a and b σ-complexes: 

For the unsubstituted compounds, we usually obtain the largest binding energies for a complexes. 

Analogously, the same trend is also observed for the trisubstituted derivatives, i.e., a complexes have 

larger ∆E values than b complexes, with c complexes having the smallest binding energies. However, 

we observe that the energy gap between a and c complexes gets smaller when going from 1  

(∆∆E = 4.8 kcal·mol−1) to 3 (∆∆E = 0.9 kcal·mol−1). In fact, for Compound 4, its c complex is more 

favorable than its a complex by 5.2 kcal·mol−1, leading to the conclusion that the more electrophilic the 

X atom, the more favorable the c complex. A similar behavior is observed for complexes of 5–8, with 

∆∆E values between a and c complexes of 6.2, 0.2 and −3.7 kcal·mol−1 for 1, 3 and 4, respectively. 

Strikingly, for Compounds 10–12, their c complexes are the most favorable (neither 9c·Cl– nor 12a·Cl– 

could be located). For instance, the energy gap between a and c chloride complexes is −5.6 and  

−6.8 kcal·mol−1 for 10 and 11, respectively. 

To investigate the origin and nature of these interactions, AIM, NBO and SAPT studies have been 

carried out for selected complexes. We have examined all possible intermolecular interactions between 
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occupied (donor) Lewis-type NBOs and vacant (acceptor) non-Lewis NBOs and estimated their energetic 

importance by second-order perturbation theory. According to the NBO analysis, the interaction in c 

complexes of X = S, Se and Te is primarily based on a charge donation from the lone pairs of Cl– to the 

vacant π* orbital of the X–C1 or X–C5 bond, as derived from the calculated second-order orbital 

perturbation energies listed in Table 3. As a matter of fact, these charge-transfer contributions are very 

large, with increasing energies as we move from the lightest (44.9 kcal·mol−1 for 2c·Cl–) to the heaviest 

(62.3 kcal·mol−1 for 4c·Cl–) chalcogens for the unsubstituted complexes. The same trend is observed for 

the trimethyl derivatives, although with smaller energy contributions than those for their respective 

unsubstituted cases. Moreover, there is an excellent linear correlation (r2 = 0.969) between the binding 

energies (∆E in Table 2) and the second-order orbital perturbation energies (E(2) in Table 3) mentioned 

above for 2c–4c·Cl– and 6c–8c·Cl– complexes, indicating that these Lp(Cl–)→π*(X–C1/C5) donor-acceptor 

contributions are very relevant (Figure 4). It is worth mentioning the existence of other charge-transfer 

contributions of up to 3.7 kcal·mol−1 that arise from the charge donation from Cl– lone pairs to empty d 

orbitals of S, Se and Te (Table 3). All of these results suggest the existence of a chalcogen bond through 

π-hole interactions. Differently from 2c–4c·Cl– and 6c–8c·Cl– complexes, there is no charge transfer from 

Cl– to either O–C1 or O–C5 empty π* orbitals in 1c·Cl– and 5c·Cl–. Instead, modest energetic contributions 

are obtained from Lp(Cl–)→π*(C1–C2) and Lp(Cl–)→π*(C4–C5) donor-acceptor interactions, leading to 

anion-π interactions. The absence of charge transfer processes in 1c·Cl– and 5c·Cl– indicates that induction 

forces are not important in their binding mechanism, which will be primarily based on electrostatics, as 

we will see later in the SAPT analysis. As already noted, the geometries of X = O complexes are different 

from the X = S, Se and Te ones (X is moving away with respect to the anion for the former and getting 

closer to the anion for the latter), giving rise to a different binding mechanism, where induction forces are 

supposed to play an important role in the latter compounds. 

Table 3. Natural bond orbital (NBO) second-order orbital perturbation energies (E(2), in 

kcal·mol−1) derived from charge donation from an occupied (donor) to an empty (acceptor) 

orbital for Complexes 1c–8c·Cl–. 

Complex Donor Acceptor E(2)

1c·Cl– Lp(Cl–)
π*(C1–C2) 
π*(C4–C5)

4.5 
4.5 

2c·Cl– Lp(Cl–)
π*(S–C1) 

Ry*(S) 
44.9 
3.7 

3c·Cl– Lp(Cl–)
π*(Se–C5) 

Ry*(Se) 
52.1 
2.3 

4c·Cl– Lp(Cl–) π*(Te–C1) 
62.3 
2.6 

5c·Cl– Lp(Cl–)
π*(C1–C2) 
π*(C4–C5)

3.8 
3.8 

6c·Cl– Lp(Cl–)
π*(S–C5) 

Ry*(S) 
23.7 
2.7 

7c·Cl– Lp(Cl–)
π*(Se–C5) 

Ry*(Se) 
30.9 
1.6 

8c·Cl– Lp(Cl–)
π*(Te–C5) 

Ry*(Te) 
41.4 
2.3 
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Figure 4. Selected second-order perturbation energies, E(2), plotted vs. the computed binding 

energies, ∆E, for 2c–4c·Cl– and 6c–8c·Cl– complexes.  

In line with the NBO results, our AIM calculations for 2c–3c·Cl–, 6c–7c·Cl– and 10c–11c·Cl–

complexes show the existence of one BCP connecting the X atom with Cl– (Figure 5). The values of the 

electron densities at these BCPs range between 0.061 au for 2c·Cl– and 0.041 au for 10c·Cl– (Table 2). 

At these BCPs, the values of the Laplacian are positive, and the total energy densities are negative 

(between −0.010 and −0.003 au), suggesting that these interactions have a certain covalent character [36]. 

 

Figure 5. Molecular graphs of 2c, 7c and 11c·Cl–. The BCPs and ring critical points are 

represented by green and red dots, respectively. Only bond paths are depicted. 
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In addition, the nature of the chemical bond in 1a–7a·Cl– and 1b–7b·Cl– σ-complexes has been 

analyzed by means of the AIM approach. From the inspection of the results (Table 2), the values of the 

electron density at the BCP originating from the Cl– ···C1/C3 contact are large (between 0.14 and  

0.06 au) with values of the Laplacian oscillating between negative (1a–3a, 7a, 1b and 3b) and positive 

(5a–6a, 2b and 5b–7b). However, the total energy density for all cases is negative (between −0.071 and 

−0.011 au; Table 2), indicating that there is a significant sharing of electrons for this contact. 

The physical nature of the interaction between the anion and Compounds 1–3, 5–7 and 9–11 has been 

analyzed by means of SAPT calculations in c complexes. The energy contributions obtained from the 

SAPT partitioning scheme are listed in Table 4. As expected, the electrostatic component, Eel, is the 

largest contributor to the interaction with values ranging from −103.8–−138.1 kcal·mol−1. The Eel values 

vary according to the electronegativity of the X atom, i.e., the smallest and largest contributions are 

found for X = O and X = Se, respectively. The positive exchange part is large and partly compensates 

for the electrostatic component, especially for X = S, Se complexes. The dispersion contribution is more 

or less constant for S and Se complexes and larger than that for O complexes. The induction-polarization 

contribution, Eind, however, seems to play an important role in the interaction, since large variations are 

detected, in line with the donor-acceptor NBO results. Thus, Eind is small for the oxygen-based 1c and 

5c·Cl– complexes (ca. −12 kcal·mol−1), large for sulfur-based 2c, 6c and 10c·Cl– complexes (from −24 

to −34 kcal·mol−1) and the largest for selenium-based 3c, 7c, and 11c·Cl– complexes (from  

−34–−48 kcal·mol−1). The consideration of higher-order contributions to the interaction energy, δHF 

(Table 4), is mandatory at least for X = S compounds to get a good agreement between SAPT interaction 

energies, ESAPT, and the binding energies. 

Table 4. DF-DFT-symmetry-adapted perturbation theory (SAPT) electrostatic, exchange, 

induction, dispersion and Hartree-Fock higher-order energy contributions (Eel, Eexch, Eind, 

Edis and δHF, respectively), SAPT interaction energy (ESAPT) and binding energies (∆E) of 

selected complexes. Energies in kcal·mol−1. 

Complex Eel Eexch Eind Edisp δHF ESAPT ∆E 

1c·Cl– −112.0 38.6 −12.2 −10.5 −4.6 −100.7 −101.2 
2c·Cl– −132.7 89.8 −34.5 −14.1 −10.0 −101.6 −106.4 
3c·Cl– −138.1 93.6 −48.0 −14.0 −2.1 −108.6 −108.8 
5c·Cl– −104.7 36.7 −12.1 −11.9 −2.2 −94.3 −93.6 
6c·Cl– −114.7 67.9 −24.4 −13.4 −6.0 −90.5 −95.5 
7c·Cl– −119.8 74.1 −34.4 −13.4 −1.3 −94.8 −97.1 

10c·Cl– −103.8 66.8 −25.6 −15.9 −6.0 −84.6 −88.7 
11c·Cl– −110.3 74.6 −34.9 −16.1 −2.3 −89.0 −91.0 
2c·NO3

– −105.4 49.3 −14.0 −11.9 −7.3 −89.2 −96.4 
3c·NO3

– −111.2 57.5 −19.3 −12.5 −8.0 −93.4 −97.3 
5e·NO3

– −93.2 26.8 −7.1 −14.0 −2.8 −90.4 −90.9 
6e·NO3

– −91.0 26.7 −7.6 −14.2 −2.8 −89.0 −89.0 
7e·NO3

– −89.8 26.4 −7.8 −14.3 −2.8 −88.3 −88.7 
11c1·NO3

– −80.0 32.1 −13.5 −13.9 −3.6 −78.9 −82.3 
12c1·NO3

– −81.3 34.8 −14.6 −13.9 −3.9 −79.0 −83.8 
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Table 4. Cont. 

Complex Eel Eexch Eind Edisp δHF ESAPT ∆E 

1e·BF4
– −96.3 26.2 −6.5 −10.0 −2.8 −89.4 −89.3 

2e·BF4
– −91.3 24.0 −6.5 −9.8 −2.5 −86.2 −85.8 

3e·BF4
– −90.4 24.6 −6.8 −9.9 −2.7 −85.2 −84.9 

1a·BF4
– −94.7 29.9 −7.8 −9.1 −4.8 −86.5 −87.2 

2c·BF4
– −88.2 24.4 −8.8 −8.4 −3.6 −84.6 −84.7 

3c·BF4
– −91.4 27.2 −10.0 −9.0 −4.0 −87.2 −86.8 

5e·BF4
– −88.6 22.7 −7.2 −11.1 −1.9 −86.1 −85.6 

6e·BF4
– −85.2 21.6 −7.3 −10.8 −1.7 −84.9 −82.9 

7e·BF4
– −85.6 22.0 −7.6 −11.4 −1.8 −84.3 −82.3 

10c2·BF4
– −73.9 23.0 −11.2 −12.6 −2.1 −76.8 −74.8 

11c2·BF4
– −73.3 23.2 −11.3 −12.3 −2.3 −76.0 −74.1 

2.3. Complexes with NO3
– 

In this second section, we are going to analyze the complexes formed by Compounds 1–12 with 

nitrate as the anion. The exploration of the potential energy surface leads to the formation of five main 

structural configurations: Type a, b and d complexes, just as defined in the previous subsection, Type c 

complexes, which are very similar to the ones found for chloride, but now the anion is interacting either 

with the chalcogen atom or a C atom and the chalcogen atom, and the new Type e complexes, where the 

anion is solely interacting with C atoms above the molecular heteroaromatic ring. The geometries of the 

complexes can be found in Figure 6, and their respective binding energies are listed in Table 5. 

Complexes a and b follow the same trend observed for chloride complexes, i.e., the O2NO–C distance 

shortens/lengthens with the size of the chalcogen atom/with trisubstitution, and a complexes have shorter 

O2NO–C distances than b complexes. However, a and b complexes are only obtained for the 

unsubstituted Compounds 1–4. In c·NO3
– complexes, different orientations of nitrate are observed. For 

unsubstituted compounds, the nitrate is perpendicularly placed above the heteroaromatic ring, giving 

rise to short O2NO–···X contacts in 2c–4c·NO3
– (Figure 6), similarly to what is observed for 2c–4c·Cl–. 

Type c complexes for the trimethyl derivatives fall into two subcategories, depending on whether the 

anion is almost perpendicularly placed above, c1, or not, c2, the ring. In 5c1–7c1 complexes, the anion is 

slightly displaced towards the C1 half of the aromatic system, yielding three short contacts, as inferred 

from the distances between one O atom of nitrate with both an X and an H atom of the C1 methyl group 

and between another O atom of NO3
– with C1, as shown in Figure 6. The c1 complex of 8 could not be 

found. In 5c2–8c2 complexes, the anion presents to different binding modes: all three O atoms of nitrate 

in 5c2 are interacting with two H atoms of C1 and C5 methyl groups, keeping the N atom sufficiently 

close to the O atom of the ring to expect a certain interaction. Conversely, in 6c2–8c2 complexes, two O 

atoms of the anion are equidistant to the X atom. In addition, these two O atoms are engaged in 

equidistant hydrogen-bonding interactions with each O atom with one H atom of the C5 methyl group. 

In triphenyl c complexes, two different NO3
– orientations are observed: those similar to the unsubstituted 

ones, 9c–10c, and those similar to the trimethyl c1 complexes, 10c1–12c1. The c complexes of 11 and 12 

and the c1 complex of 9 could not be found. The main difference between c and c1 complexes resides in 

the contacts between an O atom of nitrate and C1 and/or C5 atoms of the heteroaromatic system  
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(Figure 6). Furthermore, the intermolecular O2NO–···X contacts are shorter for c1 than for c complexes. 

All of these c and c1 complexes present CH···ONO2
– hydrogen bonds with the H atoms in ortho to the 

C1 and C5 phenyl moieties. 

Table 5. Interaction energies (∆E, in kcal·mol−1), electron density (ρBCP), its Laplacian  

(∇2 ρBCP) and the total electron energy density (HBCP) for the BCPs of O2NO–···C contacts of 

complexes of Compounds 1–12 with NO3
– and the number of imaginary frequencies (Nimag). 

Complex ∆E Nimag ρBCP × 102 ∇2 ρBCP × 102 HBCP × 102 

1a·NO3
– −108.9 0 20.58 −28.06 −23.62 

2a·NO3
– −103.0 0 21.79 −33.63 −21.21 

3a·NO3
– −105.3 0 22.87 −39.79 −24.12 

4a·NO3
– −104.8 0 - - - 

1b·NO3
– −109.0 0 20.24 −26.26 −18.53 

2b·NO3
– −102.8 0 19.97 −24.49 −17.91 

3b·NO3
– −103.0 0 20.29 −26.19 −18.63 

4b·NO3
– −100.9 0 - - - 

2c·NO3
– −96.4 0 4.42 9.92 −0.31 

3c·NO3
– −97.3 0 4.64 9.89 −0.39 

4c·NO3
– −100.1 0 - - - 

5e·NO3
– a −90.9 0 1.47 4.89 0.18 

6e·NO3
– a −89.0 0 1.04 3.83 0.18 

7e·NO3
– a −88.7 0 1.00 3.67 0.18 

8e·NO3
– −88.0 0 - - - 

5c1·NO3
– −90.2 0 3.36(1.04) b 8.71(4.72) b 0.00(0.25) b 

6c1·NO3
– −88.1 0 2.14(1.75) b 6.45(5.20) b 0.18(0.15) b 

7c1·NO3
– −88.6 1 2.10(1.82) b 6.33(5.03) b 0.18(0.14) b 

5c2·NO3
– b −84.2 0 0.92 4.80 0.25 

6c2·NO3
– b −85.4 2 1.83 5.70 0.16 

7c2·NO3
– b −88.7 2 2.13 6.10 0.12 

8c2·NO3
– −94.4 0 - - - 

9e·NO3
– −80.7 2 - - - 

9c·NO3
– −79.8 1 - - - 

10c·NO3
– −82.3 0    

10c1·NO3
– −82.0 0 1.36(2.03) b 4.48(5.66) b 0.18(0.11) b 

11c1·NO3
– −82.3 0 1.22(2.33) b 4.01(5.97) b 0.17(0.08) b 

12c1·NO3
– −83.8 0 - - - 

9d·NO3
– −79.7 2 - - - 

10d·NO3
– −78.6 0 - - - 

11d·NO3
– −78.3 0 - - - 

12d·NO3
– −76.8 0 - - - 

a Atoms in molecules (AIM) properties computed at the BCP resulting from the O2NO–···C5 contact. b AIM 

properties computed at the BCP resulting from the anion···X contact. 
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Figure 6. Optimized geometries of a·NO3
–, b·NO3

–, c·NO3
–, d·NO3

– and e·NO3
– complexes. 

Selected distances (in angstroms) and angles (in degrees) are shown. 

As in Cl– complexes, hydrogen bond-based d complexes could not be found for 1–8. From the 

geometries included in Figure 6, we observe that 9d–12d complexes have the same recognition pattern, 

in which the anion is interacting with two H atoms in ortho to two phenyl rings, with the H atom at C2. 

The CH···ONO2
– distance oscillates from 2.14–2.41 Å for X = O to 2.28–2.55 Å for X = Te. 

Finally, e complexes are characterized by showing intermolecular contacts with the C atoms of the 

heteroaromatic system and were obtained only for Compounds 5–9. Thus, in 5e–8e complexes, the anion 

is located parallel to and above the ring showing distances of 2.8–3.0 Å between the O atoms of nitrate 

and the ring plane. Two hydrogen bonds are also observed with the H atoms of C3 and C5 methyl groups. 

In Complex 9e, the nitrate is located above the heteroaromatic ring and perpendicular to it, giving rise 

to three intermolecular contacts between one O atom of NO3
– and two C atoms (C1 and C5) and between 

a second NO3
– O atom and C3. 

The values of the interaction energies of all complexes (Table 5) range from −109.0 kcal·mol−1 for 

1b·NO3
– to −76.8 kcal·mol−1 for 12d·NO3

–. The largest binding energies are found for a and b  

σ-complexes, with a complexes and hydrogen bond-based d complexes being the most and least 

favorable ones, respectively. Moreover, complexes where anion···X contacts are found (c) usually have 

larger binding energies than those where only C atoms are involved in the interaction with the anion (e). 

Substitution affects the binding energies the same way as in chloride complexes, i.e., unsubstituted 

complexes are the most favorable (∆E between −109.0 and −96.4 kcal·mol−1), followed by their 
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trimethyl (∆E between −94.4 and −84.2 kcal·mol−1) and triphenyl derivatives (∆E between −83.8 and  

−76.8 kcal·mol−1). 

The origin and nature of these interactions have been analyzed within the frames of NBO, AIM and 

SAPT theories for selected complexes. According to the NBO analysis, the interaction in 4c is based on 

a charge donation from the lone pairs of an O atom of NO3
– to the vacant π* orbital of the Te–C5 bond, 

as previously observed for their chloride analogues, resulting in a π-hole chalcogen bond. Results for 2c 

and 3c complexes show some inconsistencies and therefore are not reported. In contrast, interaction in 

5c2–8c2 complexes come from Lp(ONO3)→σ*(X–C5) donor-acceptor contributions, except for 5c2, 

where contributions are based on charge transfer from the anion to H atoms of the methyl groups. 

Moreover, for this last complex, a very small contribution is found for the Lp(Opyrylium)→π*(N–O) 

donor-acceptor interaction. Thus, results for 6c2–8c2 suggest the existence of a σ-hole chalcogen bond. 

Different charge-transfer contributions appear in 5c1–7c1 complexes, where Lp(O)→π*(C1–C2)  

donor-acceptor interactions for 6c1 and 7c1 and donation from O lone pairs of NO3
– to empty p orbitals 

of C1 are dominant, which will be in agreement with the formation of an anion-π interaction.  

Consistent with the NBO results, AIM calculations for c·NO3
– complexes show the existence of one 

BCP connecting the X atom with ONO2
– (Figure 7). The values of the electron densities at these BCPs, 

comprised between 0.046 au for 3c·NO3
– and 0.009 au for 5c2·NO3

– (Table 5) and its positive values of 

the Laplacian are consistent with the existence of noncovalent interactions. However, the total energy 

densities are negative for 2c and 3c·NO3
– (−0.003 and −0.004 au, respectively), suggesting that these 

interactions have a small covalent character. In addition, according to the high electron density values 

(ρ = 0.2 au), and negative values of the Laplacian (between −0.40 and −0.24 au) and total energy 

densities (between −0.24 and −0.18 au) at the BCPs connecting the anion with the ring, a·NO3
– and 

b·NO3
– σ-complexes have a marked covalent character. 

The SAPT analysis of complexes 2c–3c·NO3
– and 11c2–12c2·NO3

– (Table 4) shows similar 

conclusions to those obtained for chloride complexes. Indeed, the electrostatic component is the largest 

contributor ranging from −105.4 to −80.0 kcal·mol−1, and the smallest and largest contributions are found 

for X = O and X = Se, respectively. The dispersion contribution is practically the same for all complexes 

and the induction component varies according to the size of the chalcogen. Additionally, again, the 

consideration of δHF (Table 4) is very important at least for 2c–3c compounds to reach an agreement 

between ESAPT and ∆E values. In contrast, exchange, induction, dispersion and δHF contributions are 

very similar for 5e–7e·NO3
– complexes, showing only small differences in the electrostatic component, 

which in the end could be responsible for the observed small differences in the binding energies. 
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Figure 7. Molecular graphs of 3c, 5e, 5c1, 5c2, 7c2, 10c1 and 10c2·NO3
–. The BCPs, ring and 

cage critical points are represented by green, red and blue dots, respectively. Only bond paths 

are depicted. 

2.4. Complexes with BF4
– 

In this third section, we are going to analyze the complexes formed by Compounds 1–12 with 

tetrafluoroborate as the anion. The exploration of the potential energy surface leads to the formation of 

four main structural configurations: Type a, c, d and e complexes, analogous to those previously 

described. The geometries of the complexes are shown in Figure 8, and their respective binding energies 

are listed in Table 6.  
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Figure 8. Optimized geometries of a·BF4
–,c·BF4

–, d·BF4
–and e·BF4

– complexes. Selected 

distances (in angstroms) are shown. 

There is one Type a complex, 1a, which exhibits a quite short F···C distance (2.37 Å) coupled with two 

hydrogen bonds with H atoms of C1 and C2. In c·BF4
– complexes, different orientations of tetrafluoroborate 

are observed. For unsubstituted compounds, BF4
– is located establishing two interactions of the F···X type 

and one hydrogen bond with the H atom at C2 in 2c–4c·BF4
– (Figure 8). Type c complexes for the 

trimethyl derivatives show two different approximations of the anion. In 5c–7c, the anion is placed above 

the ring with three F atoms pointing at the aromatic system. In 5c, two F atoms are facing C2 and C4, 

and one F atom is facing the oxygen atom. The anion is slightly displaced towards the right half of the 

molecule in 6c–7c with two F atoms giving rise to three contacts with C1, C3 and the X atom. In triphenyl 

c1 complexes, two F atoms are directed at C2, C4 and a third F atom at X, whereas in c2 complexes, two 

F atoms are directed at C1 and C5 and a third F atom at X (Figure 8), with hydrogen bonds with the H 

atoms in ortho to the C1 and C5 phenyl moieties. In Figure 8, we observe that 9d–12d complexes have 

the same recognition pattern, in which the anion is interacting with two H atoms in ortho to two phenyl 

rings and with the H atom at C2. The CH···FBF3
– distance oscillates from 2.07–2.33 Å for X = O to  

2.21–2.72 Å for X = Te. Lastly, e complexes have the anion located above the aromatic ring. As seen in 

previous BF4
– complexes, the most favorable disposition of the anion is that with three F atoms directed 

at the aromatic system. In fact, tetrafluoroborate is symmetrically placed, facing C1, C3 and C5 in 1e and 

5e–8e·BF4
–, and a little bit displaced to one side of the molecule in 2e–3e·BF4

–, as depicted in Figure 8, 

most likely due to some sort of interaction between an F atom and X = S, Se. 
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Table 6. Interaction energies (∆E, in kcal·mol−1), electron density (ρBCP), its Laplacian  

(∇2 ρBCP) and the total electron energy density (HBCP) for the BCPs of F3BF–···C contacts of 

complexes of Compounds 1–12 with BF4
– and the number of imaginary frequencies (Nimag). 

Complex ∆E Nimag ρBCP × 102 ∇2 ρBCP × 102 HBCP × 102 
1e·BF4

– a −89.3 0 1.63(1.26) 6.28(4.94) 0.26(0.24) 
2e·BF4

– b −85.8 0 1.64(1.11) 6.53(4.51) 0.28(0.22) 
3e·BF4

– b −84.9 0 1.64(1.10) 6.54(4.66) 0.28(0.21) 
1a·BF4

– −87.2 0 2.73 9.76 0.24 
2c·BF4

– −84.7 0 1.59 6.30 0.25 
3c·BF4

– −86.8 0 1.84 6.79 0.24 
4c·BF4

– −90.5 0 - - - 
5e·BF4

– a −85.6 0 1.17(1.07) 4.74(4.43) 0.23(0.22) 
6e·BF4

– a −82.9 0 1.05(1.03) 4.32(4.25) 0.22(22) 
7e·BF4

– a −82.3 0 1.02(1.00) 4.07(4.13) 0.20(0.21) 
8e·BF4

– −81.1 0 - - - 
5c·BF4

– b −84.9 0 1.05 5.52 0.30 
6c·BF4

– b −82.1 0 1.05 4.28 0.22 
7c·BF4

– b −81.4 0 0.99 3.61 0.18 
8c·BF4

– −82.4 1 - - - 
9c1·BF4

– −72.1 1 - - - 
10c1·BF4

– −73.9 0 - - - 
11c1·BF4

– −73.4 1 - - - 
12c1·BF4

– −73.5 0 - - - 
9c2·BF4

– −73.6 2 1.20(0.43) b 4.82(1.97) b 0.23(0.12) b 
10c2·BF4

– −74.8 0 0.95(1.18) b 3.77(4.37) b 0.19(0.20) b 
11c2·BF4

– −74.1 0 0.89(1.28) b 3.49(4.38) b 0.18(0.19) b 
12c2·BF4

– −74.1 0 - - - 
9d·BF4

– −73.8 1 - - - 
10d·BF4

– −72.5 0 - - - 
11d·BF4

– −72.0 0 - - - 
12d·BF4

– −70.8 0 - - - 
a AIM properties computed at the BCP resulting from the F3BF···C3 contact. b AIM properties computed at the 

BCP resulting from the anion···X contact. 

The values of the interaction energies are the smallest of all of the anion series (Table 6), ranging 

from −90.5 kcal·mol−1 for 4c·BF4
– to −70.8 kcal·mol−1 for 12d·BF4

–. The largest binding energies are 

found for the unsubstituted complexes, and d complexes are the least favorable ones. Substitution affects 

the binding energies the same way as in chloride and nitrate complexes. 

The NBO analysis of BF4– complexes offers interesting results. In 2c–4c complexes, the interaction 

is mainly based on charge donation from the lone pairs of an F atom of BF4
– to the empty σ* orbital of 

the X–C1 bond (σ-hole chalcogen bond) and from Lp(F)→σ*(C1–H) to a minor extent, except for 4c, 

where the latter charge donation is dominant. A different picture is observed for 5c-8c complexes with 

several contributions arising from Lp(F)→p(C1/C3) in 5c, Lp(F)→p(C3/C4) in 6c and Lp(F)→p(C5) in 

7c (in line with the formation of anion-π interactions). The Lp(F)→π*(X–C1) donor-acceptor 

contribution is common for these complexes, increasing its importance with the size of the chalcogen in 

such a way that it becomes the only contribution in 8c. Contributions for e complexes are also based on 

charge transfer from lone pairs of F atoms to vacant p orbitals of C3 and C5 (and C1 for 5e), consistent 
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with the existence of an anion-π interaction. Moreover, 6e–8e complexes have charge-transfer 

contributions of the Lp(F)→π*(X–C1) π-hole chalcogen bond type. 

AIM calculations for all complexes are in agreement with NBO results and show the existence of one 

BCP connecting the X, C and H atoms with FBF3
– (Figure 9). It is worth noting that the type of contacts 

with X (characteristic for c complexes) are also present in 2e–3e·BF4
–. The values of the electron 

densities (between 0.027 and 0.004 au), Laplacian (between 0.098 and 0.020 au) and total energy 

densities (between 0.003 and 0.001 au) at the BCPs of all complexes (Table 6) are consistent with the 

existence of noncovalent interactions. 

 

Figure 9. Molecular graphs of 1a, 3c, 5c, 7c, 11c2, 1e, 3e and 5e·BF4
–. The BCPs, ring and 

cage critical points are represented by green, red and blue dots, respectively. Only bond paths 

are depicted. 

The SAPT results for 1e–3e, 5e–7e, 1a, 2c–3c and 10c2–11c2·BF4
– are analogous to the SAPT analysis 

of nitrate complexes. In general, all contributions are smaller than those for Cl– and NO3
–, which is reflected 
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in the smallest binding energies of all series of anions. The largest contribution comes from electrostatics 

with values between −96.3 and −73.3 kcal·mol−1. Both dispersion and exchange contributions are kept 

more or less constant for all complexes, and the induction component only varies in c complexes. 

2.5. Cambridge Structural Database Results 

The Cambridge Structural Database (CSD) [37] is a convenient and reliable storehouse for geometric 

information. The utility of small molecule crystallography and the CSD in analyzing geometric 

parameters and nonbonding interactions is well established [38]. We have explored the CSD, searching 

for structures containing the pyrylium moiety 1–4 and we found 103 X-ray structures, 93 of them 

containing the pyrylium core. For thiopyrylium, we found eight structures and only one for both  

seleno- and telluro-pyrylium systems. In Table 7, we have gathered the number of structures for every 

family of compounds along with the occurrence of the associated anion. From the inspection of the 

results, we observe that the most common anion is perchlorate with 35 hits, followed by tetrafluoroborate 

(18 hits) and triflate (11 hits). We show in Figure 10 three pyrylium selected examples (CSD Reference 

Codes: ASEVOK [39], GIMPOI [40] and IWATEF) [41] and in Figure 11, three selected examples for 

the rest of the derivatives (CSD reference codes: NUCWAK [42], AFAMEZ [43] and AFAMAV) [43] 

that we have retrieved from the database, where the contacts between the anion and the cation have a 

strong influence in determining the crystal packing. In the ASEVOK structure, a BF4
– is directing one F 

atom to the heteroaromatic ring and a second one to an aromatic H atom. However, three O atoms of 

ClO4
– and three F atoms of PF6

– are facing the ring in GIMPOI and IWATEF, respectively, as previously 

shown in the computed e·BF4
– complexes. A good agreement is found between our computed complexes 

and the rest of the structures in Figure 11, where we observe several BF4
–···X interactions for every 

example, as inferred from the values of the intermolecular distances. Particularly, in AFAMEZ and 

AFAMAZ, the anion is engaged in F3BF–···X interactions that act as a bridge joining two seleno- and 

telluro-pyrylium cationic molecules, giving rise to columns (Figure 11). 

 

Figure 10. Fragments of the pyrylium-based X-ray crystal structures with ASEVOK, 

GIMPOI and IWATEF CSD reference codes. Distances in Angstroms. 
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Figure 11. Fragments of the thiopyrylium- selenopyrylium- and telluropyrylium-based  

X-ray crystal structures with NUCWAK, AFAMEZ and AFAMAV CSD reference codes. 

Distances in Angstroms. 

Table 7. Occurrence of pyrylium X-ray structures, retrieved from the Cambridge Structural 

Database (CSD), as a function of the anion. 

Compound Anion Structures

X = O 

ClO4
– 33 

BF4
– 15 

CF3SO3
– 10 

PF6
– 6 

I3
– 3 

Cl– 2 
FeCl4

– 2 
Br– 1 

CuCl4
2– 1 

MnCl4
2– 1 

Pd2Cl6
2– 1 

ZnCl4
2– 1 

SbCl6
– 1 

HSO4
– 1 

PhSO3
– 1 

CCl3COO– 1 
Others 13 
Total 93 

X = S 

ClO4
– 2 

SbCl6
– 1 

BF4
– 1 

CF3SO3
– 1 

Others 3 
Total 8 

X = Se BF4
– 1 

X = Te BF4
– 1 
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3. Computational Methods  

We carried out geometry optimizations by means of DFT calculations at the B97-D3 [44,45] level of 

theory. This approach is based on Becke’s generalized gradient approximation (GGA) functional 

introduced in 1997 [46] and is explicitly parameterized by including damped atom-pairwise dispersion 

corrections of the form C6 · R−6. We optimized the geometry of all compounds using restricted Kohn–Sham 

DFT [47]. In these calculations, the Ahlrichs augmented triple-ζ basis for all atoms (def2-TZVPD basis 

set, abbreviated as TZVPD) [48] was used, unless stated otherwise. Our DFT calculations were carried 

out using the resolution of the identity (RI) B97-D3, which uses an auxiliary fitting basis set [49] to 

avoid treating the complete set of two-electron repulsion integrals, thus speeding up calculations by a 

factor of 10. Because of the time-consuming nature of the calculations, we used the parallel RI-DFT [50] 

methodology. Geometries of all structures were optimized with the analytical gradient method without 

imposing any symmetry constraints, unless stated otherwise. The vibrational frequencies were calculated 

at the RI-BP86-D3/def2-TZVPD level of theory. For our preliminary calculations, we carried out 

geometry optimizations using the MP2 method (RI-MP2) [51–53] with the aug-cc-pVTZ basis set and 

refined the energies by using the coupled-cluster method with singles and doubles excitations and triple 

excitations non-interatively (CCSD(T)) with a complete basis set (CBS). The CCSD(T) technique 

provides reliable interaction energies only if they are combined with extended AO basis sets, and the 

larger the basis set, the better the interaction energies that result. Owing to the rather strong dependence 

of the interaction energy on the AO basis set size, it is recommended that the relevant calculations be 

performed at the complete basis set (CBS) limit. Different extrapolation schemes have been introduced, 

and the scheme of Helgaker et al. [54] has become the most widely used. Here, the HF and correlation 

(MP2) energies are extrapolated separately as follows:  

 = ECBS
HF  + A ∝  (1)

 = ECBS
HF  + A ∝  (2)

Δ
( ) = ΔECBS

MP2 + Δ ( ) −  (3)

where EX and ECBS are the energies for the basis set with the largest angular momentum X and for the 

complete basis set, respectively. The CCSD(T)/CBS level can be attained via a separate extrapolation of 

the MP2 and higher-order correlation energies towards the basis set limit (Equation (3)). Here, each of 

the components is differently sensitive to the AO basis set: the MP2 interaction energy is the more slowly 

converging, and the larger the basis set used in the extrapolation, the better. In our case, we have used 

from the aug-cc-pVTZ (AVTZ) to the aug-cc-pVQZ (AVQZ) basis sets. The second term, called the 

CCSD(T) correction term (∆CCSD(T)), is determined as the difference between the CCSD(T) and MP2 

interaction energies and converges much faster than the previous term. The use of such a term is possible, 

because the MP2 and CCSD(T) interaction energies converge with basis set size in a very similar way; 

consequently, its difference is much less basis set dependent, and much smaller basis sets can be applied. 

In our case, we have used the AVDZ basis set to compute the CCSD(T) correction. 

All of the theoretical calculations described herein were carried out by using TURBOMOLE  

Version 6.5 [55,56], apart from the CCSD(T) calculations, which were computed by using the MOLPRO 

program [57,58]. 
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The partitioning of the interaction energies into the individual electrostatic, induction, dispersion and 

exchange-repulsion components was carried out by performing density functional theory (DFT) 

calculations combined with the symmetry-adapted perturbation theory (DFT-SAPT) approach [59–63] 

with the MOLPRO program. The DFT-SAPT total interaction energy (Eint) is given in terms of the  

first-, second- and higher-order correction interaction terms that are indicated by the superscripts in 

Equation (4): 

Eint = Eel
1  + Eexch 

1 + Eind 
2 + Eind-exch

2  + Edisp 
2 + Edisp-exch

2  + δHF (4)

where Eel
1  and Eexch

1  are the sum of the electrostatic interaction energy and the first-order exchange 
energy, respectively. Eind

2 , Eind-exch
2 , Edisp

2  and Edisp-exch
2  denote the induction (with response) energy, the 

second order induction-exchange (with response) energy, the dispersion energy and the  

exchange-dispersion contribution, respectively. The Hartree–Fock (HF) correction for third- and higher 

order contributions to the intermolecular interaction potential (δHF) is not included in DFT-SAPT 

calculations and can be estimated as the difference between the supermolecular HF energy and the sum 

of electrostatic, induction and their exchange counterparts obtained at the HF level. The aug-cc-pVDZ 

basis set was used to compute this correction apart from H, for which we used the cc-pVDZ basis set. 

For brevity, we will often refer to the aug-cc-pVXZ by the shorthand notation AVXZ. Physically 

meaningful separation of the interaction energy may be obtained by classifying the cross terms 
induction-exchange Eind-exch

2  and dispersion-exchange Edisp-exch
2  as a part of the induction and the 

dispersion, respectively [64,65]. The AVTZ basis set was used for the DF-DFT-SAPT calculations. As 

the auxiliary fitting basis set, the JK-fitting basis of Weigend [66] was employed. The cc-pVQZ  

JK-fitting basis was used for all atoms. For the intermolecular correlation terms, i.e., the dispersion and 

exchange-dispersion terms, the related AVTZ MP2-fitting basis of Weigend, Köhn and Hättig [67] was 

employed. In the DFT-SAPT calculations, the BP86 functional (the B88 exchange functional [68] in 

combination with the P86 gradient correction) [69] was employed using the B97-D3/def2-TZVPD 

optimized geometries. 

The electronic properties of the systems have been analyzed within the atoms in molecules  

(AIM) theory [70,71] by using the AIMAll [72] program. The AIM theory is based on the topological 

analysis of the electron density, ρ(r). The presence of a path linking two nuclei in an equilibrium structure 

implies that the two atoms are bonded to one another, and it is characterized by the bond critical point 

(BCP). Topologically, a BCP corresponds to a point in the real space where the gradient of the density, 

∇ ρBCP, is zero and where the curvature of ρBCP, expressed through the three eigenvalues of the 

diagonalized Hessian of ρBCP, is positive for an eigenvector linking two atomic centers and negative for 

the two others perpendicular to it. A chemical bond thus results from the competition of the parallel 

expansion of ρ, which separates charges in their respective atomic basins and the perpendicular 

contraction of ρ toward a bond path. The dominant effect is measured by the Laplacian of ρBCP, ∇2 ρBCP. 

Values of ρBCP greater than 0.2 are typical of covalent bonds, and ∇2 ρBCP is generally less than zero for 

such interactions, reflecting the concentration of electron density along the bond path linking the bonded 

atoms. Thus, when ∇2 ρBCP < 0, charge is concentrated at the critical point, while when ∇2 ρBCP > 0, 

charge is locally depleted. Additional information of the chemical bond can be obtained by applying the 

local expression of the virial theorem to the critical point, 1/2∇2ρBCP = 2GBCP + VBCP, where GBCP and 

VBCP are the kinetic and potential energy densities at the BCP, respectively [73]. Cremer and Kraka 
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demonstrated that the sign of the total energy, HBCP = GBCP + VBCP, is an index of the amount of covalency 

in the chemical interactions [73,74]. HBCP is negative for interactions with significant sharing of 

electrons. The remaining two stable critical points occur as a consequence of particular geometrical 

arrangements of bond paths, and they define the remaining elements of molecular structure, i.e., rings 

(ring critical point, RCP) and cages (cage critical point, CCP). 

The bonding features of all of the studied molecules and the net atomic charges were also analyzed 

by means of the natural bond orbital (NBO) and the natural population analysis (NPA) [75,76]. For such 

purposes, the NBO 3.1 program [77] has been used. The donor-acceptor interactions are quantified by 

examining all possible interactions between filled (donor) Lewis-type NBOs and empty (acceptor)  

non-Lewis NBOs and by evaluating their energetic importance by using the second-order perturbation 

theory in the NBO basis [78]. When interpreting the results of such estimations, it should be noted that 

this approach is only performed at the SCF level of theory (i.e., the Fock or Kohn−Sham operator is 

analyzed in the basis of the NBO), and only bonding interactions are considered (i.e., antibonding 

contributions are not covered by the NBO analysis and must be calculated separately). Because these 

interactions lead to the loss of occupancy from localized NBOs of an idealized Lewis structure to empty 

non-Lewis orbitals (and thus, to departure from an idealized Lewis structure description), they are 

referred to as delocalization corrections to the zeroth-order natural Lewis structure. 

4. Conclusions 

In summary, we have examined the molecular recognition in pyrylium, thio-, seleno- and  

telluro-pyrylium salts where anions of different morphologies were chosen, as well as different 

substitution of the heteroaromatic ring. The binding energy for the series of anions follows the ordering 

∆ECl > ∆ENO3 > ∆EBF4, and within every family of compounds, ∆EX > ∆EX-Me3 > ∆EX-Phe3. In general, for 

every derivative, the most favorable a and b complexes are found for X = O. Conversely, the largest 

binding energies in c complexes are obtained for the most electrophilic X = Te. Complexes strictly based 

on hydrogen-bonding interactions (d complexes) are the least favorable. For the monoatomic chloride 

anion, σ-complexes are generally the most favorable structures, except for triphenyl and X = Te trimethyl 

complexes, where the interactions of the anion with the chalcogen atom are important. The trigonal 

planar nitrate σ-complexes have the largest binding energies for the unsubstituted compounds. However, 

for the trimethyl and triphenyl derivatives, other configurations are more important, with the O atoms of 

nitrate either anion-π interacting with the ring C atoms (e complexes) or establishing interactions with 

the chalcogen atoms (c complexes) by means of σ- and π-hole chalcogen bonds. For the tetrahedral 

tetrafluoroborate anion, σ-complexes could not be found, and as in nitrate, e and c complexes are 

predominant. These complexes present multiple intermolecular contacts (anion-π interactions and σ- and 

π-hole chalcogen bonds) of the F···C, F···X and F···HC type, usually resulting from the interaction of 

three F atoms of a single BF4
– molecule with the cation. The interaction in all complexes is dominated 

by electrostatics. However, the induction term is especially important in chloride complexes. Finally, by 

analyzing the CSD, we have found several X-ray structures in which both anion-π interactions and 

chalcogen bonds are present, giving consistency to the computational study. 
  



Molecules 2015, 20 11655 

 

 

Acknowledgments 

We thank Gobierno de España Ministerio de economía y competitividad, MINECO, (projects 

CONSOLIDER-Ingenio 2010 CSD2010-0065, Fondo Europeo de Desarrolo Regional (FEDER) funds 

and Project CTQ2014-57393-C2-1-P) for financial support. David Quiñonero thanks the MINECO of 

Spain for a “Ramón y Cajal” contract. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Meyer, E.A.; Castellano, R.K.; Diederich, F. Interactions with Aromatic Rings in Chemical and 

Biological Recognition. Angew. Chem. Int. Ed. 2003, 42, 1210–1250.  

2. Müller-Dethlefs, K.; Hobza, P. Noncovalent Interactions:  A Challenge for Experiment and Theory. 

Chem. Rev. 2000, 100, 143–168. 

3. Quiñonero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa, A.; Deyà, P.M. Anion-π 

Interactions: Do They Exist? Angew. Chem. Int. Ed. 2002, 41, 3389–3392. 

4. Mascal, M.; Armstrong, A.; Bartberger, M.D. Anion-Aromatic Bonding:  A Case for Anion 

Recognition by π-Acidic Rings. J. Am. Chem. Soc. 2002, 124, 6274–6276. 

5. Alkorta, I.; Rozas, I.; Elguero, J. Interaction of Anions with Perfluoro Aromatic Compounds. J. Am. 

Chem. Soc. 2002, 124, 8593–8598. 

6. Kim, D.; Lee, E.C.; Kim K.S.; Tarakeshwar, P. Cation-π-Anion Interaction:  A Theoretical 

Investigation of the Role of Induction Energies. J. Phys. Chem. A 2007, 111, 7980–7986.  

7. Kim, D.; Tarakeshwar, P.; Kim, K.S. Theoretical Investigations of Anion-π Interactions:  The Role 

of Anions and the Nature of π Systems. J. Phys. Chem. A 2004, 108, 1250–1258. 

8. Kim, D.Y.; Singh, N.J.; Kim, K.S. Cyameluric Acid as Anion-π Type Receptor for ClO4
− and NO3

−: 

π-Stacked and Edge-to-Face Structure. J. Chem. Theory Comput. 2008, 4, 1401–1407. 

9. Demeshko, S.; Dechert, S.; Meyer, F. Anion-π Interactions in a Carousel Copper(II)−Triazine 

Complex. J. Am. Chem. Soc. 2004, 126, 4508–4509. 

10. Schottel, B.L.; Bacsa, J.; Dunbar, K.R. Anion dependence of Ag(I) reactions with 3,6-bis(2-

pyridyl)-1,2,4,5-tetrazine (bptz): Isolation of the molecular propeller compound [Ag2(bptz)3][AsF6]2. 

Chem. Commun. 2005, 46–47, doi:10.1039/B410811F. 

11. Rosokha, Y.S.; Lindeman, S.V.; Rosokha, S.V.; Kochi, J.K. Halide Recognition through Diagnostic 

“Anion-π” Interactions: Molecular Complexes of Cl−, Br−, and I− with Olefinic and Aromatic π 

Receptors. Angew. Chem. Int. Ed. 2004, 43, 4650–4652. 

12. De Hoog, P.; Gamez, P.; Mutikainen, I.; Turpeinen, U.; Reedijk, J. An Aromatic Anion Receptor: 

Anion-π Interactions do Exist. Angew. Chem. Int. Ed. 2004, 43, 5815–5817. 

13. Gamez, P.; Mooibroek, T.J.; Teat, S.J.; Reedijk, J. Anion Binding Involving π-Acidic Heteroaromatic 

Rings. Acc. Chem. Res. 2007, 40, 435–444. 

14. Schottel, B.L.; Chifotides, H.T.; Dunbar, K.R. Anion-π interactions. Chem. Soc. Rev. 2008, 37, 68–83. 



Molecules 2015, 20 11656 

 

 

15. Frontera, A.; Gamez, P.; Mascal, M.; Mooibroek, T.J.; Reedijk, J. Putting Anion-π Interactions into 

Perspective. Angew. Chem. Int. Ed. 2011, 50, 9564–9583. 

16. Chifotides, H.T.; Dunbar, K.R. Anion-π Interactions in Supramolecular Architectures. Acc. Chem. Res. 

2013, 46, 894–906. 

17. Zhao, Y.; Sakai, N.; Matile, S. Enolate chemistry with anion-π interactions. Nat. Commun. 2014, 5, 

3911–3915. 

18. Zhao, Y.; Beuchat, C.; Domoto, Y.; Gajewy, J.; Wilson, A.; Mareda, J.; Sakai, N.; Matile, S.  

Anion-π Catalysis. J. Am. Chem. Soc. 2014, 136, 2101–2111. 

19. Franconetti, A.; Contreras-Bernal, L.; Jatunov, S.; Gómez-Guillén, M.; Angulo, M.; Prado-Gotor, R.; 

Cabrera-Escribano, F. Electronically tunable anion-π interactions in pyrylium complexes: Experimental 

and theoretical studies. Phys. Chem. Chem. Phys. 2014, 16, 18442–18453. 

20. Gieling, R.G.; Babur, M.; Mamnani, L.; Burrows, N.; Telfer, B.A.; Carta, F.; Winum, J.Y.; 

Scozzafava, A.; Supuran, C.T.; Williams, K.J. Antimetastatic Effect of Sulfamate Carbonic 

Anhydrase IX Inhibitors in Breast Carcinoma Xenografts. J. Med. Chem. 2012, 55, 5591–5600. 

21. Farid, S.; Dinnocenzo, J.P.; Merkel, P.B.; Young, R.H.; Shukla, D. Bimolecular Electron Transfers 

That Follow a Sandros−Boltzmann Dependence on Free Energy. J. Am. Chem. Soc. 2011, 133, 

4791–4801. 

22. Mouradzadegun, A.; Abadast, F. An Innovative and Atom-Efficient Synthesis of Bioactive  

2-Aroylfuran Derivatives Using Macroporous Polymer-Supported Cyanide. Synlett 2014, 25,  

448–452. 

23. García-Acosta, B.; García, F.; García, J.M.; Martínez-Máñez, R.; Sancenón, F.; San-José, N.; Soto, J. 

Chromogenic Signaling of Hydrogen Carbonate Anion with Pyrylium-Containing Polymers.  

Org. Lett. 2007, 9, 2429–2432. 

24. Wetzl, B.K.; Yarmoluk, S.M.; Craig, D.M.; Wolfbeis, O.S. Chameleon Labels for Staining and 

Quantifying Proteins. Angew. Chem. Int. Ed. 2004, 43, 5400–5402. 

25. Scaramuzzo, F.A.; Gónzález-Campo, A.; Wu, C.C.; Velders, A.H.; Subramaniam, V.; Doddi, G.; 

Mencarelli, P.; Barteri, M.; Jonkheijm, P.; Huskens, J. Pyrylium monolayers as amino-reactive 

platform. Chem. Commun. 2010, 46, 4193–4195. 

26. Binnemans, K. Ionic Liquid Crystals. Chem. Rev. 2005, 105, 4148–4204. 

27. Priimagi, A.; Cavallo, G.; Metrangolo, P.; Resnati, G. The Halogen Bond in the Design of 

Functional Supramolecular Materials: Recent Advances. Acc. Chem. Res. 2013, 46, 2686–2695. 

28. Scheiner, S. The Pnicogen Bond: Its Relation to Hydrogen, Halogen, and Other Noncovalent Bonds. 

Acc. Chem. Res. 2013, 46, 280–288. 

29. Del Bene, J.E.; Alkorta, I.; Sanchez-Sanz, G.; Elguero, J. Structures, Energies, Bonding, and NMR 

Properties of Pnicogen Complexes H2XP:NXH2 (X = H, CH3, NH2, OH, F, Cl). J. Phys. Chem. A 

2011, 115, 13724–13731. 

30. Sánchez-Sanz, G.; Trujillo, C.; Alkorta, I.; Elguero, J. Intermolecular Weak Interactions in HTeXH 

Dimers (X = O, S, Se, Te): Hydrogen Bonds, Chalcogen–Chalcogen Contacts and Chiral 

Discrimination. Chem. Phys. Chem. 2012, 13, 496–503. 

31. Bauzá, A.; Mooibroek, T.J.; Frontera, A. Tetrel-Bonding Interaction: Rediscovered Supramolecular 

Force? Angew. Chem. Int. Ed. 2013, 52, 12317–12321. 



Molecules 2015, 20 11657 

 

 

32. Bauzá, A.; Frontera, A. Aerogen Bonding Interaction: A New Supramolecular Force? Angew. Chem. 

Int. Ed. 2015, 54, 7340–7343. 

33. Milov, A.A.; Starikov, A.G.; Gridin, M.K.; Minyaev, R.M. Effect of the Counterion on the Steric 

and Electronic Structure of Pyrylium Cation. Rus. J. Gen. Chem. 2007, 77, 1373–1385. 

34. Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–452. 

35. Estarellas, C.; Bauzá, A.; Frontera, A.; Quiñonero, D.; Deyà, P.M. On the directionality of anion-π 

interactions. Phys. Chem. Chem. Phys. 2011, 13, 5696–5702. 

36. Rozas, I; Alkorta, I.; Elguero, J. Behavior of Ylides Containing N, O, and C Atoms as Hydrogen 

Bond Acceptors. J. Am. Chem. Soc. 2000, 122, 11154–11161. 

37. Allen, F.H. The Cambridge Structural Database: A quarter of a million crystal structures and rising. 

Acta Crystallogr. Sect. B 2002, 58, 380–388. 

38. Nangia, A.; Biradha, K.; Desiraju, G.R. Correlation of biological activity in β-lactam antibiotics 

with Woodward and Cohen structural parameters—A Cambridge database study. J. Chem. Soc. 

Perkin Trans. 2 1996, 943–953, doi:10.1039/P29960000943. 

39. El-Idreesy, T.T.; Clennan, E.L. Computational and experimental evidence for the first direct 

spectroscopic detection of the pyrylogen neutral redox partner. Photochem. Photobiol. Sci. 2010, 9, 

796–800. 

40. Roshal, A.D.; Sikorski, A.; Baumer, V.N.; Novikov, A.I.; Blazejowski, J. Two polymorphs of  

2-(4-chlorophenyl)-4-methylchromenium perchlorate. Acta Cryst. 2007, C63, o626–o630. 

41. Balaban, A.T.; Ghiviriga, I.; Czerwinski, E.W.; De, P.; Faust, R. Simple Synthesis of a Weak 

Nucleophilic Base (4-Ethyl-2,6-diisopropyl-3,5-dimethylpyridine) Evidencing a Double Janus Group 

Effect. J. Org. Chem. 2004, 69, 536–542. 

42. Clennana, E.L.; Kumar, A.; Warriera, S.; Arulsamy, N. Synthesis, photophysical, and electrochemical 

properties of the sulfur analogs of the new 4,4′-pyrylogen electron transfer sensitizers. J. Sulfur Chem. 

2009, 30, 212–224. 

43. Sashida, H.; Ohyanagi, K.; Minoura, M.; Akiba, K. Studies on tellurium-containing heterocycles. 

Part 18. Preparation and structure of 2-benzotelluropyrylium salts and 2-benzoselenopyrylium salts. 

J. Chem. Soc. Perkin Trans. 1 2002, 606–612, doi:10.1039/B111045B. 

44. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion 

correction. J. Comput. Chem. 2006, 27, 1787–1799.  

45. Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization 

of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 

132, 154104. 

46. Becke, A.D. Density-functional thermochemistry. V. Systematic optimization of exchange-correlation 

functionals. J. Chem. Phys. 1997, 107, 8554–8560. 

47. Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects.  

Phys. Rev. 1965, 140, A1133. 

48. Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular response calculations. 

J. Chem. Phys. 2010, 133, 134105. 

49. Eichkorn, K.; Weigend, F.; Treutler, O.; Ahlrichs, R. Auxiliary basis sets for main row atoms and 

transition metals and their use to approximate Coulomb potentials. Theor. Chem. Acc. 1997, 97, 

119–124. 



Molecules 2015, 20 11658 

 

 

50. Arnim, M.V.; Ahlrichs, R. Parallelization of Density Functional and RI-Coulomb Approximation 

in Turbomole. J. Comput. Chem. 1998, 19, 1746–1757. 

51. Weigend, F.; Häser, M. RI-MP2: First derivatives and global consistency. Theor. Chem. Acc. 1997, 

97, 331–340. 

52. Hättig, C.; Hellweg, A.; Köhn, A. Distributed memory parallel implementation of energies and 

gradients for second order Møller-Plesset perturbation theory with the resolution-of-the-identity 

approximation. Phys. Chem. Chem. Phys. 2006, 8, 1159–1169. 

53. Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: Optimized Auxiliary Basis Sets and 

Demonstration of Efficiency. Chem. Phys. Lett. 1998, 294, 143–152. 

54. Halkier, A.; Helgaker, T.; Jorgensen, P.; Klopper, W.; Koch, H.; Olsen, J.; Wilson, A.K. 

Generalized integral-screening for efficient calculations of nonlinear optical properties of large 

molecules. Chem. Phys. Lett. 1998, 286, 243–252. 

55. Ahlrichs, R.; Bär, R.M.; Hacer, M.; Horn, H.; Kömel, C. Electronic structure calculations on 

workstation computers: The program system Turbomole. Chem. Phys. Lett. 1989, 162, 165–169. 

56. TURBOMOLE, version 6.5; A development of University of Karlsruhe and Forschungszentrum 

Karlsruhe GmbH, 1989–2007; TURBOMOLE GmbH: Karlsruhe, Germany, 2013. 

57. Werner, H.J.; Knowles, P.J.; Knizia, G.; Manby, F. R; Schütz, M. Molpro: A general-purpose 

quantum chemistry program package. WIREs Comput. Mol. Sci. 2012, 2, 242–253. 

58. MOLPRO, version 2012.1; A package of ab initio programs; Universität Stuttgart: Stuttgart, 

Germany, 2012. 

59. Heßelmann, A.; Jansen, G. Intermolecular induction and exchange-induction energies from 

coupled-perturbed Kohn–Sham density functional theory. Chem. Phys. Lett. 2002, 362, 319–325. 

60. Heßelmann, A.; Jansen, G. First-order intermolecular interaction energies from Kohn–Sham orbitals. 

Chem. Phys. Lett. 2002, 357, 464–470. 

61. Heßelmann, A.; Jansen, G. Intermolecular dispersion energies from time-dependent density 

functional theory. Chem. Phys. Lett. 2003, 367, 778–784. 

62. Heßelmann, A.; Jansen, G. The helium dimer potential from a combined density functional theory 

and symmetry-adapted perturbation theory approach using an exact exchange–correlation potential. 

Phys. Chem. Chem. Phys. 2003, 5, 5010–5014. 

63. Jansen, G.; Heßelmann, A. Comment on “Using Kohn−Sham Orbitals in Symmetry-Adapted 

Perturbation Theory To Investigate Intermolecular Interactions”. J. Phys. Chem. A 2001, 105, 

11156–11157. 

64. Sinnokrot, M.O.; Sherrill, C.D. Substituent Effects in π-π Interactions:  Sandwich and T-Shaped 

Configurations. J. Am. Chem. Soc. 2004, 126, 7690–7697. 

65. Arnstein, S.A.; Sherrill, C.D. Substituent effects in parallel-displaced π-π interactions. Phys. Chem. 

Chem. Phys. 2008, 10, 2646–2655. 

66. Weigend, F. A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, 

demonstration of accuracy and efficiency. Phys. Chem. Chem. Phys. 2002, 4, 4285–4291. 

67. Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets in resolution 

of the identity MP2 calculations.  J. Chem. Phys. 2002, 116, 3175–3183. 

68. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. 

Phys. Rev. A 1988, 38, 3098–3100. 



Molecules 2015, 20 11659 

 

 

69. Perdew, J.P. Density-functional approximation for the correlation energy of the inhomogeneous 

electron gas. Phys. Rev. B 1986, 33, 8822–8824. 

70. Bader, R.F.W. Atoms in Molecules: A Quantum Theory; Clarendon Press: Oxford, UK, 1990. 

71. Popelier, P.L.A. Atoms in Molecules. An introduction; Prentice Hall: Harlow, England, UK, 2000. 

72. AIMAll, 11.10.16; TK Gristmill Software: Overland Park, KS, USA, 2011. 

73. Cremer, D.; Kraka, E. A description of the chemical bond in terms of local properties of electron 

density and energy. Croat. Chem. Acta 1984, 57, 1259–1281. 

74. Cremer, D.; Kraka, E. Chemical Bonds without Bonding Electron Density—Does the Difference 

Electron‐Density Analysis Suffice for a Description of the Chemical Bond? Angew. Chem. Int.  

Ed. Engl. 1984, 23, 627–628. 

75. Reed, A.E; Weinhold, F.J. Natural localized molecular orbitals. Chem. Phys. 1985, 83, 1736–1740. 

76. Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, 

Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. 

77. NBO, Version 3.1; University of Wisconsin: Madison, WI, USA, 1998. 

78. Weinhold, F.; Landis, C.A. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor 

Perspective; Cambridge University Press: Cambridge, UK, 2005; p. 760. 

Sample Availability: Not available.  

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


