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Inflammation underpins and contributes to the pathogenesis of many retinal degenerative

diseases. The recruitment and activation of both resident microglia and recruited

macrophages, as well as the production of cytokines, are key contributing factors for

progressive cell death in these diseases. In particular, the interleukin 1 (IL-1) family

consisting of both pro- and anti-inflammatory cytokines has been shown to be pivotal

in the mediation of innate immunity and contribute directly to a number of retinal

degenerations, including Age-Related Macular Degeneration (AMD), diabetic retinopathy,

retinitis pigmentosa, glaucoma, and retinopathy of prematurity (ROP). In this review,

we will discuss the role of IL-1 family members and inflammasome signaling in retinal

degenerative diseases, piecing together their contribution to retinal disease pathology,

and identifying areas of research expansion required to further elucidate their function in

the retina.
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IL-1 FAMILY MEMBERS

Introduction to the IL-1 Family
The interleukin-1 (IL-1) family is a central mediator of innate immunity and inflammation
[reviewed by Dinarello (1)]. IL-1 family members have been widely associated with both
the development and progression of inflammatory diseases, and in particular have been
linked to neurodegenerative and neuroinflammatory diseases such as Alzheimer’s disease (2–5),
stroke (6), cerebral ischemic cell death (7), Multiple Sclerosis (8, 9), Parkinson’s disease (10,
11), Down syndrome (3), and retinal degenerative diseases including Age-Related Macular
Degeneration (AMD).

The IL-1 family of cytokines has 11 members, which are further subdivided into three groups;
the IL-1, IL-18, and IL-36 subfamilies. The IL-1 cytokine subfamily includes agonists (IL-1α, IL-1β,
and IL-33) as well as receptor antagonist, IL-1Ra; the IL-18 subfamily comprises agonists IL-18 and
IL-37, and the IL-36 subfamily is made up of agonists IL-36α, β, γ, and receptor antagonists IL-
36Ra and IL-38 (1). In addition, there are 10 members of the IL-1 receptor (IL-1R) family which
are able to bind specific IL-1 ligands in combination with a co-receptor, and perform pro- and
anti-inflammatory functions (1).
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IL-1β, IL-18, and IL-1α are the most widely researched IL-
1 family members associated with retinal degenerative diseases
(Table 1), having pro-inflammatory actions, and in the case of
IL-18, a role in angiogenesis (49, 50). IL-1β and IL-1α are known
to exert similar biological effects (51), acting on IL-1R, eliciting
pro-inflammatory actions following activation. However, unlike
IL-1α which is both constitutively expressed and active in its
31 kDa pro-form, IL-1β is only produced in its inactive 35
kDa pro-form following priming signals, such as pathogen- or
damage-associated molecular patterns (PAMPs or DAMPs), and
is only subsequently cleaved to its 17 kDa active form following
inflammasome activation in damaged or diseased states (1, 2, 52–
54). While IL-1α is suggested to act early in inflammation by
inducing neutrophil immune cell recruitment, IL-1β is thought
to act in the later phase of macrophage recruitment to damaged
tissue (51).

Conversely, IL-18, which acts on the IL-18Rα/β receptor,
is both constitutively expressed in its pro-form, but cleaved
into its active form following inflammasome activation (51).
Interestingly, IL-18 has been reported to have both anti- and
pro-inflammatory actions, but is also more widely known for its
angiogenic roles (49, 50). In addition to known pro-inflammatory
activities, IL-1 family members can also participate in anti-
inflammatory pathways, with certain IL-1 family members (IL-
33 and IL-1α) having dual functions, being able to bind to
DNA or the cell membrane receptor and elicit differential effects
(1, 46, 55, 56).

In this review, we will discuss the role of IL-1 family
members in retinal degenerative diseases, piecing together their
contribution to retinal disease pathology, and identifying areas of
research expansion required to further elucidate their function
in the retina. Furthermore, we will elaborate on some of the
mechanisms of IL-1β activity in degeneration, the most highly
studied IL-1 family member in the retina.

Inflammation in Retinal Degenerative
Diseases
The retina is part of the central nervous system (CNS) and
is a specialized sensory tissue lining the posterior surface of
the eye. Photoreceptors, specialized light-sensing retinal cells,
have the ability to convert light into electrical signals, which are
transmitted to the brain via the optic nerve. Both inherited and
acquired retinal degenerative diseases can occur when retinal
homeostasis is disrupted. This is caused by a combination of
genetic mutations (57), the accumulation of reactive oxygen
species (ROS) (58), and inflammation in aging (59, 60). The
progression of both inherited and acquired retinal degenerative
diseases share several features in common, including chronic
increases in both oxidative stress and inflammation (59, 61,
62). Increased activation, migration, and recruitment of resident
microglia and blood-borne macrophages are characteristic of
progressive photoreceptor degeneration in AMD (16, 17, 63–
66), diabetic retinopathy (67, 68), retinitis pigmentosa (69–72),
glaucoma (73–75), and retinopathy of prematurity (44).

Microglia and macrophages are the primary leukocyte
populations found in the retina during disease, and one

critical mechanism by which these cells cause damage in
retinal degenerations is through activation of the inflammasome.
The inflammasome is an oligomer protein complex that
leads to the maturation and secretion of two IL-1 family
members, IL-1β and IL-18, into the extracellular environment
(76). The assembly and activation of the NOD-like receptor
pyrin domain-containing 3 (NLRP3) inflammasome, the most
well-characterized inflammasome, is stimulated by several
mechanisms, including Toll-like receptor (TLR) signaling and
purinergic receptor signaling (76), the latter which is activated by
extracellular ATP released by dying cells (76, 77). The migration
and recruitment of microglia and macrophages is associated
with an increased production of chemokines and cytokines,
including IL-1β, as well as complement activation, which leads
to progressive photoreceptor degeneration [reviewed in Ambati
et al. (78) and McMurtrey and Tso (79)].

AGE-RELATED MACULAR
DEGENERATION

AMD Disease Pathogenesis
AMD is the leading cause of irreversible blindness in the
Western World, primarily affecting the aging population. The
estimated prevalence is expected to be 288 million worldwide
by 2040, posing a significant global economic burden (80).
Although neovascular “wet” AMD currently is treated using anti-
vascular endothelial growth factor (VEGF) intravitreal injections
to prevent choroidal neovascularisation (CNV) (81, 82), early
“dry” AMD and late-stage atrophic dry AMD are currently
untreatable. In dry AMD, there is a gradual loss of retinal
pigment epithelium (RPE) cells and photoreceptors in the
outer retina, leading to the development of a retinal lesion
in the specialized macular region, responsible for central high
visual acuity, which progressively expands over time (83). The
cumulative loss of outer retinal cells and the expansion of the
atrophic lesion results in a large drop in visual function in
patients with the disease (84). Development of a 2mm lesion
in the foveal region within the macula can result in legal
blindness (85).

Immune-based therapies are being explored as the most
likely drug candidates for clinical trials, due to the significance
of immunological processes in the pathogenesis of AMD.
This includes a number of complement system inhibitors to
control this major inflammatory pathway such as APL-2 (Apellis
Pharmaceuticals) for the treatment of advanced dry AMD (78,
86). Dysregulation of the immune system is critically linked to the
development of advanced dry AMD, including the recruitment
and activation of resident microglia to the outer retina, and
the persistent accumulation of subretinal macrophages recruited
from the vasculature, which together are the primary immune
cells of the retina under damage conditions (64, 66, 87–91). It has
been demonstrated that retinal microglia and macrophages are
centrally involved in AMDpathogenesis, including production of
various innate immune system components such as complement
(65), chemokines (92), and IL-1β (18). This suggests that these
microglia and macrophages are major therapeutic targets for
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TABLE 1 | Tissue-specific expression of IL-1 family members associated with retinal degenerative diseases.

Name Receptor Mechanism Retinal

Degeneration

References Tissue Tags per

million (TPM)

Confidence

(z-score)

Enhanced

expression (TPM)

IL-1α IL-1RI Pro-inflammatory Dry AMD

DR

Glaucoma

(12, 13)

(14)

(15)

Retina

Brain

0

1.1

1 (1.1)

3 (4.4)

Tonsils (22)

IL-1β IL-1RI Pro-inflammatory Dry AMD

Wet AMD

Glaucoma

RP

ROP

DR

(16–18)

(12, 19, 20)

(21)

(22, 22, 23)

(24–26)

(27–29)

Retina

Brain

3.8

9.7

3 (4.4)

4 (7)

Spleen (78)

IL-18 IL-18Rα Pro-inflammatory Wet AMD

Dry AMD

RP

ROP

Glaucoma

(30–33)

(34–37)

(23)

(38–40)

(41)

Retina

Brain

12

12

2 (2.6)

3 (4.1)

Expressed in all

Esophagus (167)

IL-1Ra IL-1RI Antagonist for IL-1α, IL-1β DR

ROP

(27, 28, 42, 43)

(39, 44)

Retina

Brain

1.7

0.8

N/A

3 (3.8)

Tonsils (1553)

IL-33 ST2 Pro-inflammatory Dry AMD

Wet AMD

(45)

(46)

Retina

Brain

N/A

N/A

N/A

N/A

N/A

N/A

IL-36α IL-1Rrp2 Pro-inflammatory N/A N/A Retina

Brain

0

0

N/A

N/A

Tonsils (391)

IL-36β IL-1Rrp2 Pro-inflammatory N/A N/A Retina

Brain

N/A

N/A

N/A

N/A

N/A

N/A

IL-36γ IL-1Rrp2 Pro-inflammatory N/A N/A Retina

Brain

N/A

N/A

N/A

N/A

Tonsils (24)

IL-36Ra IL-1Rrp2 Antagonist for IL-36α, IL-36β,

IL-36γ

N/A N/A Retina

Brain

0

0

N/A

N/A

Tonsils (25)

IL-37 Unknown Anti-inflammatory DR (47) Retina

Brain

N/A

N/A

N/A

N/A

N/A

N/A

IL-38 IL-1Rrp2 Anti-inflammatory ROP (48) Retina

Brain

N/A

N/A

N/A

N/A

N/A

N/A

Tags Per Million (TPM) provided from the human protein ATLAS, provided by FANTOM5 consortium as part of the human protein Atlas (https://www.proteinatlas.org/). Confidence

scores provided from the Tissues Expression database (https://tissues.jensenlab.org/About). Main RNA tissue category (Enhanced Expression) is shown in TPM. “Expressed in all”

means all tissues investigated produced that molecule (IL-18).

the treatment of dry AMD, in which progressive atrophic lesion
expansion is promoted by activation of these cells.

IL-1α as a Potential Initiator of the
Inflammasome in AMD
The release of interleukin-1α (IL-1α), a 31 kDa constitutively
expressed member of the IL-1 family, is known to be both
inflammasome-dependent and independent (93, 94). However,
in a positive feedback loop, IL-1α is also known to prime
the assembly of the NLRP3 inflammasome in the retina, with
inflammasome priming using IL-1α in RPE cells increasing
the damage caused by blue light-induced oxidative stress (95).
In this model, the accumulation of lipofuscin, lipid-containing
pigment granules that build up during aging, occurs in the
photoreceptor outer segments causing oxidative damage (95). IL-
1α stimulation altered the cell death profile of damaged RPE cells
from apoptosis to pyroptosis, an inflammatory cell death pathway
dependent on inflammasome activation (95). Other studies have
indicated that IL-1α is a danger signal, or “alarmin,” released
from stressed or dying RPE cells, leading to the secretion of other
pro-inflammatory cytokines from these cells (96, 97). As RPE

cell death is central to the progression of AMD, IL-1α has been
suggested as a therapeutic target for controlling sterile retinal
inflammation. In AMD patients, serum levels of IL-1α amongst
other cytokines are significantly higher compared to healthy
control patients (12), a trend which was also observed in plasma
in a rat model of ischemia/reperfusion injury (13). These data
indicate that IL-1α could be biomarker for retinal diseases.

The Role of IL-1β in AMD
Interleukin-1β (IL-1β) is a pro-inflammatory cytokine produced
as a 35-kDa precursor, however following inflammasome
activation is cleaved by protease enzyme Caspase-1 (CASP1)
into a 17-kDa active form (51, 98, 99). Active IL-1β has
known roles in initiating and propagating sterile inflammation,
including macrophage recruitment (100), activation of the
pro-inflammatory cytokine interleukin-6 (IL-6) (101) and
modulating chemokine expression (18), which in retinal
degenerative diseases such as AMD are characteristic pathogenic
features that ultimately result in progressive photoreceptor cell
death. Although inflammasome signaling is thought to play both
protective and detrimental roles in wet and dry AMD due to the
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production of IL-18 (30, 31, 34, 102–106), the synthesis of mature
IL-1β is well-established in the pathogenesis of both forms of
AMD (19, 107). IL-1β dysfunction has been associated with
excessive inflammation in retinal degenerations using animal
models (16–18, 20, 70, 108, 109), including those modeling key
features of dry AMD.

However, the mechanisms behind inflammasome-mediated
production of active IL-1β and the subsequent induction of
photoreceptor cell death and retinal damage is unclear. Although
IL-1β has not been conclusively linked to dry AMD in human
patients (103, 110), the role of IL-1β in AMD pathogenesis
has been investigated both in vivo in rodent dry AMD models,
as well as in vitro. An increase in IL-1β was found in the
vitreous of rats injected intravitreally with drusen component
amyloid beta (Aβ) (111, 112), a toxic peptide aggregate known
to accumulate in neurodegenerative diseases such as Alzheimer’s
disease [reviewed in Murphy and LeVine (113)], as well as
in dry AMD (114, 115). In photo-oxidative damage models
that mimic several facets of dry AMD pathogenesis (116), it
has been found that the gene and protein expression of IL-1β
was up-regulated in the photo-oxidative damaged rodent retina
(18, 108, 117–119). It was demonstrated that inhibition of IL-
1β using both small interfering RNA (siRNA) and a neutralizing
antibody was able to ameliorate retinal degeneration, reducing
immune cell recruitment to the outer retina, and production
of chemokines (Ccl2, Cxcl1, Cxcl10) from both Müller glia and
RPE cells, ultimately slowing photoreceptor cell death in retinal
degeneration (18).

In addition, others have demonstrated that using a photo-
oxidative damage model, cone segment degeneration was
correlated with an increased infiltration of IL-1β-expressing
mononuclear phagocytes (16). Notably, while mononuclear
phagocyte accumulation remained, cone degeneration was
abolished following IL-1β inhibition (16). Although the
mechanism of IL-1β-dependent photoreceptor cell death is
unclear, both photoreceptor degeneration and the associated
presence of accumulated mononuclear phagocytes has been
reported in dry AMD by the same group (16, 17, 63).

In contrast to most recent literature, previous studies
have reported a dose dependent effect of IL-1β, with low
doses (5µg/ml) conferring retinal protection and photoreceptor
rescue in The Royal College of Surgeons (RCS) rats (120,
121), a strain with inherited retinal degeneration (122). It
is possible that a high dose of IL-1β provides an additional
priming signal via the IL-1R signaling axis to amplify the
expression of inflammasome components, inducing assembly
of the inflammasome and perpetuating photoreceptor cell
death. Further investigation into mechanisms by which IL-
1β causes photoreceptor cell death may shed light on the
protective vs. detrimental roles of IL-1β in the progression of
dry AMD and in other retinal degenerations where the gradual
inflammatory-mediated loss of photoreceptors is a key feature
of disease.

We will further detail the localization and pro-inflammatory
functions of IL-1β in retinal degenerations later in this review,
focusing on its role in dry AMD pathogenesis.

Role of IL-18 in Angiogenesis and
Neovascular AMD
Mature interleukin-18 (IL-18) is a pro-inflammatory cytokine
produced through inflammasome activation (98, 99). The role
of IL-18 in retinal degenerations including AMD is controversial
in the current literature [reviewed in Campbell et al. (49, 50)],
with some sources highlighting a detrimental role for IL-18 in the
progression of dry AMD (34, 103), whilst there is also evidence of
a protective role of IL-18 for wet AMD, in which angiogenesis and
neovascularisation contributes to disease progression (30, 31).

The involvement of IL-18 in angiogenesis and
neovascularisation has been well-established demonstrating
that IL-18 has a role in the formation of blood vessels in the
retina (123). It was observed that in early development, IL-18
knockout mice demonstrated abnormal vessel formation and
retinal overexpression of angiogenic factors including VEGF
(123). A series of studies by Doyle et al. built upon these
foundations demonstrating that IL-18 knockout mice had
smaller laser-induced CNV volumes than wild type controls
(31). Incubation with recombinant IL-18 reduced VEGF
expression in immortalized RPE cells (ARPE-19) and brain-
derived microvascular endothelial cells (bEnd.3), indicating
a mechanism by which smaller CNV volumes in the IL-18
knockout mice may have occurred (31). The follow up studies
by Doyle et al. investigated the potential of IL-18 treatments as
therapeutics for wet AMD, including in non-human primates,
demonstrating its ability to reduce the pathogenic hallmarks
of wet AMD (30, 105). A separate study also found that IL-18
displayed protective effects against neovascularisation (32), in
which IL-18 levels increased in the eye after treatment with
anti-VEGF, and in mice with ischemic/reperfusion (IR) injury,
suppression of VEGF caused an increase in IL-18+ myeloid
cells. Additionally, an injection of IL-18 reduced CNV (32).
Another study demonstrated that NLRP3 and IL-1β signaling
promoted VEGF-induced CNV formation, and a deficiency
in IL-18 had the same effect on CNV lesion development
(33). These studies support the findings from Doyle and
colleagues in regards to the anti-angiogenic properties of
IL-18 (31).

However, in dry AMD, the literature points to a different
contribution of IL-18 in retinal degenerations. A study involving
dry AMD patients with the complement factor H (CFH)
Y402H polymorphism demonstrated that systemic levels of IL-
18 were elevated in patients with the at-risk CC variant for
the polymorphism, alongside increased systemic IL-1β (35).
Ijima et al. also found that serum IL-18 levels in dry AMD
patients were higher than age-matched control patients (34).
A series of studies using both mouse models and patients
with dry AMD demonstrated that Alu RNA mediates RPE
degeneration through activation of NLRP3 and IL-18 in these
cells (36, 103), possibly through activation of Caspase-8 (CASP8)
(37). The same group found a critical role for IL-18 in wet
AMD (124).

Overall, the literature surrounding the role of IL-18
in AMD indicates a potential dual role of this pro-
inflammatory cytokine in modulating retinal damage in
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neovascular retinal diseases including wet AMD, which may
act differently to its involvement in dry AMD pathogenesis.
It is possible that local concentrations of IL-18, like that
of IL-1β, determine the protective and detrimental effects
of this cytokine in the retina. Further investigations are
required to elucidate the mechanisms by which IL-18
may have a role in regulating inflammation in retinal
degenerations, including through the induction of interferon-
gamma (IFN-γ) (125), a cytokine thought to play a role in
AMD (126).

IL-33 and Cytokine Production in AMD
The agonist interleukin-33 (IL-33) is known to have a key
role in both innate and adaptive immunity, activating NFκB
and MAPK inflammatory signaling pathways and inducing
cytokine release [reviewed in Liew et al. (127)]. IL-33 has
been shown to be induced upon Aβ stimulation in RPE
cells, where it led to a regulation of IL-1β, IL-6, IL-8,
and TNFα (128). Other studies have found that IL-33 is
upregulated in activated RPE cells in laser-induced CNV,
regulating angiogenesis, tissue remodeling and wound healing
(46). These studies suggest that IL-33 regulation in the eye
may affect critical cytokine signaling pathways involved in
retinal degenerations. However, not only RPE cells have been
implicated in IL-33 upregulation in retinal damage, with Müller
cells also found to produce IL-33 in late-stage dry AMD donor
retinas within the lesion area (45). It was shown that IL-33
production by Müller cells was able to induce the expression of
other chemokines and cytokines (45), including CCL2, which
has been shown to be produced primarily by Müller cells
in retinal degenerations to recruit macrophages into the site
of damage (129, 130). Together, these studies indicate that
IL-33 signaling by RPE and Müller cells may regulate the
migration of microglia and the influx of macrophages into the
retina following photoreceptor and RPE damage, by influencing
cytokine production.

IL-1Ra in RPE Cells
Interleukin-1 receptor antagonist (IL-1Ra) is an anti-
inflammatory competitive receptor antagonist that acts to
inhibit IL-1α and IL-1β binding to IL-1R preventing their
inflammatory activities. Although the role of IL-1Ra has not
been established in AMD pathogenesis, several studies have
linked the expression of IL-1Ra to RPE cells. In human RPE
cells, intracellular and secreted IL-1Ra was detected in both
unstimulated and IL-1β-stimulated RPE cell cultures (131). In
another study, late passage human RPE cells had an increased
level of IL-1Ra compared to early passage cultures, possibly to
prevent inflammation whilst under additional stress in culture
(132). These authors also found that older (aged 70+) donor eyes
had an increased expression of IL-1Ra in the RPE cells compared
to younger donor eyes (132). Further, in mouse cultured RPE
cells, inhibiting IL-1Ra expression led to a failure to suppress
mature dendritic cell activation (133). These studies investigating
an anti-inflammatory role for IL-1Ra expressed by RPE cells
could have implications for AMD, where RPE dysfunction is a
crucial mechanism for onset of retinal degeneration.

DIABETIC RETINOPATHY

DR Disease Pathogenesis
Diabetic retinopathy (DR) is a major complication of diabetes,
with loss of vision that arises due to unregulated high blood
sugar levels, causing damage to the blood vessels and in
most cases results in diabetic macular edema (DME) due to
the breakdown of the blood-retinal barrier (BRB) and fluid
leakage. DR can progress into two forms; non-proliferative,
in which blood vessels leak or become blocked, forming
microaneurysms that result in oxygen starvation to areas
of the retina; or proliferative diabetic retinopathy (PDR), a
more severe form characterized by neovascularisation, retinal
scar tissue, and retinal detachment leading to blindness
[reviewed in Duh et al. (134)]. While treatment options
exist, injections of corticosteroids to reduce neovascularisation
and edema are frequent and not without side effects (135).
Inflammation has been implicated in the pathogenesis of
DR, with increased leukocyte levels and adhesions to the
vasculature, activated microglia and increased cytokine levels
subsequently resulting in compromised and leaky blood vessels
[reviewed in Altmann and Schmidt (68) and Tang and
Kern (136)].

Inflammasome Activation in DR
Inflammasome-mediated activation and consequent secretion of
IL-1β and IL-18 is thought to play a major role in DR disease
pathogenesis, with gene and protein levels of inflammasome
components NLRP3, CASP1, ASC, IL-1β, and IL-18 all elevated
in the peripheral blood mononuclear cell population in both
non-proliferative and PDR patients, compared to controls (137).
The role of the inflammasome in the pathogenesis of DR
has also been investigated in rodent models of DR, and is
highlighted via the use of methylene blue in streptozotocin
(STZ)-induced diabetic rats, demonstrating following treatment,
NLRP3 inflammasome activation including levels of IL-1β and
IL-18 was reduced along with an increase in the thickness
of retinal layers, and reduced permeability of the BRB (138).
Additionally, in diabetic rat retinas treated with lentiviral vectors
encoding Nlrp3 short hairpin RNA (shRNA), there was a
significant reduction of inflammasome components (CASP1, IL-
1β, and IL-18), which correlated to a decrease in vasculature
permeability when compared to diabetic controls (138). This
effect was also shown following induced hyperglycaemia in
diabetic rats with and without minocycline treatment, a
tetracycline antibiotic, along with vascular permeability and
retinal vascular apoptosis following treatment (139). Protein
expression of IL-1β and IL-18 were also found to be increased
in the vitreous of DR patients (137). While this finding does
contrast with other reports showing that there was no change in
IL-1β protein levels in the vitreous of PDR patients compared
to controls, they did report increased levels of CASP1 and
IL-18 in the vitreous, supporting a role of inflammasome-
mediated cytokine release in DR (140). Increased levels of
VEGF were also found in this study, supporting an angiogenic
role of IL-18 as seen in many other retinal degenerative
diseases (141).
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Angiogenic Role of IL-18 in DR
In further support of the angiogenic role of IL-18 in DR, PDR
eyes with the highest levels of fulminant neovessel formation
also had higher levels of IL-18 than inactive neovessel controls
(141). Furthermore, CASP1 levels were reduced following anti-
VEGF treatment (bevacizumab) (141). IL-18 was significantly
upregulated in the serum from patients with Diabetes Mellitus
Type 2 with background retinopathy, with the serum inducing
a higher rate of neovascularisation when injected intradermally
to mouse skin samples (mouse cutaneous angiogenesis test)
compared to control serum (142). Higher serum levels of IL-
18 have also been reported in Type 1 diabetic patients, half
of which had a form of DR (143). While no analysis between
patients with and without retinopathy was investigated in this
study, the authors do remark that there was no association found
between IL-18 levels andmicrovascular changes, however further
investigation is required (143). Overall evidence suggests that IL-
18 plays an important role in neovascular changes characteristic
of DR, and may therefore represent a valuable therapeutic target.

IL-1β in Cell Death in DR
The role of IL-1β in DR progression has also been widely
investigated, with IL-1β protein levels found to be significantly
increased in the vitreous (24, 140, 144, 145), as well as in aqueous
humor (146) of DR patients. However, while IL-1β levels were
shown to be significantly increased in serum from PDR patients
(145), other studies have shown no change (14, 147), with this
discrepancy possibly due to the different levels of breakdown of
the BRB.

While systemic IL-1β inhibition using canakinumab in
patients with PDR did not have an effect on neovascularisation
(148), a non-statistically significant reduction in edema was
evident in DME patients (148). In support of IL-1β inhibition
potentially leading to more efficacy in DME than in PDR, it has
been found that patients with DME have an IL-1Ra/IL-1β ratio
that is 13 times higher than in PDR patients (149).

Rodent studies investigating the role of IL-1β on DR
pathogenesis have also shown IL-1β to be upregulated following
STZ-induced diabetes, and significantly reduced following IL-1β
inhibition by anti-inflammatory cyclosporin-A administration
(150), as well as following a multiple anti-oxidant diet (151)
and pituitary adenylase cyclase activating peptide (152). IL-1β
was also upregulated in isolated retinal vessels, compared to
control rats, as well as in bovine retinal vascular endothelial
cells (BREC) (153). It has also been demonstrated that following
intravitreal injection of IL-1β, along with increased TUNEL-
positive capillary cells in retinal microvessels, the formation of
acellular capillaries had increased two-fold, both characteristic
early features seen in DR pathology (151). Taken together, human
and rodent models of DR suggest a role for IL-1β in cell death in
this disease.

Role of IL-1Ra in DR
The role of IL-1Ra in the progression of DR is largely
unknown, however the few studies that have investigated its
role largely support an anti-inflammatory or protective role.
A study investigating the risk factors for the development

of DR in Type 2 diabetes patients found that IL-1Ra levels
in serum were negatively correlated with disease presence,
with low serum levels of IL-1Ra hypothesized to be a risk
marker for DR progression (27). In another study, IL-1Ra
levels were found to be significantly increased in the tears of
diabetic patients without retinopathy compared to those with
retinopathy (42), and reduced in the plasma of diabetic patients
compared to controls (43). These lower levels of IL-1Ra in
diabetic patients without DR could indicate a heightened risk
for developing DR, as it has been suggested that increased IL-
1Ra production in diabetes could be a compensatory response
to the heightened auto-immune state in diabetic patients (42).
Taken together, these studies indicate a protective mechanism
for IL-1Ra in preventing DR onset, as low levels of IL-1Ra
could suggest that inflammation may propagate due to increased
IL-1β activity.

In patients with DR however, IL-1Ra expression patterns
appear to be less clear, with IL-1Ra levels along with IL-1α
shown to be unchanged in the serum compared to controls
(129, 132). Furthermore, following intravitreal injection of anti-
VEGF agent bevacizumab in 8 patients with DR, IL-1Ra along
with several other cytokines were found to be significantly lower
in the vitreous than in controls (154). It is possible that as VEGF
inhibition reduced neovascularisation and inflammation, IL-1Ra
upregulation was not required. In addition, using the STZ-
induced diabetes rat model, retinas exposed to hyperglycaemia
showed significantly increased levels of IL-1ra as well as IL-
1β, and their transmembrane receptors IL-1r type 1 and IL-1r
type II, compared to controls (28), along with major changes
in retinal architecture including compromised BRB integrity,
and thinning of the ganglion cell layers (28). Evidence from
studies investigating IL-1Ra levels in DR patients and rodent
models could suggest an overburdening of compensatory IL-
1Ra antagonist activities in more severe inflammatory states,
highlighting that IL-1Ra could be a therapeutic target to prevent
IL-1β and IL-18 propagation. Further investigations are still
however necessary to fully elucidate the role of IL-1Ra in
DR pathogenesis.

Potential Pro-angiogenic Role of IL-37 in
DR
IL-37, an anti-inflammatory cytokine in the IL-1 family, is
known to inhibit the innate immune system in several models
of inflammation, including hepatitis, colitis, and psoriasis
(155–157). In the retina, Zhao et al. have shown that IL-
37 is involved in the pathogenesis of PDR, with IL-37 levels
elevated in PDR patients (47). This was also correlated with an
induction of VEGF-A and pro-angiogenic cytokine angiopoietin
(Ang2), indicating a potential role for IL-37 in neovascular
retinal conditions (47). The authors of this study report that
following IL-37 treatment in a monkey chorioretinal vessel
endothelial cell line (RF/6A), tube formation and branching
points were increased (85.3 and 71.4%, respectively) along with
cell proliferation, compared to PBS controls (47). IL-37 has been
suggested to have pro-angiogenic roles similar to IL-18 in other
diseases (158, 159), able to signal through the IL-18Ra.
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In another study, an upregulation of IL-37 was demonstrated
in HLA-B27-associated acute anterior uveitis (AAU),
inflammation of the anterior eye, which was associated
with an inhibited production of a number of cytokines including
IL-1β, IL-6, TNF-α, and IFN-γ (160). Further investigation
into the role of IL-37 in the regulation of cytokine signaling in
retinal degenerative diseases may reveal novel insights into the
anti-inflammatory nature of IL-37.

RETINITIS PIGMENTOSA

RP Disease Pathogenesis
Retinitis pigmentosa (RP) is an inherited form of retinal
dystrophy characterized by initial rod photoreceptor
degeneration, secondary cone degeneration, and retinal
pigment deposits (161, 162). RP presents as a loss of peripheral
vision, resulting in tunnel vision and night blindness, which in
some cases ultimately progresses to full blindness (161, 162).
RP has a varied etiology, including a range of non-syndromic
types, as well as syndromic and systemic types, and it is caused
by inherited or acquired mutations in over 50 different genes
including rhodopsin (RHO) (163). In this disease, there is an
inflammatory component to disease pathogenesis, with both
increased microglial and macrophage activity (69–72) and
increased levels of chemokines and cytokines found in patient
and rodent models (22, 164). However, it is unclear if this
increased inflammatory state is causative or a consequence
of this currently untreatable disease, and the exact role that
members of the IL-1 family play.

Inflammasome-Mediated Cell Death in RP
Microglial activation can occur in both RP and late-onset
retinal degeneration (L-ORD) and is a consequence of a
bystander effect of rod photoreceptor cell death, causing
further adjacent photoreceptor death including cones (165).
Bystander photoreceptor cell death has been reported in other
RP studies, including Zhao et al. that demonstrated that
microglial phagocytosis of healthy photoreceptors in the retina
adjacent to dying cells was evident in the rd10 mouse model
of RP (70), which is a model of autosomal recessive retinitis
pigmentosa where rod degeneration occurs from P18 (166).
These microglia were found to express IL-1β (70). Another study
demonstrated that in P23H rhodopsin mutant rats, a model
of autosomal dominant retinitis pigmentosa, differential cell
death pathways existed in rod and cone photoreceptors (167).
It was suggested that while rod cell death occurs via heightened
RIP1/RIP3/DRP1-axis mediated necroptosis, cone cell death
only occurs subsequently due to bystander cell death pathways
via activation of the ATP-binding P2X7 receptor and NLRP3
inflammasome activation (167). This was supported by further
data that showed preserved viability of cone photoreceptors
on an NLRP3-deficient mouse strain that possesses the P23H
mutation (167).

Furthermore, inflammasome components were measured in
three early-onset (rcd1, xlpra2, and erd) and one late-onset
(xpra1) canine model of RP, with Nlrp3, Casp1, Asc, Il-1b, Il-1ra,
and Il-18 gene expression all upregulated in the most aggressive

early-onset model, rcd1, gradually rising from the induction
phase of the disease at 3 weeks and peaking in expression during
the chronic cell death phase at 16 weeks (23). The expression of
these inflammasome genes was also upregulated significantly in
the xlpra2 early-onset model, however not until 7–16 weeks and
Il-1β was upregulated in the late-onset model from 16 weeks.
However, on examining protein expression levels, there was only
a change in active IL-1β levels in the rcd1 and xpra2 models at 16
and 7 weeks, respectively. In comparison, pro-IL-18 levels were
significantly reduced in both models as well as erd, with active
bands not detected at all. Taken together, these results suggest an
involvement of inflammasome-mediated IL-1β coinciding with
photoreceptor cell death in early-onset RP (23).

This idea is supported by a study using rd10 mice, showing
that increased photoreceptor cell death was correlated with
increased CASP1 protein expression (168). Vitreous levels in
rd10 mice, as well as patients with RP, showed increased levels
of IL-1β along with reduced visual fields compared to wild type
and idiopathic epiretinal membrane patient controls, respectively
(22, 22), while there was no change in IL-1α levels in RP
patients compared to controls, indicating that IL-1β and the
inflammasome may play a role in RP.

Despite strong upregulation of inflammatory genes and IL-1β
in animal models and human studies with RP, to our knowledge
the other members of the IL-1 family have not been studied in the
progression or onset of this disease.

GLAUCOMA

Glaucoma Disease Pathogenesis
Glaucoma defines a heterogeneous group of visual disorders
that arises from compression of the optic nerve due to elevated
intraocular pressure (169). Glaucoma is the leading cause
of blindness in the world, and currently there is no cure.
Furthermore, due to the gradual onset of vision loss, many
patients are unaware they have developed this disease. In
addition to optic nerve damage, glaucoma is characterized by
degeneration of the retinal ganglion cells (RGC) and their axons
(170, 171), a layer at the front of the retina responsible for the
transmission of collated visual information to the optic nerve.
There are three forms of Glaucoma, open-angle, closed angle and
secondary-glaucoma, with open-angle glaucoma further divided
into high or low pressure forms, named primary open-angled
glaucoma (POAG) and normal tension glaucoma, respectively
(169). Elevated intraocular pressure (IOP) in glaucoma can
be caused by impaired aqueous outflow, either anatomically
obstructed in closed glaucoma, or in open glaucoma can
be caused by defective trabecular meshwork (TM) including
dysregulated function of tight junctions or by build-up of plaque-
like materials (15). Along with genetic and environmental risk
factors, as in most retinal degenerative disorders, oxidative
stress, and inflammation are believed to contribute to disease
pathogenesis, augmenting IOP via the infiltration of immune
cells through a leaky or impaired BRB surrounding the optic
nerve, which ultimately results in RGC death and axonal injury
(73, 170, 172).

Frontiers in Immunology | www.frontiersin.org 7 July 2019 | Volume 10 | Article 1618

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Wooff et al. IL-1 Family in Retinal Degenerations

IL-18 in Glaucoma
IL-1 family members have been shown to play a role in glaucoma
pathogenesis, with IL-18 expression increasing with age in the
ciliary body, iris and aqueous humor of DBA/2J mice, a model
of pigmentary glaucoma that naturally presents with increased
IOP, RGC loss, and pigmentary dispersion (41). Levels of IL-
18 appeared to precede classical pathological symptoms of this
disease, peaking in expression in the iris, ciliary body and
aqueous humor at 6 months. The authors therefore hypothesized
that IL-18 could be a marker indicating disease onset (41).

IL-1α and IL-1β in Glaucoma
Patients with POAG have been found to have significantly
increased gene levels of IL-1β in their blood and significantly
increased IL-1β protein expression in the aqueous humor
compared to healthy controls (21), however in tears from
POAG patients was not significant from healthy controls (173).
Il-1α and Il-1β mRNAs were found to be increased in the
TM in glaucomatous eyes compared to controls, acting in a
feedback loop to control endothelial leukocyte adhesionmolecule
1 (ELAM-1), an early marker of atherosclerotic plaque that forms
in glaucoma (15). Furthermore, treatment with IL-1Ra, an IL-
1R antagonist, downregulated the expression of ELAM-1 (15).
These studies indicate that IL-1α and IL-1β may be involved in
glaucoma pathology.

In rodent models of glaucoma, IL-1β is demonstrated to cause
an increase in RGC death, hypothesized to be activated via a
TLR4-NLRP1/NLRP3-CASP8-axis in an acute IOP glaucoma
model in mice. In both Tlr4−/− mice and CASP8-inhibited
mice, there was reduced IL-1β production and preserved RGC
health (174). Using the same IOP model in both mice and rats,
another group demonstrated significantly high mRNA levels for
inflammasome componentsNlrp3,Casp1,Asc, and Il-1β , peaking
at 1 day post-insult, however suggested that this increase in
inflammatory genes was primed via the P2X7 receptor (175).
P2X7-inhibited and P2X7−/− mice did not demonstrate the same
increase in IL-1β following damage, while the use of the P2X7
agonist bzATP promoted a surge of IL-1β again at 1 day post-
insult (175). The mechanism by which P2X7-mediated IL-1β
secretion occurs in glaucoma has been suggested by this group
and others to occur in response to stretch and swell mechanical
stresses from increased IOP (175, 176).

There exists wide speculation that given pathological
similarities between glaucoma and Alzheimer’s disease, a gene
cluster of IL-1 polymorphisms may indicate increased risk
of developing glaucoma (177). To support this idea, a study
showed that the IL-1α (−889C/T) polymorphism increased
IL-1 gene expression, which was associated with amyloid-β
deposits that are known to accumulate in RGCs in glaucoma
models (178). However, independent studies into IL-1 gene
cluster polymorphisms such as C/T polymorphism in the
promoter region of IL-1α, IL-1α (−889) T allele, and two C/T
polymorphisms in IL-1β, rs16944 (−511 C/T) and rs1143634
(+3953C/T), have reported conflicting information on POAG
and normal-tension glaucoma (NTG) disease susceptibility
(179–185), promoting a meta-analysis to investigate the
relationship between these polymorphisms and glaucoma risk

factor. From the meta-analysis, it was concluded that there was
no association between these polymorphisms and POAG or
NTG development (177).

RETINOPATHY OF PREMATURITY

ROP Disease Pathogenesis
Retinopathy of prematurity (ROP) is the leading cause of severe
visual impairment and blindness in infants, that arises due
to premature birth and results in underdeveloped vasculature
and retinal detachment [reviewed in Shah et al. (186)]. ROP
has been considered to have two phases of disease; incomplete
vascularisation of the retina creating a hypoxic environment, and
as a consequence, leading to neovascularisation and proliferative
retinopathy (187).

IL-18 as a Regulator of Neovascularisation
in ROP
Qiao et al. determined that the expression of IL-18 was
reduced in a mouse model of oxygen-induced retinopathy
(OIR) (188), in which supplemental oxygen induces incomplete
vascularisation of the retina, indicating that IL-18 is able to
regulate neovascularisation in retinal degenerations, suggesting
possible repercussions in other neovascular retinal diseases such
as ROP. In humans, the development of ROP was correlated with
an early decline in systemic IL-18 levels, but in later periods,
correlated with increasing IL-18 levels in whole blood from 877
ROP patients (38). Incomplete retinal vascularisation during the
first phase of ROP may be linked to these changes in IL-18.

IL-1β and Choroidal Toxicity in ROP
In mouse models of OIR, IL-1β has been shown to be associated
with choroidal involution, a characteristic feature of ROP (39). In
this study, IL-1β was found to be increased in both the RPE and
choroid, inducing toxicity in the choroid and leading to retinal
and choroidal degeneration. These effects were ameliorated
following IL-1β inhibition through administration of an IL-1R
antagonist (39). Additionally, in a pre-term birth mouse model
that induces chorioamnionitis, IL-1β was injected between the
two fetal membranes on day 11 of gestation, and following birth,
retinas were shown to exhibit high levels of pro-inflammatory
genes accompanied by a persistent infiltration of mononuclear
phagocytes in the retina (40). This was accompanied by thinning
of the choroid and underdevelopment of retinal vessels. Upon
antenatal administration of a non-competitive IL-1R agonist,
these effects were prevented, highlighting a novel antenatal role
of IL-1β on retinal vascular development (40).

In humans, levels of IL-1β were found to be unchanged and
were below detectable levels in a multiplex bead cytokine array of
vitreous samples from ROP and control patients (189). Further
investigation into the expression levels of IL-1β is warranted,
especially in the RPE and choroid.

Role of IL-1Ra in ROP
Few studies have investigated the role of IL-1Ra in ROP
pathogenesis, however this competitive antagonist was found
in significantly high levels in the vitreous and tears of ROP
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babies, along with increased levels of VEGF, complement
component proteins, and matrix metalloproteinase 9 (MMP9)
(44). Furthermore, there was an increase in activated
microglia/macrophages in the vitreous from ROP babies
(44). As ROP is characterized by abnormal retinal vasculature
development and inflammation, it is possible that IL-1Ra levels
were increased in these patients as a compensatory mechanism
to prevent IL-18 angiogenic effects and IL-1β-induced cell death
as described in other sections. Further work is necessary to
understand the role and therapeutic potential of IL-1Ra in ROP.

IL-38 as a Novel Anti-angiogenic Factor in
ROP
IL-38 is the newest member of the IL-1 family, classified
under the IL-36 subfamily and has been reported to have roles
in inflammation propagation in diseases such as rheumatoid
arthritis, psoriasis and systemic lupus erythematosus [reviewed
in Xu and Huang (190)]. IL-38 however has been largely
unreported in retinal degenerations. A recent study however
describes a role for IL-38 in ROP, where in a mouse model
of OIR, a significantly higher level of IL-38 was found in
OIR mouse retinas compared to controls (48). In addition,
following IL-38 local and systemic injections in these OIR
mice, angiogenesis was significantly reduced in the retinas
compared to controls along with pro-inflammatory cytokine IL-
1β levels (48). This was subsequently demonstrated in a cell
culture model, in which VEGF-treated cells administered IL-38
had slowed wound healing following a scratch test, attenuated
vascular tube formation, and reduced proliferation, processes
which were eliminated with the addition of anti-IL-38 (48). It is
therefore possible that IL-38 administration to ROP babies could
help prevent pathogenic neovascularisation and inflammation.
Further investigation is necessary to elucidate whether IL-38 may
play a role in other retinal degenerative diseases, particularly in
neovascular retinal diseases such as wet AMD and DR.

OTHER RETINAL DISORDERS

Stargardt Macular Dystrophy
Stargardt macular dystrophy (STGD) is a common form of
inherited macular dystrophy that leads to juvenile macular
degeneration caused by an inherited autosomal recessive
mutation in the ABCA4 gene. STGD affects 1:10,000 adults
and children and is characterized by progressive central vision
loss resulting from lesion development in the macular region
of the retina [reviewed in Tanna et al. (191) and Fujinami
et al. (192)]. Although little is known about the IL-1 family
members and STGD pathology, the involvement of microglia
has been characterized by Kohno et al. in a Abca4/Rdh8 double
knockout mouse model, where activation of microglia occurred
through the TLR4 signaling pathway (72), and in the same
model expressed the chemokine CCL3 (193), a macrophage-
inflammatory protein known to be involved in the progression
of retinal degeneration (92, 194, 195). Further investigations into
the role of IL-1 family members in STGD may elucidate novel
inflammatory mechanisms at play during retinal degeneration in
this disease.

Retinal Vein Occlusion
Branch and central retinal vein occlusion (RVO) occurs when
there is abnormal arteriovenous (A/V) crossing with vein
compression and obstruction, causing degenerative changes in
the vessel wall [reviewed in Laouri et al. (196) and Rehak and
Rehak (197)]. Inflammation is involved in the pathology of
RVO, with microglial activation and macrophage recruitment
associated with an increase in pro-inflammatory cytokine
production in an experimental branch RVO model (198), as
well as increased levels of chemokines and cytokines including
CCL2 and IL-6 in the vitreous of patients with branch RVO
and macular edema (199). IL-1 family members have also been
thought to play a role in disease pathogenesis in human RVO
patients with retinal ischemia and recurrent macular edema,
where IL-1α was significantly elevated in the aqueous humor
(200), similar to in AMD patient serum (12) and in the plasma of
rat ischemia/reperfusion injury (13). It has been found that RVO
patients also have an increase in vitreal levels of IL-1β (19, 201),
however was not elevated in the aqueous humor (202). The role
of other IL-1 family members in RVO is yet to be explored.

Retinal Detachment
A retinal detachment is a break between the neurosensory retina
and the RPE, leading to fluid accumulation under the retina
and sudden vision loss in the rhegmatogenous form [reviewed
in Ghazi and Green (203)]. Retinal detachment can occur as
a symptom of other retinal degenerative diseases including DR
(134). Without prompt reattachment, retinal detachments can
lead to starvation of the photoreceptors due to separation from
their choroidal oxygen supply, resulting in photoreceptor cell
death. Although inflammation (204), microglial migration (205),
and monocyte infiltration (206) has been thought to play a
role in retinal detachment, novel findings suggest that microglia
may actually mediate photoreceptor cell death following retinal
detachment, potentially by phagocytosing cell debris that may
cause retinal damage (207). In patients with retinal detachments,
elevated levels of IL-1β have been detected in the vitreous or
retina (109, 208, 209), indicating a role for IL-1β in disease
pathogenesis. In support of this, a study involving amouse retinal
detachment model showed that photoreceptor cell death was
reduced when IL-1β and CASP1 were inhibited, as well as in
Nlrp3−/− mice with retinal detachment (109), also indicating
a role for inflammasome activation in this disease. The role
of other IL-1 family members in retinal detachment require
further investigation.

Autoimmune Uveoretinitis
Experimental autoimmune uveoretinitis (EAU) is a T cell-
mediated autoimmune disease that is used as a model for human
posterior segment uveitis, including sympathetic ophthalmia,
birdshot chorioretinopathy, Vogt-Koyanagi-Harada disease, and
Behçet’s disease (210). Rodent EAU is induced by immunization
with uveitogenic retinal proteins including the retinal soluble
antigen (S-Ag) and the interphotoreceptor retinoid-binding
protein (IRBP) (211). Mononuclear phagocytes have been
identified to play a role in EAU, with microglial migration
evident in the earlier phases of EAU and subsequent macrophage
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recruitment in the later phases (212). Several IL-1 family
members have also been linked to the development of EAU,
including IL-33 and IL-1β (213, 214), with the role of other
IL-1 family members generally unknown in this disease. The
expression of IL-33 was elevated in the inner nuclear layer of EAU
mice compared to naïve mice (213). Interestingly, administration
of IL-33 led to a decrease in EAU severity in wild type mice,
alongside a reduction in T cells, IFN-γ, and IL-17 production
(213), indicating that IL-33 induced a protective effect against the
adaptive immune system despite its classical role as an inducer of
T cell activation (127).

IL-1β has also been found to increase the severity of EAU,
with the systemic delivery of recombinant IL-1β elevating EAU
symptoms when administered during the priming phase of the
immune response in EAU, and a decrease in EAU severity when
a neutralizing antibody for IL-1β was delivered (214). IL-1β
levels were found to be significantly elevated in the aqueous
humor and supernatants of posterior eyecups from EAU rats
(215), indicating increased production and dysfunction of IL-
1β, which has been shown to cause BRB breakdown by opening
the retinal vascular endothelial tight junctions in EAU (216).
Another study reported that IL-1β was secreted by neutrophils,
macrophages and dendritic cells in an EAU model (217). In
this study, IL-1R-deficient mice had reduced severity of EAU
alongside a reduction in immune cell recruitment into the retina
(217), supporting other studies describing the protective effect of
IL-1β neutralization in EAU (214).

OTHER IL-1 FAMILY MEMBERS IN THE
EYE

The role of other IL-1 family members in retinal degenerations
remains elusive, with agonists IL-36 (α, β, and γ) and receptor
antagonist IL-36Ra not being investigated in the retina, to our
knowledge. Although many members of the IL-1 family have
not been investigated in the retina, in patients with HLA-B27-
associated AAU, changes in IL-1 familymembers were detected in
the aqueous humor (218). Significantly higher levels of several IL-
1 family members, including IL-1β, IL-18, IL-1Ra, IL-36Ra, and
IL-37 was observed in AAU patient aqueous humor compared
to controls (218). This study indicates that other IL-1 family
members including IL-36Ra may also contribute toward ocular
inflammation andmay play a role in retinal degenerative diseases.
In support of this, IL-36Ra has been thought to play a role in
Pseudomonas aeruginosa keratitis, a severe corneal ulceration,
with its downregulation leading to an increased severity of
disease (219).

IL-36 (α, β, and γ) and IL-36Ra have been shown to play a role
in the pathogenesis of other inflammatory diseases [reviewed in
Ding et al. (220) and Walsh and Fallon (221)]. IL-36 cytokines
have been well characterized in psoriasis, a chronic inflammatory
skin condition, where the three IL-36 agonist ligands (α, β,
and γ) were found to be upregulated in skin lesions [reviewed
in Towne and Sims (222)]. Subsequently, a mouse model of
psoriasis was created using an overexpression of IL-36α (223).
IL-36 activity (IL-36 α, β, γ, or IL-36Ra) has also been linked

to the pathogenesis of several autoimmune conditions, including
colitis (224, 225), systemic lupis erythematosus (226), Primary
Sjögren’s syndrome (227) and psoriatic and rheumatoid arthritis
(228, 229). Autoantibody production has also been associated
with retinal degenerations such as autoimmune retinopathy
(AIR) and AMD [reviewed in Morohoshi et al. (230)], and so
it is possible that the IL-36 signaling axis could play a role.
Several other mechanisms of IL-36 activity may also be relevant
to retinal degenerative diseases; for example, it has been found
that the IL-36 receptor (IL-36R) is constitutively expressed by
several types of immune cells, including macrophages (231), and
that IL-36α may also be expressed by macrophages (225). IL-36
agonist ligands have been shown to stimulate the production of
chemokines (224) and cytokines including IL-18 (232) and IL-
6 (229), also heavily involved in retinal degenerative diseases.
A study showed that after stimulation with IL-1β, IL-36α, IL-
36β, or IL-36γ, there was an overlap between differentially
expressed genes in epidermal keratinocytes, including cytokine
and chemokine production and leukocyte recruitment genes
(233). The study also indicated a role for the MyD88 adaptor
protein in shared IL-1β/IL-36 responses (233).

In the CNS, neuronal and glial cells have been shown to
express IL-36β (234), with microglia and astrocytes thought to
express IL-36R (235). However, in an experimental autoimmune
encephalomyelitis (EAE) mouse model, although it was
demonstrated that IL-36γ was expressed by neutrophils leading
to microglial activation, IL-36γ or IL-36R deficiency did not
change the severity of EAE compared to wild type controls
(236). This indicates that the role of the IL-36 subfamily
members in CNS diseases is unclear, and further investigation is
required to determine whether IL-36 (α, β, and γ) and IL-36Ra
are expressed by the retina, and if they play a role in retinal
disease pathogenesis.

IL-1β MECHANISMS OF ACTION IN
RETINAL DEGENERATIONS

IL-1β has been the most widely studied IL-1 family member
in retinal degenerative diseases, due to its broad range of pro-
inflammatory functions. However, several important questions
surrounding IL-1β in retinal degenerations, particularly in AMD,
remain unclear; (1) IL-1β as a potential biomarker of retinal
disease; (2) which inflammatory pathways it mediates; (3) which
retinal cell types produce, express or secrete IL-1β; and (4)
as IL-1β has no N-terminal secretory signal (237), how this
unconventionally secreted protein is released from its producing
cell. Therefore, this section of the review aims to summarize the
current literature surrounding these themes and highlight gaps in
our knowledge surrounding the role of IL-1β, particularly in the
context of dry AMD.

IL-1β as a Biomarker for Diagnosis of
Retinal Degenerations
The analysis of pro-inflammatory cytokine IL-1β as a diagnostic
biomarker and therapeutic target have been investigated in both
ocular tissues and fluids, as well as in serum from patients
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with retinal degenerative diseases. Pro- and active- forms of IL-
1β have been found to be upregulated in the vitreous humor
(19, 22, 24–26, 109, 140, 145, 149), aqueous humor (21, 238),
retina (209), and serum (12, 145, 239) of patients with retinal
degenerations such as wet AMD (12, 19, 239), diabetic macular
edema (149, 238), retinal detachment (109, 208, 209), RVO
(19, 201), glaucoma (21), retinitis pigmentosa (22), and diabetic
retinopathy (19, 24–26, 140, 144, 145, 240). However, very few
studies have reported IL-1β expression levels in intraocular
fluid, serum or retinal tissue in human patients with dry AMD,
with reports of no significant change in IL-1β levels in AMD
(mostly dry AMD patients), retinitis pigmentosa, and glaucoma,
using a multiplex immunoassay system (164). In another study,
no significant increase in IL-1β gene expression was found
in the RPE of patients with geographic atrophy (GA) (103),
and a non-significant increase in IL-1β levels in the aqueous
humor of dry AMD patients compared to healthy controls
(241). In a retrospective case-controlled study of polymorphisms
in interleukin genes of nearly 500 late-stage Taiwanese dry
AMD patients and controls, no single nucleotide polymorphisms
(SNPs) in the IL-1β gene were found associated with the
development of AMD (110), indicating little association exists
between dysfunctional IL-1β gene expression and dry AMD.
This suggests strongly that the dysregulation of the IL-1β
gene might not be as important as the control mechanism
which regulates its protein expression and subsequent activation
through inflammasome and CASP1-mediated activation.

Further investigations into pro- and active-IL-1β levels in
serum, ocular fluid, and retina in human AMD patients,
particularly in dry AMD, would be of interest to determine if
this pro-inflammatory cytokine may be useful as a biomarker or
therapeutic target for dry AMD.

Induction of Chemokine Production by
IL-1β
Chemokines, or chemotactic cytokines, provide activation and
directional cues following retinal injury to recruit immune
cells to the site of damage, and are known to be regulators
of leukocyte activation and recruitment in AMD (242), and
have been associated with progressive retinal degeneration in
mouse models of AMD (92, 129, 193, 194, 243–245). IL-1β has
been implicated in the modulation of chemokine secretion via
mediating NF-kB nuclear translocation allowing the genes to be
subsequently transcribed (246).

Our previous work has shown that at 12 h post-injection
of recombinant IL-1β into the rat eye, there was induction
of retinal Ccl2, Cxcl1, and Cxcl10, key chemokines involved
in leukocyte recruitment (18). This was accompanied by a
significant increase in recruited macrophages into the retina
through the optic nerve. Another study using ultrastructural
analysis indicated that following IL-1β intravitreal injection into
Lewis rats, the recruitment of mononuclear phagocytes into the
retina was identified from 4 h after injection peaking at 24–
48 h, accompanied by a breakdown of the BRB, edema and
a higher inflammatory state (247). These studies indicate that
IL-1β induction may be a mechanism by which microglia and

macrophages are recruited into the damaged photoreceptor
layer (18), and potentially facilitate photoreceptor cell death via
phagocytosis (70). This finding is supported by a transcriptome-
wide analysis of AMD retinas which showed that Ccl2, Cxcl1,
Cxcl10, and Cxcl11 were all upregulated in AMD retinas
compared to healthy controls (248).

The Role of IL-1β in Other Inflammatory
Pathways
Several other pathways associated with AMD pathogenesis may
be also affected by IL-1β production in the retina, which may lead
to retinal cell death. Interleukin-6 (IL-6), a pro-inflammatory
cytokine associated with pathogenesis of AMD (63, 92, 249, 250),
as well as in a model of ocular toxoplasmosis (251), and has
been shown in vitro to be regulated by IL-1β, following IL-1β-
dependent activation of the p38 MAPK/NF-kB pathway (252).
Regulation of NF-kB by IL-1β has also been demonstrated in
a mouse model of DR following intravitreal injection of IL-1β,
with concomitant increases in oxidative stress levels (8OHG and
nitric oxide) and increased TUNEL-positive capillary cells, which
are characteristic features of this disease (151). Adeno-associated
virus (AAV) vector-mediated gene transfer of IL-1β, which
was injected intravitreally, demonstrated the greatest ocular
inflammatory effect on the eye even at low-dose levels, compared
to AAV vectors expressing IL-6 or IL-17A (253). This led to
an upregulation of inflammatory factors CXCL1, CCL2, MMP-
9, VCAM-1, VEGFA, IL-6, and IL-17A, reduced photoreceptor
thickness, increased cellular infiltrates, and damage to the overall
structural integrity of the posterior eye (253).

Matrix metalloproteinases (MMPs), responsible for the
protein degradation of the extracellularmatrix (ECM) (254), have
also been linked to IL-1β in retinal degenerations, with wet AMD
patients carrying SNPs in MMP-1 and MMP-7 genes found to
have a higher serum concentration of IL-1β (239). Associations
betweenMMPs and the IL-1 family have also been found in other
retinal degenerations, with increased levels of MMP-1, MMP-
9, MMP-12, and IL-1β found in the vitreous of patients with
POAG (21), as well as elevated MMP-9 and IL-1Ra observed in
the vitreous and tears of ROP infants (44). Further, in optic-nerve
induced retinal damage, increased levels of MMP-9 promoted
RGC loss, which was ameliorated by an intravitreal injection of
IL-1Ra (255).

Finally, the complement cascade, comprised of three pathways
to trigger the lysis of pathogens, apoptotic cells and clearance
of foreign debris (256, 257), may also be influenced by
inflammasome signaling and may alter the level of IL-1β
production in retinal degeneration. It is well established that
dysregulation of the complement cascade is a critical factor
in AMD pathogenesis [reviewed in Anderson et al. (258)].
Doyle et al. has demonstrated that complement component 1q
(C1q), the initiator of the classical pathway, may activate the
NLRP3 inflammasome in drusen using a carboxyethylpyrrole
(CEP)-adducted model of dry AMD (31). We have shown
that classical complement deficient (C1qa−/−) mice that had
undergone photo-oxidative damage had a significant reduction
in IL-1β protein expression in the progressive atrophic stages
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of degeneration in this model, which was associated with a
reduction in inflammasome activation (259). Other complement
components, including C3a (260, 261) and C5a (262), have also
been thought to prime IL-1β expression by retinal cells.

Cells Expressing IL-1β in the Retina
IL-1β has been widely reported to be expressed by cells of
haematopoietic lineage (51), which in the retina encompasses
resident microglia as well as infiltrating macrophages. Rodent
models of retinal degenerations including dry AMD and retinitis
pigmentosa, support this notion, with IL-1β localization shown
to be expressed primarily by infiltrating macrophages in the
outer retina and subretinal space (16, 18, 108, 109, 263). This
localization pattern has also been demonstrated in non-retinal
neural tissues, with IL-1β expressed in resident microglia and
infiltrating macrophages of the brain following ischemic stroke
(264) and in the developing cerebellum (265).

Additionally, there is scarce literature on the localization
of IL-1β to any other retinal cell type in both human retinas
and animal models. Recently, Chaurasia et al. localized the
expression of IL-1β protein to unspecified cells in the inner retina

in the Akimba mouse model of PDR (266). In other studies,
intravitreal injection of NMDA induced neurotoxicity and IL-
1β stimulation in Müller cells (267, 268), as well as in RGCs
(268). Many studies, however, have induced the expression of IL-
1β in a range of immortalized and primary retinal cell cultures
lines following inflammasome stimulation (269, 270), with the
majority of the literature focused on investigating the activation
of the NLRP3 inflammasome in the RPE (36, 103, 104). Various
in vitro models of retinal degenerations, using mostly RPE
and microglia/macrophages in culture, have shown increased
gene and/or protein expression levels of IL-1β in response
to oxidative stress and inflammatory stimulations such as 4-
hydroxynonenal (HNE), an end product of lipid peroxidation
(271), lipofuscin components including A2E (272–275), Aβ

(276–278), lysosome destabilization (104), lipopolysaccharide
(LPS)-stimulated microglia-conditioned medium (279), and
complement components (31, 280, 281). Taken together, these
in vitro models, using inflammatory or oxidative stress signals
characteristically found in the pathogenesis of retinal diseases,
highlight potential IL-1β upregulation pathways, however lack
the complexity that in vivo testing accounts for such as cell-to-cell

FIGURE 1 | Proposed roles of IL-1 family members on cell death, inflammation, and angiogenesis in the degenerating retina. IL-1β production by activated microglia

and macrophages may lead to increased chemokine and cytokine release from Müller and RPE cells, promoting further macrophage recruitment to the damaged site

and ultimately resulting in photoreceptor and RPE cell death (16, 18, 108, 109). This may occur through IL-1R expression on Müller and RPE cells (18), through which

IL-1α may also exert its inflammatory functions (96, 97). IL-1Ra, a competitive antagonist for IL-1R, is dysregulated in retinal degenerations (27, 44). IL-33, a

less-characterized IL-1 ligand in the retina, may play a role in cytokine regulation, specifically in dry AMD pathogenesis (45, 128). IL-18, IL-37 and IL-38 all have

reported roles in regulating neovascularisation; however, have been shown to have both pro- or anti- angiogenic effects, with IL-18 dysregulation conferring protection

against neovascularisation in wet AMD (31), but detrimental effects in dry AMD (35), DR (141), and potentially ROP (188). Although not widely characterized, IL-37 may

play a pro-angiogenic role in DR (47) while IL-38 is suggested to have anti-angiogenic roles in ROP (48).
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interactions and retinal signaling, transport, and regulatory
pathways. Furthermore, while it has been widely considered to be
the predominant retinal cell type expressing the inflammasome,
NLRP3 activation in the RPE has not been conclusively proven to
be responsible for propagating IL-1β release and inflammatory-
mediated cell death in retinal degenerations (282).

Movement of IL-1β
There exists some discrepancy between the investigations into
inflammasome activators in the RPE, and the well-reported
localization of IL-1β in microglia and macrophages (16, 18,
108, 109, 263). Although it is possible and documented for the
transmission of gene transcripts between the gene-producing
and gene- or protein-expressing cell types (283–286), this
phenomenon has not been investigated nor reported for IL-1β in
the retina. However, it has been reported that extracellular vesicle
encapsulation and transfer of CASP1, along with ASC and IL-
1β secreted from monocytes, was able to induce a “cell death
message” in vascular smooth muscle cells, a process that was
inhibited using CASP1-specific inhibitor ac-YVAD-cmk (287).
This process is further supported by work in pulmonary vascular
endothelial cell injury showing that following LPS stimulation,
active CASP1 was packaged in microparticles, along with
cleaved gasdermin D, an inflammasome-dependent pyroptotic
pore, and was able to stimulate endothelial cell death (288).
It is therefore possible that this phenomenon could exist in
the retina, with extracellular vesicle transfer of inflammasome
components to microglia following receptor activation in the
RPE or other host cell types. A study in which ARPE-19
cells were subject to blue-light photo-stimulation (488 nm)
in culture support this hypothesis, demonstrating exosomal
release with increased levels of inflammasome components
CASP1, IL-1β, and IL-18 compared to unstimulated controls
(289). This possibility also highlights the flaws in using only
single-cell culture-based models, as it limits the ability to fully
understand cell-to-cell communication and transport pathways,
and prevents localization and uncovering the mechanism of
how this pro-inflammatory cytokine is activated and secreted
in the retina. Investigating the transport pathway of these
inflammatory components using gene and protein detection
methods simultaneously, as well as in the presence of gene
inhibitors such as siRNA, or the use of co-culture in vitro systems,
could shed more light on these essential cellular interactions.

CONCLUSIONS

Synergy exists between the development and progression of
various retinal degenerative diseases, and the dysregulation of
IL-1 family members, which contribute to either immune cell
recruitment, retinal cell death, or dysfunctional angiogenesis
(Figure 1). These hallmark pathogenic features are evident in

both acquired and inherited forms of retinal degenerations,
and are strongly correlated to the activation of the two most
characterized IL-1 family members, IL-1β, and IL-18. Clear
trends exist between the role of IL-1β as a regulator of
cytokine production and cell death across many retinal diseases
including AMD, DR, RP, glaucoma and ROP, and IL-18, which
modulates neovascular aspects of these diseases. As these two
pro-inflammatory cytokines are secreted in an inflammasome-
dependent manner, it is well-documented that the inflammasome
may play a key role in disease pathogenesis.

The role of other IL-1 family members in the retina,
comprising IL-1α, IL-1Ra, IL-37, and the IL-36 subfamily
(including IL-38), however, is less clear. While few studies
have been performed on these members in the retinal diseases
discussed in this review, taken together, evidence suggests that
these cytokines may also play a regulatory role in mediating cell
death, inflammation and angiogenesis in the retina. It therefore
appears that the IL-1 family members may all contribute
toward these major pathogenic features that typify retinal
degenerations. Further investigations into the lesser-known IL-
1 family members in both the retina and other neural tissues is
however necessary to uncover novel mechanisms by which they
may act.

While IL-1β is the most widely investigated and characterized
IL-1 family member in retinal degenerative diseases including
AMD, there is the limitation of testing in appropriate in vivo
models that mimic retinal inflammasome activation, with the
majority of investigative studies performed in cell culture-based
systems. Although single cell culture experiments can shed light
on inflammatory pathways that are active in individual retinal
cell types, in order to fully elucidate the role that IL-1β plays in
intercellular communication in diseases, in vivo testing and the
use of retinal co-culture systems is necessary.

Finally, while each IL-1 family member has primarily
been investigated independently of the other members, it
would be worthwhile to determine how these IL-1 family
members work together and how they influence each
other, given the crossover between their functions in cell
death, inflammation and angiogenesis. This includes IL-
1Ra regulation of IL-1β, both IL-18 and IL-37 performing
angiogenic functions, and a potential IL-1β/IL-36 signaling
axis, briefly described in this review. Localizing IL-1 family
members, as well as their receptors, will shed light on the
cellular expression of these cytokines, and may elucidate
novel mechanisms of action for regulating the progression of
retinal degenerations.
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