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Abstract

Single Particle Tracking (SPT) is a well known class of tools for studying the dynamics of

biological macromolecules moving inside living cells. In this paper, we focus on the problem

of localization and parameter estimation given a sequence of segmented images. In the

standard paradigm, the location of the emitter inside each frame of a sequence of camera

images is estimated using, for example, Gaussian fitting (GF), and these locations are linked

to provide an estimate of the trajectory. Trajectories are then analyzed by using Mean

Square Displacement (MSD) or Maximum Likelihood Estimation (MLE) techniques to deter-

mine motion parameters such as diffusion coefficients. However, the problems of localiza-

tion and parameter estimation are clearly coupled. Motivated by this, we have created an

Expectation Maximization (EM) based framework for simultaneous localization and parame-

ter estimation. We demonstrate this framework through two representative methods,

namely, Sequential Monte Carlo combined with Expectation Maximization (SMC-EM) and

Unscented Kalman Filter combined with Expectation Maximization (U-EM). Using diffusion

in two-dimensions as a prototypical example, we conduct quantitative investigations on

localization and parameter estimation performance across a wide range of signal to back-

ground ratios and diffusion coefficients and compare our methods to the standard tech-

niques based on GF-MSD/MLE. To demonstrate the flexibility of the EM based framework,

we do comparisons using two different camera models, an ideal camera with Poisson dis-

tributed shot noise but no readout noise, and a camera with both shot noise and the pixel-

dependent readout noise that is common to scientific complementary metal-oxide semicon-

ductor (sCMOS) camera. Our results indicate our EM based methods outperform the stan-

dard techniques, especially at low signal levels. While U-EM and SMC-EM have similar

accuracy, U-EM is significantly more computationally efficient, though the use of the

Unscented Kalman Filter limits U-EM to lower diffusion rates.
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Introduction

Single particle tracking (SPT) is an important class of techniques for studying the motion of

single biological macromolecules. With the ability to localize particles with an accuracy far

below the diffraction limit of light and to track particles across time, SPT continues to be an

invaluable tool in understanding biology at the nanometer-scale by revealing details about par-

ticle dynamics and their local environment such as diffusion rates, confinement length, and

other parameters [1]. SPT has been applied to a wide variety of molecules, including proteins

[2, 3], mRNA molecules [4], DNA [5], viruses [6, 7], growth factor receptor [8], Janus colloids

[9], and more [10].

Typically, SPT analysis of a sequence of images begins with an image segmentation step

where the raw images are post-processed to extract image sequences that each contain infor-

mation about a single particle. These sequences are then further processed to determine parti-

cle trajectories and motion model parameters. Under the standard paradigm, a two-step

process is applied. In the first step, the location of the particle in each segmented image frame

is determined and linked across frames to form a trajectory [11] (we refer to this as “localiza-

tion refinement” since the initial segmentation is a coarse localization step). In the second

step, trajectories are analyzed to extract information about the dynamic process, such as the

value of the diffusion coefficient or other motion parameters. Localization refinement is often

done using Gaussian Fitting (GF) [12, 13] while model parameters are extracted from the tra-

jectories using the Mean Square Displacement (MSD) [14, 15] or Maximum Likelihood Esti-

mation (MLE) [16, 17]. Regardless of the algorithms used, this two-step paradigm separates

trajectory estimation from model parameter identification despite the fact that these two prob-

lems are coupled.

One of the assumptions of the standard approach is that the localized positions represent a

simple linear observation of the true particle position corrupted by additive white Gaussian

noise. The actual data, however, are usually the segmented camera images. The photon detec-

tion process in each pixel during imaging can be well modeled as a Poisson-distributed ran-

dom variable with a rate that depends on the true location of the particle as well as on

experimental realities, including background intensity noise and the details of the optics used

in the instrument. This already nonlinear model becomes even more complicated at the low

signal intensities that are often found in SPT data where noise models specific to the type of

camera being used become relevant, whether it be a Charge-Coupled Device (CCD), Electron

Multiplying CCD (EMCCD), Complementary Metal-Oxide Semiconductor (CMOS), or scien-

tific CMOS (sCMOS) device [18, 19].

To handle nonlinear measurement models and to simultaneously estimate localization and

parameter estimation, one of the authors introduced an approach based on nonlinear system

identification [20]. This general approach, known as Sequential Monte Carlo-Expectation Max-
imization (SMC-EM), can handle nearly arbitrary nonlinearities in both the motion and obser-

vation models and has been shown to work as well as current state-of-the-art methods in the

simple settings of 2-D diffusion and to work under more complicated motion and observation

scenarios including estimating 3-D motion from wide field images. However, one drawback of

this approach is its computational complexity due to the use of a particle filter and a particle

smoother to handle those nonlinearities. Recently, we addressed this issue by replacing the

particle-based methods with an Unscented Kalman filter (UKF) and an Unscented Rauch-

Tung-Striebel smoother (URTSS) [21], a scheme we refer to as Unscented-Expectation Maxi-
mization (U-EM). Compared to the SMC-EM approach, U-EM significantly decreases the

computational load, allowing the method to be applied to larger data sets and to more compli-

cated models. This reduction in complexity comes, however, at the cost of generality in the
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posterior distribution describing the position in the particle at each time point since the

UKF-URTSS approximates this distribution as a Gaussian while the SMC-EM can represent

essentially arbitrary distributions [22].

Because SPT experiments are often photon-impoverised and subject to significant back-

ground, it is important to consider the impact of signal and noise levels when comparing dif-

ferent analysis algorithms. For example, [23] investigated the performance of an experimental

method in error estimation techniques across a variety of signal and noise values, the compari-

son work in [11] included the signal level as a core factor in their simulations, [24] generated

simulated videos at various levels of signal to noise ratios to validate the use of convolutional

neural networks on SPT data, and [25] applied deep learning to analyze particle trajectories

based on simulated data over a large range of signal to noise ratios. Though the standard SPT

methods perform well at high signal levels, many begin to fail as the signal level decreases or

noise level increases. This motivates us to compare our EM based methods (e.g., SMC-EM and

U-EM) to the standard methods (e.g., GF-MSD and GF-MLE) across a wide variety of Signal-

to-Background (SBR) levels. The noise sources considered in this work consist of three parts:

the shot noise inherent to any photon detection process, the background noise arising from

out-of-focus fluorescence or auto-fluorescence, and the readout noise of the camera sensor.

The readout noise depends on the type of camera being used, e.g., the readout noise from

sCMOS/CMOS cameras is pixel-dependent, while the architecture of CCD/EMCCD sensors

allows every single pixel be treated in the same way. Here we consider two different camera

models, an ideal camera model with shot and background noise only, and an sCMOS camera

model with shot, background, and pixel-dependent readout noise.

In order to validate these algorithms against a known ground-truth, we carried out quanti-

tative comparisons of our EM based methods and the standard SPT methods through exten-

sive simulations under the assumption that segmentation has already been performed. For

concreteness, we focus on a fairly simple setting where GF-MSD and GF-MLE are known to

work well, namely that of 2-D diffusion. Our algorithms can be readily extended to 3-D track-

ing, including those based on different imaging modalities such as confocal schemes [26], as

well as to more complicated motion models (such as Ornstein-Uhlenbeck motion, directed

motion, and other Markovian models), and a variant has recently been developed for analyzing

SPT data with time-varying parameters [27].

There are two primary contribution of this work. The first is the extension of our existing

algorithms to data captured using an sCMOS camera. Due to their relatively low cost, high

speed, and performance, sCMOS cameras are becoming popular tools for SPT data acquisition

and including them in our EM-based approach extends the impact our algorithms can have.

The second is the detailed, quantitative comparison of our EM based methods to a standard in

the field, namely GS-MSD, and to an existing alternative that is also based on optimal estima-

tion theory and which has previously been shown to outperform the standard approach in the

analysis of diffusion, namely GF-MLE. This comparison is done across a wide range of SBRs

and across a wide range of diffusion coefficients, validating the performance of our methods

and guiding users in algorithm selection based on their particular experimental conditions.

Methods

In this section, we provide a brief introduction to the techniques considered in this work.

Localization then parameter estimation

In the standard two-step approach, illustrated in Fig 1, the raw images are first segmented and

then these segmented images are processed to yield localizations of the particle. Next, the
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resulting trajectory is analyzed to estimate motion model parameters. While there are a variety

of localization algorithms, we focus here on Gaussian fitting as it remains a popular approach

due to its simplicity and accuracy, particularly in the 2-D setting.

Gaussian Fitting (GF). In the 2-D setting, the Point Spread Function (PSF) of the instru-

ment is well approximated by a Gaussian. As a result the measured intensity, Ixy can be

described as

Ixy ¼ G exp �
ðx � xoÞ

2

2sx
2
�
ðy � yoÞ

2

2sy
2

 !

þ Nbgd; ð1Þ

where G is the peak amplitude of the intensity, (x, y) are the lateral coordinates in the image

frame, (xo, yo) are the position of the particle, (σx, σy) are physical parameters describing the

width of the PSF, and Nbgd is the background intensity. Fitting the measured data to this model

allows one to estimate the particle position as well as the other model parameters in Eq (1).

Mean Square Displacement (MSD). MSD is one of the most frequently used methods for

estimating diffusion coefficients from trajectory data. Following [14], the single-axis MSD is

given by

MSDðnÞ ¼
1

N � n

XN� n

i¼1

ðriþn � riÞ
2
; n ¼ 1; . . . ;N � 1; ð2Þ

where N is the data length and ri is the position of the fluorescent particle in either x or y in

frame i. For a particle moving with a diffusion coefficient of D, the expectation of the MSD is

Fig 1. Illustration of the standard approach. Segmented image data is first passed through a localization step where an algorithm such as GF

determines the position of the particle in each frame. The resulting trajectory is then analyzed using, e.g., the MSD or MLE to determine model

parameters.

https://doi.org/10.1371/journal.pone.0243115.g001
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given by

E½MSDðnÞ� ¼ 2DnDt; ð3Þ

where Δt is the time interval between frames of the image sequence. In this work we fit calcu-

lated MSD curves to the model in Eq (3) using the nonlinear least-squares curve fitting solver

lsqnonlin in MATLAB (MathWorks, Natick, MA).

Maximum Likelihood Estimation (MLE). While the MSD remains popular and is simple

to use, it relies on several user choices and is known to lack robustness with respect to mea-

surement noise. An alternative is to use optimal estimation theory. In particular, the MLE has

good statistical properties as it is both efficient and consistent, achieving the Cramer-Rao

lower bound (so long as sufficient data is available) [28]. Consider the problem of identifying

an unknown parameter y 2 Rny for an arbitrary state space model

Xtþ1 ¼ ftðXt;wt; yÞ; ð4aÞ

Yt ¼ htðXt; vt; yÞ; ð4bÞ

where Xt is the (vector) state of the system at time t, Yt is the (vector) observation at time t, wt
and vt are independent white noise processes, and θt is the unknown (vector) parameter to be

estimated. The MLE determines an estimate of this parameter by maximizing the log likeli-

hood of the observed data Y1:N≜ {Y1, . . ., YN},

ŷ ¼ argmax
y

log pyðY1:NÞ; ð5Þ

where pθ(Y1:N) is the joint probability density of the observations Y1:N defined by the model in

Eq (4). We use a computationally efficient version of the ML estimator developed in [16] for

estimating the diffusion coefficient and the variance of observation noise vt under the assump-

tion of a simple diffusion motion model and a linear observation of the position corrupted by

zero-mean Gaussian noise. The reader is referred to [16, 28] for details.

Simultaneous localization and parameter estimation

The basic tool behind our approach of simultaneous localization and parameter estimation is

the Expectation Maximization (EM) algorithm [22], an iterative approach for finding an ML

estimate. Based on EM, we created a generic framework for SPT analysis shown in Fig 2. In

what follows, we briefly describe our approach and the two flavors of it used in this work. Note

that the EM approach does not produce a point estimate for the particle location in each frame

but rather an estimate of the smoothed probability distribution of its location and thus pro-

vides more information than the GF. For the purposes of this work, we obtain the particle loca-

tion by taking the mean of this distribution in each frame; however, other estimators could be

used.

Expectation Maximization (EM). Consider once again the state space model in Eq (4). In

general, the log-likelihood of the observations, log pθ(Y1:N), is intractable or cannot be written

analytically. As a result, Eq (5) cannot be solved directly. The EM algorithm handles this

through an iterative approach, forming an approximation to the likelihood function at the eth

step, named Qðy; yðeÞÞ, based on a current estimate of the parameter θ(e), and then optimizing

this to find the next estimate θ(e+1), stepping towards the MLE [29]. The approximation is

given by the conditional expectation of the joint log likelihood function,

Qðy; yðeÞÞ ¼ EyðeÞ ½LyðX0:N ;Y1:NÞjY1:N �; ð6Þ
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where θ is the unknown parameter, X0:N = {X0, X1, � � �, XN} is known as a hidden state that, in

the context of SPT, is given by the unknown particle locations, and Lθ(X0:N, Y1:N) is the joint

log likelihood function of the trajectory and observations. This function is given by

LyðX0:N ;Y1:NÞ ¼ log pyðX0Þ þ
XN

t¼1

log pyðXtjXt� 1Þ þ
XN

t¼1

log pyðYtjXtÞ: ð7Þ

Using Eq (7) in Eq (6) yields

Qðy; yðeÞÞ ¼ I1ðy; y
ðeÞ
Þ þ I2ðy; y

ðeÞ
Þ þ I3ðy; y

ðeÞ
Þ; ð8Þ

where

I1ðy; y
ðeÞ
Þ ¼ E½log pðX0jyÞjY1:N ; y

ðeÞ
�; ð9aÞ

I2ðy; y
ðeÞ
Þ ¼

XN

t¼1

E½log pðXtjXt� 1ÞjY1:N; y
ðeÞ
�; ð9bÞ

I3ðy; y
ðeÞ
Þ ¼

XN

t¼1

E½log pðYtjXtÞjY1:N; y
ðeÞ
�: ð9cÞ

The calculation of Qðy; yðeÞÞ is called the Expectation (E) step at the eth iteration. It has been

shown that any choice of θ(e+1) such that Qðyðeþ1Þ
; y
ðeÞ
Þ � QðyðeÞ; yðeÞÞ ensures the EM algo-

rithm converges to a local maximum of the likelihood function. Thus, the expectation step is

Fig 2. Illustration of the EM-based framework for simultaneous localization and parameter estimation. Segemented image data is passed directly to

the estimation routine where EM alternates between filtering/smoothing to find the distribution of the particle trajectory and estimation of the

parameter based on that distribution.

https://doi.org/10.1371/journal.pone.0243115.g002
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followed by aMaximization (M) step to produce the next estimate of the parameter,

y
ðeþ1Þ
¼ arg max

y
Qðy; yðeÞÞ ð10Þ

Despite the fact that convergence is only guaranteed to a local optimum, EM has been

shown to work well in practice [29, 30]. To implement the E step (that is, to calculate Q) by

carrying out the expectations in Eq (9), it is necessary to know the posterior densities p(Xt|Y1:

N) and p(Xt, Xt−1|Y1:N). If the underlying model in Eq (4) is linear with Gaussian noise, then

these distributions are easily obtained using a Kalman filter and a Kalman smoother [31]. For

nonlinear observations, however, these distributions must often be approximated in some

way. Here, we apply two approaches as described below.

Unscented—EM (U-EM). U-EM approximates the posterior densities in Eq (9) as Gaus-

sians using an Unscented Kalman Filter (UKF) and an Unscented Rauch-Tung-Striebel

Smoother (URTSS). The UKF was developed in [32] as an alternative to the Extented Kalman

Filter, capturing (an approximation to) the mean and covariance of a nonlinear stochastic pro-

cess without relying on linearization or a Jacobian computation. U-EM starts with the UKF to

get the estimated state and covariance, and then uses the URTSS to return the posterior proba-

bility densities required for the EM algorithm. U-EM is significantly more computationally

efficient than the Monte Carlo scheme SMC-EM described below. However, it relies on a few

hand-tuned parameters and, as will be seen in Case 3 of the simulation studies below, its per-

formance suffers at large diffusion coefficients. There are variants that may offer superior per-

formance (see, e.g. [33]) but with some additional complexity. The details of U-EM are

presented in the S1 Text.

Sequential Monte Carlo—EM (SMC-EM). For the SMC-EM algorithm, the posterior

densities in Eq (9) are calculated using a Particle Filter (PF) and Particle Smoother (PS), allow-

ing for arbitrary distributions to be estimated. Note that the term “particles” in SMC refers to

the random samples used to represent a distribution rather than the fluorescently labeled

objects being tracked. In the remainder of the paper, the meaning of the word “particles”

should be clear from context. The details of SMC-EM can be found in the S2 Text.

Simulation and results

In this section, we describe the motion and observation models in the scenario where a subdif-

fraction-sized particle is imaged with a widefield fluorescence microscope. We then describe

simulation studies of the algorithms comparing their performance against each other and

against GF-MSD and GF-MLE under two different camera models. We begin by considering

an ideal camera, modeling the Poisson distributed shot noise common to all photon detection

processes. While we include background noise and a basic model of a pixelated image, we

ignore other camera-specific issues such as readout noise. Under this scenario we consider

three cases. In Case 1, we evaluate the performance of the algorithms in an experimental set-

ting with a relatively large signal and a low background. Case 2 then studies algorithm perfor-

mance across a range of signal intensity and background levels. In Case 3, we explore the effect

of the value of the diffusion coefficient on algorithm performance, considering both an ideal-

ized setting with no motion blur and a more realistic setting where motion blur is presented.

In the second scenario, we include pixel-dependent readout noise to capture the behavior of

sCMOS camera sensors. Under this scenario we consider two different SBRs when comparing

algorithm performance.
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Ground truth simulation

Motion model. We assume the fluorescent particle moves according to a simple Brownian

diffusion. The state dynamics ft(�) in Eq (4a) are then given by

Xtþ1 ¼ Xt þWt Wt � N ð0;QÞ; ð11Þ

where Xt is a column vector representing the location of the fluorescent particle in the lateral

plane at time t, and Q is a covariance matrix given by

Q ¼
2DxDt 0

0 2DyDt

2

4

3

5; ð12Þ

where Dx and Dy are independent diffusion coefficients in each of the coordinate axes and Δt
is the time interval between frames of the image sequence. Note that in general, the anisotropy

of the diffusion is not necessarily aligned to the coordinate axes and the cross-correlation term

in the symmetric matrix Q should also be estimated. Including this additional term in the EM-

based estimation methods is straightforward; the MSD and MLE methods, however, assume

either isotropic diffusion or independent axes.

Observation model. Because the single particle is smaller than the diffraction limit of

light, the image on the camera is described by the PSF of the instrument. In 2-D (and in the

focal plane of the objective lens), the PSF is well approximated by

PSFðx; y; xo; yoÞ ¼ G � exp �
ðx � xoÞ

2

2s2
x

�
ðy � yoÞ

2

2s2
y

 !

; sx ¼ sy ¼

ffiffiffi
2
p

l

2pNA
; ð13Þ

where (xo, yo) is the location of the particle, G is the peak intensity of the fluorescence, λ is the

wavelength of the emitted light and NA is the numerical aperture of the objective lens being

used [34].

Assuming segmentation has already been done, the image acquired by the camera is com-

posed of P2 pixels arranged into a P × P square array. The pixel size is Δx by Δy with the actual

dimensions determined both by the physical size of the camera elements on the camera and by

the magnification of the optical system. At time step t, the expected photon intensity measured

for the pth pixel, λp,t, is given by

lp;t ¼
R xmaxp;t

xminp;t

R ymaxp;t

yminp;t

1

DxDy
PSF x; x0; xt; ytð Þ dxdx0; ð14Þ

where (xt, yt) is the position of the particle, and the integration bounds ðxminp;t ; x
max
p;t Þ and

ðyminp;t ; y
max
p;t Þ are over the boundaries of a given pixel.

In addition to the signal, there is always a background intensity rate arising from out-of-

focus fluorescence and autofluorescence in the sample. This can be modeled locally as a uni-

form rate Nbgd over the small P × P array of the segmented images [20]. Usually, the value of

the backgroud noise is measured experimentally and for the rest of this paper, we assume it is

known (though its value can be estimated using the EM algorithm). Due to the shot noise

inherent to the photon generation process, the measured intensity in each pixel is given by a

Poisson process [35] with the value in the pth pixel at time t given by

Ip;t � Poissðlp;t þ NbgdÞ þ �p;t; ð15Þ

where Poiss(�) represents a Poisson distribution and �p,t denotes the readout noise. To model

an ideal camera, we take �p,t = 0, while for an sCMOS camera the readout noise depends on the
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particular pixel. (Details on the specific pixel characteristics used in this work can be found in

the S3 Text.) The final observation vector Yt in the model Eq (4b) is then the collection of all

P2 pixel values.

This model is used to generate all the data in the simulations as well as for the SMC-EM cal-

culations. However, the UKF algorithm inside the U-EM scheme assumes measurements are

corrupted by additive noise. It is thus necessary to transform the Poisson distributed model in

Eq (15) into one with additive noise as a pre-calculation step before passing the measurements

into the U-EM method. There are several ways to achieve this for a Poisson-distributed ran-

dom varaible, including directly approximating it as a Gaussian random variable or by using a

variance-stabilising transformation such as an Anscombe or Freeman Tukey transformation.

In prior work we compared these methods and found that in general the Anscombe transfor-

mation produced the best results [21]. This method transforms a Poisson-distributed random

variable into a Gaussian one with the same mean but unity variance [36, 37]. To achieve this,

the measurement data Ip,t is transformed to ~Ip;t according to

~Ip;t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ip;t þ
3

8
þ s2

p;t

r

; ð16Þ

where s2
p;t is the variance of the readout noise in pixel p at time t. The measurement model in

(15) for computations in EM based framework is then replaced by

Ip;t ’ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lp;t þ
3

8
þ s2

p;t

r

þ vk; vk � N ð0; 1Þ: ð17Þ

For the purposes of the MSD and basic ML estimation, the observation model is a simple

linear observation with Gaussian noise [15, 16, 28].

Simulation setup. Simulations were made of a particle diffusing in 2-D, imaged for

N = 100 frames at an imaging period of Δt = 100 ms (i.e, a frame rate of 10 frames/s) for a total

of 10 s. To generate each sequence of images, independent trajectories of length N × Nsub were

generated from the 2-D diffusion model Eq (11) where Nsub represents a sub-sampling factor.

In practice, cameras accumulate photons over an integration period, and the motion of the

particle during the exposure period may affect the estimation accuracy. To replicate this

motion blur effect, we assumed the camera accumulated photons continuously during the first

δt = 10 ms of each imaging period Δt and produced each final frame by averaging the first 10

consecutive images in the period and ignoring the rest. A typical image at a low signal level

(here, Nbgd = 1, G = 10) is shown in the left-side image of Fig 3, while an image at a higher sig-

nal level (Nbgd = 10, G = 100) is shown in the right-side image. To generate statistics on algo-

rithm performance, K = 100 image sequences were generated for every parameter setting. The

fixed parameters used in the simulations are given in Table 1. All simulations and calculations

were carried out using MATLAB.

Ideal camera model

Case 1: Performance at high signal and low background levels. For this first case, the

peak signal level was set to G = 100 and the background noise to Nbgd = 10. (Note that these are

the rates in each image after accumulating over the shutter period.) Other imaging parameters

were set as described in Table 1. The diffusion coefficients were fixed to Dx = 0.005 μm2/s and

Dy = 0.01 μm2/s. The data were analyzed using GF-MSD, GF-MLE, U-EM, and three versions

of SMC-EM: SMC100, SMC500, and SMC1000 where the superscript denotes the number of

Monte Carlo samples used in the PF and PS algorithms. A typical trajectory, together with the
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position estimates produced by the U-EM algorithm as a typical estimation result, is shown in

Fig 4.

As described in the methods section, the EM algorithm at the heart of the simultaneous

approach is an iterative scheme, improving the estimate at each iteration as it moves towards a

local optimal of the log likelihood function. The resulting evolution of the diffusion coefficient

parameter estimates over the 100 different trajectories for the three versions of SMC-EM and

for U-EM are shown in the box plots in Fig 5. These plots show that the EM algorithm gener-

ally converges in a small number of steps and that, as expected, the performance of SMC-EM

improves as the number of Monte Carlo samples used in the PF and the PS increases.

The comparison between the final results across the 100 trajectories for all the algorithms

are shown in the box plots in Fig 6 and recapitulated in Table 2. Results in y are similar and are

omitted for space reasons. Note that there is a clear bias in the diffusion coefficient estimation

in the GF-MLE and in our EM based methods. This is likely driven by a variety of factors,

including the length of the data set (since MLE methods are only guaranteed to be consistent,

meaning that they converge to the true value as the amount of data becomes large) and nonlin-

earities in the models. A close examination of the SMC-EM results shows that bias reduces as

we go from SMC-EM100 to SMC-EM500 and then to SMC-EM1000. The SMC techniques more

faithfully represent the nonlinear nature of the system as the number of MC samples. By con-

trast, the UKF at the heart of U-EM is accurate only to second-order. This supports the

Fig 3. Typical images at low and high signal levels. (left)Nbgd = 1 and G = 10, (right)Nbgd = 10 and G = 100. Notice the different scaling in the two

images.

https://doi.org/10.1371/journal.pone.0243115.g003

Table 1. Fixed parameters used in the simulations.

Symbol Parameter Value Symbol Parameter Value

NA Numerical aperture 1.2 λ Emission wavelength 540 nm

Δt Imaging period 100 ms δt Shutter period 10 ms

P Number of pixels 25 Δx, Δy Effective pixel length 100 nm

N Image sequence length 100 Nsub Sub-sampling factor 100

E Number of SMC-EM iterations 10 K Number of sequences 100

https://doi.org/10.1371/journal.pone.0243115.t001
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argument that the nonlinearities in the observation models are at least partially responsible for

driving the bias.

These results show that at these high signal levels, GF-MLE, SMC-EM, and U-EM all per-

form similarly in terms of diffusion coefficient estimation,. GF-MSD, however, while having a

similar mean, has a much larger variance and many more outliers than the others. Localization

performance is evaluated in terms of the Root Mean Squared Error (RMSE) over an entire tra-

jectory. Both GF and the EM-based schemes yield accurate localization with mean errors of

Fig 5. Box plots of estimated Dx and Dy by SMC-EM and U-EM. The true values of the diffusion coefficients are shown as solid horizontal lines in

each plot. Note that the red line inside the box is the median, the edges of the box represent the first and third quartiles, the vertical dashed line indicates

the bounds for data within 1.5 times the interquartile range, and the red + symbols are data points outside this range.

https://doi.org/10.1371/journal.pone.0243115.g005

Fig 4. A typical trajectory with Dx = 0.005 μm2/s and Dy = 0.01 μm2/s. (left) x and y trajectories together with the position estimates from U-EM and

the 3σ error bounds. (right) The ground truth trajectory in the plane with color indicating time.

https://doi.org/10.1371/journal.pone.0243115.g004
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below 7 nm for all but SMC100 where the small number of Monte Carlo samples used to repre-

sent the location distribution leads to both a larger error and a larger variance relative to the

other schemes. Table 2 also shows that the performance improvement is minimal when the

number of Monte Carlo samples increases from 500 to 1000. In the remainder of this work,

then, we use 500 particles in SMC-EM.

Case 2: Performance at different signal and background noise levels. In this second

case, the diffusion coefficients were again fixed at Dx = 0.005 μm2/s, Dy = 0.01 μm2/s and the

imaging parameters set as in Table 1. The peak intensity, G, was varied across two decades,

from 1 − 100, and the background noise, Nbgd, was varied from 1 to 15. As before, 100 datasets

of 100 images each were simulated at each pair of {G, Nbgd} and the performance of the four

algorithms, GF-MSD, GF-MLE, SMC500, and U-EM compared.

Parameter estimation performance. To evaluate the parameter estimation performance

among the different approaches, we followed the approach set out in [28] and defined a suc-

cessful estimate as one which was within 25% of its true value. The success maps for each of

the algorithms are shown in Fig 7. In these plots, color corresponds to the percentage of runs

where successful estimation was achieved. Results for Dy were similar and are omitted for

space reasons. These results show that GF-MSD has the worst performance of all four algo-

rithms across all settings of intensity and background noise level with very low rates of success

even at the highest SBR and signal levels considered. At the absolute lowest signal levels,

GF-MLE shows the highest success rate (though that rate is still very low). The two EM-based

Fig 6. Performance comparison among the different analysis methods. With G = 100, Nbgd = 10,Dx = 0.005 μm2/s,

andDy = 0.01 μm2/s. (a) Box plot results for the estimate of Dx. (b) RMSE for x–localization.

https://doi.org/10.1371/journal.pone.0243115.g006

Table 2. Algorithm performance at G = 100, Nbgd = 10, Dx = 0.005 μm2/s, Dy = 0.01 μm2/s.

Approach Est.Dx (μm2/s) Est.Dy (μm2/s) RMSEx (nm) RMSEy (nm)

GF-MSD 0.0055 ± 0.0059 0.0102 ± 0.0096 6.7 ± 0.524 6.7 ± 0.506

GF-MLE 0.0046 ± 9.72e-4 0.0092 ± 0.0019 6.7 ± 0.524 6.7 ± 0.506

SMC-EM100 0.0044 ± 7.76e-4 0.0092 ± 0.0015 9.2 ± 1.100 9.8 ± 1.300

SMC-EM500 0.0046 ± 7.23e-4 0.0097 ± 0.0015 6.6 ± 0.757 6.5 ± 0.629

SMC-EM1000 0.0046 ± 7.15e-4 0.0097 ± 0.0015 6.0 ± 0.580 5.9 ± 0.488

U-EM 0.0044 ± 7.0013e-4 0.0091 ± 0.0013 6.3 ± 0.475 7.7 ± 1.200

Note that the estimates in table are in the form of mean ± Std. while the boxplots in Fig 6 indicate the median.

https://doi.org/10.1371/journal.pone.0243115.t002
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methods, however, show the highest level performance when the entire range of SBRs is

considered.

To dive more deeply into these results, we compared the performance in the accuracy of

diffusion coefficient estimation at SBRs of G/Nbgd = 10 and G/Nbgd = 1 along the two white

curves on the success maps in Fig 7. The parameter estimation results are shown in Fig 8 for

both SBR = 1 (representative case at low signal intensities) and SBR = 10 (representative case

at high signal intensities). The figures show the mean and median for all algorithms as well as

the middle two quantile (50%) range. Note that at SBR = 1, the GF-MSD approach essentially

fails while GF-MLE needs an intensity of G = 10 before its estimates are reasonable. By con-

trast, our EM based methods return reasonable results beginning at an intensity of G = 3. With

an SBR of 10, all four algorithms yield reasonable results, though the GF-MSD algorithm has

the worst performance with a median value that significantly under-reports relative to the true

value and with quantiles that are much larger than those of the other schemes. The other three

algorithms all have similar performance, though the EM-based methods do yield tighter

quantiles.

Fig 7. Success maps of the four algorithms. The percentage of trajectories resulting in an estimated Dx within 25% of the true value as a function of

peak intensity G and background level Nbgd is shown. Yellow indicates 100% success while blue represents 0%. Results along the two white curves are

shown in Fig 8.

https://doi.org/10.1371/journal.pone.0243115.g007
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Localization performance. We also compared the localization accuracy of the different algo-

rithms for the same data. The results for both SBR = 1 and SBR = 10 are shown in Fig 9. As

before, we show the center two quantiles, mean, and median of the estimates over the 100 trials

at each value of G and Nbgd. (Note that since both the GF-MSD and GF-MLE algorithms use

GF for localization, their results are combined as they are equivalent.) SMC-EM500 outper-

forms the other algorithms at all signal levels. Except at the very lowest signal level, U-EM out-

performs GF. As the signal level increases, GF eventually catches up to match the results of

SMC-EM and U-EM.

Case 3: Performance as a function of diffusion coefficient. In the presence of motion

blur, the performance of both localization and parameter estimation will depend on the diffu-

sion coefficient. In addition, because the EM-based schemes jointly estimate the trajectory and

Fig 8. Diffusion coefficient estimation performance over 100 simulation runs at different signal and background

levels. With fixed (a) SBR = 1 and (b) SBR = 10. Shown are the middle two quantiles (colored, shaded area), median

(solid line), and mean (dashed line) using GF-MLE (red), GF-MSD(green), U-EM (purple), and SMC-EM500 (cyan).

The true value was Dx = 0.005 μm2/s.

https://doi.org/10.1371/journal.pone.0243115.g008
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the model parameters, it is reasonable to expect that performance will depend on motion

model parameters even in the absence of motion blur (representing the limit of instantaneous

image acquisition). To study this, we fixed the signal levels at G = 100, Nbgd = 10 (where all

algorithms perform similarly) and ran simulations with Dx = Dy over the range of 0.001 μm2/s

to 10 μm2/s, considering both the case with motion blur (with Nsub = 100) and without (with

Nsub = 1). We set a threshold for localization failure as the diffraction limited resolution given

by the Rayleigh criterion. For the imaging parameters used here this leads to

DLRayleigh ¼
0:61l

NA
¼ 270nm:

The results for localization in the absence of motion blur are shown in Fig 10a. As expected,

if the measurements can be obtained instantaneously then the performance of the GF method

is independent of the diffusion coefficient since in each frame the particle is motionless. The

EM-based schemes, however, do show degraded performance as the diffusion coefficient

increases with the resulting thresholds shown in Table 3. It is perhaps somewhat surprising

that U-EM and SMC-EM have such drastically different thresholds given that they use the

same observation model. However, the problem in U-EM arises primarily from the the break-

down of the unscented transform at large noise variances. Thus, while U-EM is much better

than SMC-EM in terms of computational complexity, it is limited to small values of the ratio

Fig 9. Localization performance (RMSE) over 100 simulation runs at different signal and background levels. With fixed (left) SBR = 1 and (right)

SBR = 10. Shown are the middle two quantiles (colored, shaded area), median (solid line), and mean (dashed line). GF (green), U-EM (purple), and

SMC-EM500 (cyan).

https://doi.org/10.1371/journal.pone.0243115.g009

Fig 10. Localization performance in terms of RMSE across varying diffusing speeds. (a) without and (b) with motion

blur using GF-MSD/MLE (green), SMC-EM500 (cyan), and U-EM (purple). The failure threshold is defined as the

Rayleigh resolution criterion (red, dashed).

https://doi.org/10.1371/journal.pone.0243115.g010
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of diffusion coefficient to sample rate due to the inability of the UKF to handle large variances

in the noise inputs.

The case with motion blur is shown in Fig 10b. U-EM and SMC-EM perform similarly to

the setting without motion blur. Now, however, estimation based on GF also shows a limit on

the diffusion coefficient beyond which localization fails, likely driven by the fact that motion

blur causes the PSF to diverge from a simple Gaussian shape. The resulting limits are shown in

Table 3. It is important to note that when using GF, we take advantage of the prior information

available in the segmentation and limit the estimate to be within the segmented image. To give

the EM scheme maximum flexibility, we do not do this for SMC-EM or U-EM.

The values of the thresholds for the diffusion coefficient depend, of course, on the specific

imaging parameters. In general, in the absence of motion blur, increasing the peak intensity G
or the shutter time δt will increase the SBR and thus improve localization performance and

one would expect the SMC-EM methods to work at higher diffusion coefficient values. Since

U-EM depends on the unscented transform, increasing the imaging rate (that is, decreasing

Δt) will reduce the process noise and thus increase the diffusion coefficient threshold. In the

presence of motion blur, decreasing the shutter time will mitigate its effects but at the cost of

reducing the number of acquired photons and thus the SBR. This can be compensated for

somewhat by increasing the intensity parameter G by increasing the power of the excitation,

though the ability to do so is limited by phototoxicity issues.

To better understand the degradation in localization as the diffusion coefficient increases,

we show in Fig 11 typical runs both with and without motion blur. These results show that at

larger diffusion coefficients, the U-EM scheme simply fails while the others degrade more

smoothly, particularly in the absence of motion blur. For SMC-EM, we show results using dif-

ferent numbers of sampled particles in the PF methods. With a small number of samples (e.g.,

SMC-EM100) and at large D, the SMC-EM tends to track the particle well in most frames but

occasionally to lose that track. Because segmentation ensures that the data is never too far

from ground truth, the algorithm is often able to pick up the location again. Increasing the

number of sampling particles in the SMC-EM mitigates this effect at any given value of D and

thus the threshold on the diffusion coefficient increases with increasing number of particles in

the filter. To further demonstrate this, we also show typical results when using 1500 sampling

particles; SMC-EM is then able to track the particle even at 10 μm2/s.

The results for the estimation of Dx as a function of the diffusion coefficient are shown in

Fig 12, both with and without motion blur. As noted before, the UKF element of the U-EM

algorithm fails as the covariance of the process noise, defined by the value of the diffusion coef-

ficient, gets large. As seen in the localization performance results in Fig 11, this leads to com-

plete loss of tracking which in turn leads to failed diffusion coefficient estimation. By contrast,

SMC-EM, GF-MSD, and GF-MLE continue to produce good estimates throughout the entire

considered range (though, of course, GF-MSD has much larger variance than the other

approaches. It is perhaps surprising that SMC-EM produces good diffusion coefficients at

large D even though, as seen in Fig 10, localization performance degrades significantly. The

likely reason is that, as illustrated in Fig 11, for a large part of any given trajectory, tracking is

Table 3. Diffusion coefficient threshold before localization failure with G = 100, Nbgd = 10.

Condition GF (μm2/s) U-EM (μm2/s) SMC-EM500 (μm2/s)

No motion blur 1 0.05 3.0

With motion blur 6.0 0.05 3.0

https://doi.org/10.1371/journal.pone.0243115.t003
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good with only a few large outliers. These outliers have a serious impact on the RMSE but a

smaller effect on the diffusion coefficient.

sCMOS camera model

To simulate an sCMOS camera, we include pixel-dependent readout noise in the measurement

model through the choice of distributions for �p,t in Eq (15). We base our measurement model

on a Hamamatsu ORCA Flash 4.0 camera described in [38]; details can be found in the S3

Text. The corresponding probability density function (PDF) of the measured photon counts in

Fig 11. Typical localization performance of GF, SMC-EM, and U-EM. (green) GF, (orange) SMC-EM with 100

Monte Carlo samples, (cyan) 500 Monte Carlo samples, (red) 1500 Monte Carlo samples, and (purple) U-EM at a

diffusion coefficient of (a,c) 0.01 μm2/s and (b,d) 10 μm2/s, both (a,b) without and (c,d) with motion blur.

https://doi.org/10.1371/journal.pone.0243115.g011

Fig 12. Mean estimates of Dx by GF-MSD, GF-MLE, SMC-EM, and U-EM as a function of the true diffusion

coefficient. (a) without and (b) with motion blur.

https://doi.org/10.1371/journal.pone.0243115.g012

PLOS ONE EM framework for joint localization and parameter estimation in single particle tracking from segmented images

PLOS ONE | https://doi.org/10.1371/journal.pone.0243115 May 21, 2021 17 / 24

https://doi.org/10.1371/journal.pone.0243115.g011
https://doi.org/10.1371/journal.pone.0243115.g012
https://doi.org/10.1371/journal.pone.0243115


pixel p at time t is given by

PðIp;tÞ ¼
X1

q¼0

1

q!
exp � ðlp;t þ NbgdÞ
h i

ðlp;t þ NbgdÞ
q 1
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p;t

q exp �
ðIp;t � qÞ

2

2s2
p;t

" #

: ð18Þ

Derivation of this distribution can be found in the S4 Text.

Simulations were performed using the settings in Table 1 and at two different signal levels,

one low (G = 10) and one high (G = 100). A typical image frame at G = 100 and Nbgd = 10,

together with the pixel-by-pixel variance and gain maps for this frame, is shown in Fig 13. A

video of a typical image sequence can be found in the S1 Video. The work in [38] showed that

GF can yield poor results on sCMOS data and, motivated by this, developed a localization algo-

rithm specific to the sCMOS model using ML estimation. In the remainder of this work, then,

we use that approach to localize the particle in each frame. For easy reference, details of this

algorithm can be found in the S5 Text. A comparison of the computation time for all the algo-

rithms can also be found in the S1 Fig. We combine those localization results with the MLE

approach to parameter estimation from [16] and refer to this combined algorithm as

MLEsCMOS+.

The comparison between the final results across all 100 simulation runs for all the algo-

rithms at the high signal level are shown in the box plots in Fig 14 and recapitulated in Table 4.

These results indicate that when the signal level is high, all methods perform well in parameter

estimation and localization, though when using only 100 particles in SMC-EM the RMSE is

higher than with the other methods. In addition, SMC-EM500 and SMC-EM1000 show fewer

outliers than the other methods.

The comparison between the final results across all 100 simulation runs for all the algo-

rithms for the low signal level are shown in the box plots in Fig 15 and recapitulated in Table 5.

The EM-based schemes show significant improvement over MLEsCMOS in this setting in terms

of both reduced variance in the parameter estimates and smaller RMSE in localization.

To further highlight the localization performance differences between the algorithms, in

Fig 16 we show the results from a typical run. While all methods track the true trajectory,

MLEsCMOS produces more outliers while the EM-based methods stay closer to the trajectory

throughout the run.

Fig 13. Typical frames related to sCMOS camera model. (a) Observation withNbgd = 10, G = 100. (b) Variance and (c) gain maps of the pixels in the

frame shown in (a).

https://doi.org/10.1371/journal.pone.0243115.g013
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Fig 14. Estimation performance of different SPT methods on sCMOS camera model at G = 100 and Nbgd = 10.

https://doi.org/10.1371/journal.pone.0243115.g014

Table 4. Algorithm performance at G = 100, Nbgd = 10, Dx = 0.005 μm2/s, Dy = 0.01 μm2/s with pixel-dependent readout noise.

Approach Est.Dx (μm2/s) Est.Dy (μm2/s) RMSEx (nm) RMSEy (nm)

MLEsCMOS+ 0.00472 ± 0.00105 0.00922 ± 0.00199 6.72 ± 0.513 6.82 ± 0.514

SMC-EM100 0.00450 ± 0.00084 0.00947 ± 0.00142 9.97 ± 1.338 11.19 ± 1.857

SMC-EM500 0.00470 ± 0.00079 0.00964 ± 0.00144 7.35 ± 0.711 7.65 ± 0.756

SMC-EM1000 0.00473 ± 0.00078 0.00968 ± 0.00145 6.90 ± 0.620 7.04 ± 0.560

U-EM 0.00448 ± 0.00074 0.00894 ± 0.00135 7.36 ± 0.547 8.99 ± 1.22

https://doi.org/10.1371/journal.pone.0243115.t004

Fig 15. Estimation performance of different SPT methods on sCMOS camera model at G = 10, Nbgd = 10.

https://doi.org/10.1371/journal.pone.0243115.g015
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Discussion and conclusion

In this work we described two versions of our EM-based framework for simultaneous localiza-

tion and parameter estimation from SPT data. We extended them to include an observation

model describing sCMOS cameras and compared their performance in terms of localization

and diffusion coefficient estimation to GF-MSD and GF-MLE for an ideal camera and to

MLEsCMOS for an sCMOS camera. Our algorithms indicate that, at least in the two-dimen-

sional setting considered, if there are enough photons and a good SBR, then GF-MLE (or

MLEsCMOS), SMC-EM, and U-EM perform similarly well and all outperform GF-MSD. Given

the additional computational complexity of the EM-based methods over GF-MLE/MLEsCMOS,

it makes more sense to apply these more standard algorithms in this setting. At low signal lev-

els, however, the EM-based methods outperform the others. The choice between the different

Table 5. Algorithm performance at G = 10, Nbgd = 10, Dx = 0.005 μm2/s, Dy = 0.01 μm2/s with pixel-dependent readout noise.

Approach Est.Dx (μm2/s) Est.Dy (μm2/s) RMSEx(nm) RMSEy (nm)

MLEsCMOS+ 0.00484 ± 0.00247 0.00999 ± 0.00391 54.59 ± 6.18 54.76 ± 6.45

MLE�sCOMSþ 0.00484 ± 0.00247 0.00999 ± 0.00391 54.22 ± 5.65 54.55 ± 6.12

SMC-EM100 0.00699 ± 0.00287 0.0114 ± 0.00312 30.77 ± 6.65 36.50 ± 9.65

SMC-EM100, � 0.00661 ± 0.00177 0.0112 ± 0.00286 29.89 ± 3.61 35.23 ± 4.30

SMC-EM500 0.00668 ± 0.00206 0.0110 ± 0.00311 28.71 ± 3.47 33.92 ± 4.49

SMC-EM500, � 0.00642 ± 0.00159 0.0109 ± 0.00294 28.71 ± 3.47 33.33 ± 3.31

SMC-EM1000 0.00662 ± 0.00207 0.0109 ± 0.00307 28.46 ± 3.46 33.44 ± 4.04

SMC-EM1000, � 0.00646 ± 0.00171 0.0108 ± 0.00291 28.34 ± 3.26 33.02 ± 3.26

U-EM 0.00556 ± 0.00165 0.00931 ± 0.00293 31.58 ± 5.26 44.00 ± 17.24

U-EM� 0.00551 ± 0.00158 0.00891 ± 0.00239 31.25 ± 4.08 38.56 ± 6.52

� excluding outliers.

https://doi.org/10.1371/journal.pone.0243115.t005

Fig 16. Typical localization results at G = Nbgd = 10.

https://doi.org/10.1371/journal.pone.0243115.g016
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EM schemes is dictated in large part by the computation time but also by the ratio of the

(expected) diffusion coefficient and the sampling rate. If this ratio is low, U-EM offers good

results at significantly less computation time than the SMC-EM methods. These conclusions

are summarized in Fig 17.

It is important to note that the EM-based methods are quite flexible and can be easily

adapted to other measurement and motion models and that they return a full distribution for

the position of the particle in each frame rather than a single point estimate. This additional

information may be useful when asking, for example, the likelihood that a particle was close

enough to interact with some given structure in a cell.

Supporting information

S1 Text. Detailed description of U-EM.

(PDF)

S2 Text. Detailed description of SMC-EM.

(PDF)

S3 Text. Gain and covariance simulation based on statistical data.

(PDF)

S4 Text. Probability density function of measurements considering pixel dependent read-

out noise.

(PDF)

S5 Text. Analytical approximation of MLEsCMOS.

(PDF)

Fig 17. Qualitative guidance for choice of SPT localization and parameter estimation algorithm. Shown are the

algorithms that produce similar results in each of the domain with the method. The boxed algorithm in each quadrant

has the lowest computational load.

https://doi.org/10.1371/journal.pone.0243115.g017
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S1 Video. A typical video showing the relationship among trajectory, observation, and

properties of readout noise brought by sCMOS.

(PDF)

S1 Fig. Computation time record for different SPT algorithms.

(PDF)
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