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Abstract

Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several
sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pul-
monary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which
contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in
blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious
damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and
airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of
donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering
and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been
achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway
reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering
approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by pro-
moting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal
bioengineering recently resulted in successful transplantation of the world’s first bioengineered trachea. Current
trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds
capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspec-
tive of using human native sites as micro-niche for potentiation of the human body’s site-specific response by
sequential adding, boosting, permissive, and recruitment impulses.

Introduction
Transplantation of the airway and lung tissue is an
accepted modality of treatment for end-stage lung dis-
ease. Since the early 1990 s, more than 26,000 lung
transplants have been performed at centers worldwide
[1]. The most common indications, for which lung
transplantation is performed, include cases of respiratory
failure such as chronic obstructive pulmonary disease,
cystic fibrosis (mucoviscidosis), idiopathic pulmonary
fibrosis, idiopathic pulmonary hypertension, alpha-1
antitrypsin deficiency, bronchiestasis, and sarcoidosis
[2]. However, the availability of donor tissues and organs
is constantly limited, which presents a serious bottleneck

for widespread transplantation surgery. The generation
of bioengineered lung and tracheal tissue transplants,
with the help of regenerative medicine, is considered a
very promising alternative to the classical transplanta-
tion of donor organ/tissue.
Over two years ago, a successful transplantation of the

world’s first bioengineered trachea to a young woman
with end-stage bronchomalacia was performed [3]. A
donor trachea was first carefully decellularized using a
soft detergent that prevented degradation and solubiliza-
tion of the collagenous matrix. Major histocompatibility
antigens were also removed from the donor trachea to
prevent a transplant rejection reaction. The decellular-
ized trachea was then seeded with two types of pre-
expanded and predifferentiated autologous cells; i.e.
mesenchymal stem cell-derived cartilage-like cells and
epithelial respiratory cells. Finally, the bioengineered
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organ was engrafted into the recipient’s body to replace
the left main bronchus. After surgery, the patient did
not develop any signs of antigenicity and continues to
live a near-normal life.
The first tissue-engineered organ transplantation was

still based on a donor trachea. However, to date, a vari-
ety of bioengineered tubular tracheal matrices were
developed as an alternative to the donor’s airway. When
selecting new biomaterials for trachea bioengineering,
researchers should evaluate a wide range of biological
properties of candidate material including toxicity, toxi-
genicity, biocompatibility, biodegradability, durability,
cell adhesion characteristics, and ability to mimic the
function of a native organ as much as possible.
The epithelial cells-extracellular matrix (ECM) interac-

tions play a crucial role in healing airway injuries and
repair of the airway epithelium. The secretion of a pro-
visional ECM, the cell-ECM relationships through
epithelial receptors, and the remodeling of the ECM by
matrix metalloproteinases contribute not only to airway
epithelial repair by modulating epithelial cell migration
and proliferation, but also to the differentiation of
repairing cells, leading to the complete restoration of
the wounded epithelium [4]. Therefore, while developing
a bioengineered model of the human bronchiole, tissue
engineers should pay special attention to the fabrication
of biologically active scaffolds and matrices capable of
fulfilling natural properties of the airway ECM, for
example, by maintaining and slowly releasing factors
essential for proliferation and differentiation of a stem
cell transplant [5].
Another issue of challenge in lung regenerative medi-

cine is the choice of an appropriate cell source to recon-
stitute the lung airway. Naturally, residual pools of adult
stem cells (SCs) located within the basal layer of the
upper airways, within or near pulmonary neuroendocrine
cell rests, at the bronchoalveolar junction, and within the
alveolar epithelial surface, are responsible for lung regen-
eration and repair [6]. Endogenous progenitor cells are
also involved in lung regeneration, contributing particu-
larly to the rapid repair of the denuded alveolar surface
after injury [7,8]. However, the repair capacity of lungs
declines with age, which is primarily due to the endogen-
ous SC failure. Therefore, the exogenous stem/progenitor
cells, such as embryonic stem cells (ESCs), bone marrow-
or fat-derived mesenchymal stem cells (MSCs), and
recently amniotic fluid stem/progenitor cells, could be
considered as an alternate cell source for lung regenera-
tion. The limitation of xenogenic or allogenic SCs is their
potential immunogenicity for the recipient organism that
requires implementation of immunosuppression to mini-
mize the risk of graft rejection.
Special attention should also be paid to the delivery of

implant cells to the recipient site and providing boosting

and recruitment impulses for survival, expansion, and
differentiation of the stem cell transplant. The molecular
physiology of complex interactions between the host and
engrafted cells is far to be precisely understood and
therefore needs further efforts to maximize the regen-
eration rate. In this review, we characterize the impor-
tant role of cell-cell interactions and ECM in airway
epithelium repair; consider the resources of endogenous
and exogenous stem/progenitor cells that have been
used or have a potential to be applied in lung regenera-
tion; and analyze current strategies in tracheal bioengi-
neering and transplantation.

Endogenous and exogenous stem and progenitor cells
for lung repair
The airway epithelium is subjected to a lifetime expo-
sure by inhaled particles and pathogens that may lead to
the development of a variety of infectious and inflamma-
tory respiratory diseases such as chronic bronchitis,
asthma, chronic obstructive pulmonary disease, and cys-
tic fibrosis. These pathologies are typically associated
with changes in the architecture of the airway walls,
which could vary from the epithelial structure remodel-
ing to complete denudation of the basement membrane.
To restore its functions, the airway epithelium has to
rapidly repair the injuries and regenerate its structure
and integrity. The regeneration process is a complex
phenomenon that quickly starts after the lesion occurs.
Epithelial cells at the wound edge dedifferentiate, spread,
and migrate to cover the denuded area [9]. After migra-
tion, epithelial cells in the repairing area start to prolif-
erate. Finally, to restore a functional mucociliary
epithelium at the injury site, the epithelium forms a
transitory squamous metaplasia followed by progressive
redifferentiation [10].
Due to the very large size (> 70 m2) and spatial

restrictions of the alveolar surface in adult humans, a
large number of cells must function as a “ready reserve”
to repair the damaged alveolar surface [11]. The repair
of injuries and the regeneration of the epithelial struc-
ture involve stem and progenitor cells. The mechanism
of the regeneration of the airway epithelium was widely
studied in rodent models of lung injury. After epithelial
damage in mouse, the sites of actively proliferating cells
observed near the glandular ducts were referred to as
basal cells providing evidence of SC niches [12]. These
cell populations are heterogeneous and comprise subpo-
pulations capable of either multipotent or unipotent dif-
ferentiation leading to the restoration of a completely
differentiated airway epithelium [13].
In the human fetus, both basal and suprabasal cells

were able to reconstitute a fully differentiated airway
epithelium after engraftment in a humanized xenograft
model in severe combined immunodeficiency (SCID)
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mice suggesting for a similar progenitor potential [14].
In adult human airway epithelium, only isolated basal
cells are capable of restoring a fully functional airway
epithelium, but the adult secretory cells lose their regen-
eration potential compared to the fetal secretory cells
[15]. Thus, although both secretory and basal cells are
able to proliferate, only basal cells are now suggested to
represent the SC compartment of the airway epithelium
in tracheas and bronchi.
In rodent bronchioles, two types of cells, Clara cells

and neuroendocrine cells localized in neuroepithelial
bodies possess the ability to proliferate in response to
bronchiolar and alveolar damages [16]. Among those,
only a subset of Clara secretory protein-expressing cells,
which are reside in the airway neuroepithelial bodies
and bronchoalveolar duct junctions are able to reconsti-
tute the bronchiolar airway epithelium and hence can be
considered as bronchiolar SCs [17]. A population of
endothelial cells resistant to bronchiolar and alveolar
damages and which is capable of giving rise, not only to
Clara cells, but also to type I and type II alveolar cells in
vitro was found at the bronchioalveolar duct junction
[18]. Indeed, this observation suggests that both bronch-
iolar and alveolar rodent epithelia could possess SC
features.
Despite the well-documented nature of stem/progeni-

tor cells in rodent bronchiolar airway epithelium, it
remains to be clarified in humans. Recently, the multi-
way analyzes of multicellular spheroids (termed as
bronchospheres) produced by mechanical and enzymatic
digestion of the adult human lung tissue revealed the
presence of mixed phenotype cells with type II alveolar
and Clara cell features and high expression of SC regula-
tory genes, which was either weakly or not detectable in
original tissues [19]. These findings provide the evidence
that adult human bronchioli, similarly to rodent bronch-
iolar and alveolar epithelia, should harbor SCs. Interest-
ingly, the bronchospheres also exhibited mesenchymal
features and, after silencing the Slug gene that plays a key
role in epithelial-mesenchymal transition processes, they
lost the SC-specific gene expression profile and gained a
differentiated bronchial/alveolar phenotype [20]. This
suggests that the epithelial-mesenchymal transition pro-
cess could be induced in a subset of airway cells after
injury of the adult human lung tissue.
The endogenous peripheral airway smooth muscle

progenitors appear to occur very early in lung develop-
ment. The peripheral mesenchyme that expresses fibro-
blast growth factor 10 (Fgf10) serves as a progenitor cell
population for peripheral airway smooth muscle [21]. As
the airway grows outwards, Fgf10-expressing airway
smooth muscle progenitor cells spread along the
expanding peripheral airway. The mesenchymal vascular
progenitors (hemangioblasts) occur at the very early

stages of the lung embryogenesis. Under the stimulation
of vascular engothelium growth factor, which is secreted
mainly by the primitive epithelium, these hemangio-
blasts differentiate into a capillary network surrounding
the bronchial, lobar, and segmental branches of the air-
way [22].
Since adult human airway epithelial SCs were only

recently discovered and their cultivation is still challen-
ging, the researchers consider other sources of exogen-
ous pluripotent SCs for airway tissue engineering, such
as ESCs and MSCs. ESCs possess a great pluripotency
since they are able to generate a variety of cell lineages
including airway progenitor cells [23]. However, the
application of human embryonic SCs is now limited due
to the obvious ethical problems.
Bone marrow-derived adult MSCs circulating in blood

were shown to be able to support lung repair in mice
[24,25]. There were two populations of those progenitor
epithelial cells expressing distinct surface markers. The
first population had epithelial characteristics as shown
by cytokeratin expression, but also hematopoietic char-
acteristics as shown by CD45 expression [24]. Another
population of MSCs was positive for the early epithelial
marker cytokeratin 5 (CK5) and the chemokine receptor
CXCR4 [25]. Administration of FGF7 (also known as a
keratinocyte growth factor) to mouse recipients of tra-
cheal transplants resulted in enhanced engraftment of
the CK5-positive progenitors to the injured proximal
airway epithelium suggesting the role of FGF7 in local
resident progenitor epithelial cell repair through the
mobilization of subsets of CK5-positive epithelial pro-
genitors [26].
Bone marrow-derived populations of MSCs, such as

bone marrow-derived chondrocytes, were widely co-cul-
tivated with respiratory epithelial cells to reconstitute
artificially fabricated trachea constructs based on syn-
thetic [27], composite [28], or natural decellularized
matrixes [3,29]. A tissue-engineered trachea seeded with
bone marrow-derived chondrocytes and airway epithelial
cells was successfully implanted into a human recipient
[3]. At present, autologous bone marrow-derived MSCs
seem to present the most popular SC type used in laryn-
gotracheal tissue engineering. Adipose-derived MSCs
may be also regarded as potentially suitable for the tra-
cheal repair, but so far there are only a few reports
about their use in the improvement of airway defects.
Suzuki et al. [30] used fat-derived MSCs as part of a
bioengineered scaffold to improve tracheal defects in
rats, observing a well-differentiated and neovasularized
airway epithelium two weeks post-implantation. A tis-
sue-engineered trachea derived from a framed collagen
scaffold, gingival fibroblasts, and adipose-derived SCs,
showed good regeneration properties when implanted
into rats with tracheal defects [31].
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Human amniotic fluid SCs (hAFSCs) and umbilical
blood cord (UBC)-derived SCs are new cell resources
for lung regeneration. Human umbilical cord blood is a
promising source for human MSCs. Hematopoietic SCs
are present in the blood of the umbilical cord during
and shortly after delivery. These SCs are in the blood at
the time of delivery because they move from the liver
(where blood formation takes place during fetal life) to
the bone marrow (where blood is made after birth).
UBC-derived SCs are similar to SCs that reside in the
bone marrow. Higher healing properties of those cells
were demonstrated in rodents. When administered
intratracheally, human UCB-derived MSCs success-
fully attenuated the hyperoxia-induced lung injury in
neonatal rats [32] and reduced fibrosis in the bleomy-
cin-induced mouse model of lung injury through the
activation of production of matrix metalloproteinases
(MMPs) and inhibition of the impaired collagen synthesis
[33]. Recently, a successful clinical application of human
UCB-derived SCs for treatment of systemic lupus erythe-
matosus-induced diffuse alveolar hemorrhage was
reported. The cells were infused into the blood of a
19-year-old girl that showed dramatic improvements in
her clinical condition, oxygenation level, radiographic and
hematological status very soon after transplantation of
MSCs [34].
Similarly to ESCs, hAFSCs are multipotent and cap-

able of differentiating into cell types that represent each
embryonic germ layer, including cells of adipogenic,
osteogenic, myogenic, endothelial, neuronal, and hepatic
lineages [35]. However, compared to ESCs, hAFSCs
have a great advantage because they are not tumorigenic
and teratogenic. Experiments in mice with lung injuries
showed an excellent regeneration potential for hAFSCs,
which were able to integrate into the murine lung and
differentiate into pulmonary lineages after injury [36].
In 2006, an attractive possibility of the direct

reprogramming of somatic cells to an embryonic stem
cell-like pluripotent state was shown [37]. The repro-
gramming requires the ectopic expression of four or
even fewer factors (Oct 4, Sox2, Nanog, and Klf4)
responsible for maintaining pluripotency [38]. To main-
tain a pluripotency, human induced pluripotent stem
(iPS) cells were shown to utilize signaling mechanisms
that are similar to those used by human ESCs [39]. The
iPS cells present a key advantage over true ESCs since
they do not require an embryo to be sacrificed and ulti-
mately will allow the autologous transplantation of
induced SCs to repair damaged tissues [40]. To date, a
variety of human and murine terminally differentiated
somatic cells were reported to be reprogrammed into
iPS cells. While no direct applications to airway cells
have yet been reported, it is likely that such applications
will become possible in the near future.

Early-passage iPSCs retained a transient epigenetic
memory of their somatic cells of origin, which manifests
as differential gene expression and altered differentiation
capacity [41,42]. These observations could be exploited
in potential therapeutic applications to enhance differen-
tiation into desired cell lineages.
It should be noted that in vitro reprogramming of

somatic cells to iPS cells occurs with extremely low fre-
quency and slow kinetics, suggesting the existence of a
barrier factor. Cell senescence modulated by the activa-
tion of several negative cell cycle regulators, such as p53
(encoded by Trp53), p21 (encoded by Cdkn1a), and
INK4a/ARF (encoded by Cdkn2a/2b), was considered to
play a major barrier role for reprogramming [43-45].
Before the reprogramming stage, a preliminary down-
regulation of these factors resulted in a marked increase
(up to 28%) in the efficiency of reprogramming [46-48].
For example, silencing of p53 significantly increased the
reprogramming efficiency of human somatic cells, direc-
ted with administration of only two pluripotency factors,
Oct4 and Sox2 [47]. These results suggest new routes to
more efficient reprogramming, avoiding the use of onco-
genes for inducing pruripotency, and maximizing yield
of new promising cell sources for tissue engineering.

Epithelial cell-extracellular matrix interactions and their
mimic by bioengineered scaffolds
The airway epithelium plays a key role in wound healing
through the release of ECM proteins and remodeling of
the secreted provisional ECM. The epithelial cells
secrete a range of factors contributing to airway repair
and regeneration (Figure 1). They include structural
matrix proteins (collagens, laminin, fibronectin, fibrin,
etc.) and molecules modulating cell migration (integ-
rins), cell-cell and cell-substrate interactions (glycans,
cell adhesion receptors), ECM remodeling (MMPs), cell
proliferation and differentiation (FGF7, epidermal
growth factor (EGF), connective tissue growth factor,
FGFs, and their receptors) [4]. The epithelial cells and
inflammatory cells of the airways also release inflamma-
tory mediators such as transforming growth factor
(TGF)-b1 and tumor necrosis factor-a that influence the
production of matrix molecules [49].
Tissue engineering presents a promising technique to

create a functional tracheal substitute that may over-
come many difficulties that other tracheal substitutes
could not. Most cartilage tissue engineering approaches
use biodegradable three-dimensional (3D) scaffolds,
which are important for neocartilage formation by pro-
moting chondrocyte attachment, cell redifferentiation,
and production of extracellular cartilage matrix [50]. In
the development of bioactive engineered matrices, cur-
rent strategies try to utilize natural properties of the air-
way ECM as much as possible. Those include the
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creation of hybrid hydrogel 3 D networks containing a
cell-binding site for ligation of cell-surface integrin
receptors and substrates for MMPs, proteases implicated
in wound healing and tissue regeneration [51,52] and
fabrication of scaffolds with immobilized signaling mole-
cules (FGF [53], TGF-b1[54], etc.) that slowly release
upon transplantation to support the tissue repair.
In order to increase non-integrin-dependent cell adhe-

sion features of the engineered scaffold, using fibrin/hya-
luronic acid (HA) composite as a scaffold biomaterial
was suggested. HA (hyaluronan) is natively found in the
cartilage tissue. This glucosaminoglycan functions as a
core ECM molecule for the binding of keratin sulfate
and chondroitin sulfate in forming aggrecan [55] and
contributes to several cellular processes like cell prolif-
eration, morphogenesis, inflammation, and wound repair
[56]. Compared to relatively inert poly(ethylene glycol)

(PEG) hydrogels, fibrin/HA gels exhibited better proper-
ties for supporting the differentiation of MSCs into
chondrocytes as shown by enhanced expression of carti-
lage-specific markers by MSCs seeded into the fibrin/
HA scaffold [57]. In humans, HA-based scaffold Hyalo-
graft C (Fidia Advanced Biopolymers, Abano Terme,
Italy) has been successfully applied in the treatment of
chronic lesions of the knee and articular defect repair
[58]. To date, Hyalograft C has not been used for tra-
cheal repair in humans. The application of this scaffold
for tracheal regeneration in animal models produced
inconsistent results. A tissue-engineered trachea, fabri-
cated from the fibrin/HA gel and autologous chondro-
cytes, and then transplanted into rabbits, showed
successful regeneration and functional restoration of
ciliated epithelium at the operated site without graft
rejection and inflammation [59]. However, in another
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Figure 1 Extracellular matrix proteins and their interaction with each other and with cell surface matrix receptors. Decorin,
fibromodulin, and types IX and XI collagen all interact with type II collagen and regulate collagen fiber assembly and structure. Types II and VI
collagen bind matrix receptors (integrins). Type II collagen can also bind to anchorin CII, whereas fibronectin binds to integrins. A large
proteoglycan aggregate forms when multiple aggrecan molecules bind to a long strand of hyaluronic acid, which, in turn, is anchored to the
cell by CD44. Additional matrix proteins shown include thrombospondin and cartilage oligomeric protein (COMP).
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study, if implanted intra-or paralaryngeally, Hyalograft C
exhibited biocompatibility-related problems initiating a
foreign-body reaction and cartilage degradation in rab-
bits [60].
To avoid problems with biocompatibility, the use of

scaffold-free cartilage grafts was proposed. The grafts
were recently evaluated in laboratory animals. Autolo-
gous chondrocytes were cultivated in a bioreactor to
fabricate scaffold-free cartilage sheets and then used for
laryngotracheal reconstruction in rabbits. The scaffold-
free engineered cartilage was capable to support the for-
mation of a well-vascularized, autologous neotrachea,
with excellent mechanical properties compatible with
the rabbit’s native trachea [61]. The grafts showed no
signs of degradation or inflammatory reaction and were
covered with mucosal epithelium. However, they did
show signs of mechanical failure at the implantation site
[62]. Overall, scaffold-free engineered cartilage repre-
sents a promising, new approach in tracheal reconstitu-
tion; however, further efforts are required to optimize
its mechanical properties and biomaterial durability.

Strategies to deliver cell graft and support its survival
and tracheal healing
Pioneering works involved the engraftment of human
airway epithelial cells into immunodeficient (SCID) mice
resulted in the development of a well-differentiated and
functional human epithelium [63,64]. Yang et al. [65]
developed an approach for cultivating and scaffold-free
delivery of epithelial cell sheets directly to host tissues.
The utility of human respiratory epithelial cells for clini-
cal transplantation is limited because those cells grow
slowly. After transduction with a lentivirus-based vector,
the growth rate and regeneration properties of trans-
duced human epithelial cells have been significantly
improved [66]. However, due to their viral modification,
the clinical implication of transduced epithelial cells is
still restricted by biosafety requirements.
Primary respiratory epithelial cells co-cultivated with

other primary cells, such as fibroblasts and chondro-
cytes, and seeded into the collagenous or related carrier,
were shown to reconstitute the structure of the tracheal
wall, forming a fully differentiated airway epithelium
and basement membrane located below the epithelium
[67,68]. To date, a range of experimental approaches
and protocols for the in vitro development of lung tissue
constructs composed of primary lung cells has been
developed. For example, the development of a tissue-
engineered model of human bronchiole consisting of
primary cells and designed to study mechanisms of air-
way remodeling and lung inflammation in asthma has
been recently reported [69].
Exogenous stem/progenitor cells may be delivered into

the lung either intravenously, intratracheally, or by

direct injection. The immediate efficiency of exogenous
cell arrival and trapping in the lung is very high. How-
ever, the rate of extravasation of implanted cells from
the capillary into the injured tissue and eventual integra-
tion into lung cell lineages was very low (< 5%) [70].
Better results could be produced when stem/progenitor
cells are cultured with other cells and seeded into the
natural or artificial scaffold. Co-cultivation of epithelial
progenitors with autologous costal chondrocytes,
smooth muscle cells, and respiratory ciliated epithelium
followed by propagation in the natural decellularized
matrix (i.e. pig jejunal segment with its own vascular
pedicle) resulted in the development of a functional vas-
cularized trachea containing the extracellular cartilagi-
nous matrix [71]. The experience with the engineered
pig trachea was then used in engineering human trachea
produced after dissemination of cartilage-like MSCs and
epithelial respiratory cells in the decellularized donor
trachea, and successful transplantation of this construct
into the recipient woman [3].

New trends in tissue-engineered tracheal transplantation
Huge efforts in the development of cell therapy-based
approaches, tissue engineering techniques and their
careful evaluation in animal models of lung diseases and
induced airway injury, have yielded the first successful
clinical applications in lung repair. The need for the
introduction of new, efficient, and promising technolo-
gies for regeneration of tracheal and other defects in the
lung tissues will increase along with the constantly ris-
ing number of people suffering from respiratory
troubles.
Recent advances in airway tissue engineering provide a

good opportunity for the treatment of a wide range of
lung defects. In addition to the respiratory failure cases
mentioned above, SC-based therapies show great poten-
tial for new clinical applications against acute respiratory
distress syndrome [72], asthma [73], and bronchopul-
monary dysplasia [74]. At present, the therapeutic
potential of SCs is intensively assessed in rodent models
of these diseases, with the possibility of proceeding to
clinical trials [75-78].
The current regenerative medicine is leading to a new

paradigm in medicine biotransferring heterologous con-
cepts to the onset of autologous technologies that could
lead to tissue regeneration in vivo. The new concept
also includes studying and reproducing biological prop-
erties of ECM that regulates tissue differentiation in at
least three ways: (i) the biochemical composition of the
matrix constituents; (ii) the 3D-organization (architec-
ture); and (iii) the mechanical forces mediated to the
cells by the matrix. The in vivo ECM constitutes the
biopolymer, which potentially plays a permissive role for
tissue differentiation. The practical consequence of this
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research is the development of cell-free scaffolds capable
of supporting activation and differentiation of host SCs
on the site of injury.
The presence of the cell-free matrix and denuded tra-

cheal segments stimulates the tracheal repair by attract-
ing resident stem and non-stem epithelial cells to
dedifferentiate, proliferate, expand over the denuned
surface, and redifferentiate again [11]. By conjugating a
collagen vitrigel membrane to a collagen sponge, Tada
et al. [79] developed a bipotential collagen scaffold cap-
able of promoting host epithelial cell growth and
mesenchymal cell infiltration after transplantation to an
animal model with tracheal defects. The new cell-free
scaffold was successfully tested in rats and then in dogs.
In the dog, the scaffold larynx implant was covered with
soft tissue on day 18 post-surgery, followed by complete
regeneration of the canine mucosa [80]. Recently, clini-
cal trials showed good regeneration properties of this
artificial scaffold for the repair of tracheal defects. The
tracheoplasty of four patients (three with thyroid cancer
and one with subglottic stenosis) with resection of the
trachea and subsequent suturation of the defects with a
cell-free scaffold (Marlex mesh tube covered by collagen
sponge) resulted in a well-epithelialized airway lumen
without any obstruction two months post-surgery
[81,82].
The next step of the practical development of this new

concept is the use of the human native site as a micro-
niche in order to potentiate the human body’s site-spe-
cific response by adding boosting, permissive, and
recruitment impulses [83]. This technique is expected to
be cost-and labor-effective since it assumes the avoid-
ance of any in vitro cell replication, expansion, and dif-
ferentiation. The new approach is a multi-step process
that will include the development of strategies involving
a sequential implementation (treatment) of factors
required for rapid activation of endogenous SCs at the
affected site, attraction of exogenous SCs from the host
circulation system, control of the local release of inflam-
matory cytokines and hypoxia, cell differentiation
toward the terminal stage, and ECM remodeling. This
strategy requires a deep knowledge of molecular
mechanisms, temporal-spatial signaling networks, and
cell-cell interactions contributing to the tracheal repair,
as well as a careful and strict real-time control of the
regeneration process.
To stimulate the proliferation potential of local

somatic and progenitor cells, the ectopic expression of
pluripotency factors may be used. For example, Sox17
required for early endoderm formation is able to rein-
duce multipotent progenitor cell behavior in mature
lung cells [84]. To promote further differentiation of
stem/progenitor cells, it is necessary to down-regulate
production of Sox2 (important for branching of airways)

[85] and consider the application of tissue-specific
growth factors such as EGF, FGF7, basic FGF [26,86].
Erythropoietin could be used as a boosting factor due to
its emerging role in the repair of both hematopoietic
and non-hematopoietic tissues [87,88].
A successful realization of the new concept would

ultimately benefit achieving the end point of the devel-
opments in regenerative medicine, which considers
organ regeneration rather than tissue repair.
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