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THE BIGGER PICTURE Brain signals display incessantly reverberating, rhythmic activity of high complexity.
These signals interact in a linear and non-linear fashion to inform mental experience. From this interactive
complexity, the brain is thought to contain a ‘‘dynamic core’’ that supports both the integration of information
into a coherent whole and the differentiation of activity into phenomenal content. The neural substrates of this
part-whole dynamic are unknown but could reflect a process-developmental hypothesis of brain activity,
whereby the whole is sculpted to reveal the details. We examine this hypothesis geometrically, analyzing
the evolving shape of brain signals in state space and causal asymmetries in their interactions with each
other. Our findings support a process-developmental hypothesis: integrative dynamics are shared across
frequency bands, co-occurring with more complex, differentiated dynamics and with a loss of this differen-
tiated complexity in older adults.
SUMMARY
Multidimensional reconstruction of brain attractors from electroencephalography (EEG) data enables the
analysis of geometric complexity and interactions between signals in state space. Utilizing resting-state
data from young and older adults, we characterize periodic (traditional frequency bands) and aperiodic
(broadband exponent) attractors according to their geometric complexity and shared dynamical signatures,
which we refer to as a geometric cross-parameter coupling. Alpha and aperiodic attractors are the least com-
plex, and their global shapes are shared among all other frequency bands, affording alpha and aperiodic
greater predictive power. Older adults show lower geometric complexity but greater coupling, resulting
from dedifferentiation of gamma activity. The form and content of resting-state thoughts were further asso-
ciated with the complexity of attractor dynamics. These findings support a process-developmental perspec-
tive on the brain’s dynamic core, whereby more complex information differentiates out of an integrative and
global geometric core.
INTRODUCTION

Since their discovery, electrophysiologic signals have been

defined by rhythmicity. This has led to a ‘‘rhythms of the brain’’

approach to studying physiologic processes by linking putative

cognitive functions to indices of frequency-based activity, such

as power and phase coherence.1 This approach has been

expanded by growing evidence that interactions between fre-

quency bands, so-called cross-frequency coupling, underlie

cognitive function,2–5 and that disruptions in synchronized activ-

ity contribute to neuropsychiatric dysfunction.6,7 Cross-fre-

quency interactions are characterized by pairwise measures of

coherence and/or correlation, often interpreted as connectivity,
Patte
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since they are thought to reflect functional interactions between

local or global brain networks, depending on the frequency

bands involved.8,9 Analytic pitfalls notwithstanding,10 these ap-

proaches generally emphasize linear assessment of time-fre-

quency decomposition linked to a stimulus or task. Emerging ev-

idence for the importance of aperiodic activity (not defined by a

distinct frequency) complicates analysis of cross-frequency in-

teractions,11–14 raising the necessity of identifying new methods

to investigate interactions between aperiodic and periodic

parameters.

Inparallelwith thesedevelopments in thestudyofbrain rhythms,

alternative perspectives have examined brain activity as amultidi-

mensional signal, with complex, non-linear, and non-stationary
rns 5, 101025, September 13, 2024 Published by Elsevier Inc. 1
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dynamics.15–17 Although signal complexity of this nature is often

dismissed as random variance, it may contribute meaningfully to

cognition and behavior as part of a globally integrated, dynamical

system.18,19 One approach to analytically utilize this dynamical

systems perspective is to embed physiologic signals onto amulti-

dimensional state-space manifold.15,20–22 When manifold dy-

namics converge, this suggests that the systemmay be operating

as an attractor.15 Themultidimensional geometry of interacting at-

tractor systems can yield highly relevant information on causality

across a wide range of applications, known as Sugihara causality,

or convergent cross-mapping (CCM).23,24 Complementary to in-

formation theoretical methods that can also handle non-linear

EEG data,25–28 cross-mapping approaches are model-free and

geometric rather than statistical and probabilistic (such as transfer

entropy). Sincegeometric approachesdonot rely ondigitizationor

quantization of the underlying signal, they may be better suited to

complex high-dimensional systems, where the continuous dy-

namics must be preserved.29–31 Related methods have ushered

in a ‘‘geometric approach’’ to analyzing the dynamic signatures

and motifs of brain activity in state space, which could help

make sense of what neural signals represent.32–34 Although

state-spaceembeddingprocedureshave longbeenused to inves-

tigate EEG activity,20,22 such approaches are not typically em-

ployed to investigate cross-parameter coupling. Manifold-to-

manifoldorattractor-to-attractorgeometricmapping relationships

are necessary to determine dynamical systems interactionswithin

the structure of EEG itself and especially where traditional cross-

frequency coupling approaches may not be appropriate.

Geometric approaches have helped identify regional dy-

namics from fMRI that are common across a range of cognitive

tasks.35 These shared dynamics cut across traditional functional

networks and are based instead on unique, topological signa-

tures in the dynamics of activity. The resulting regions and their

dynamical manifolds have been reported as evidence of an inte-

grative ‘‘dynamic core’’ in the brain. The concept of an integra-

tive core was originally attributed to Varela,36 who proposed

that specific cognitive operations reflect transient synchroniza-

tion that emerges from ongoing activity in a dynamically unstable

dominant assembly.36,37 Varela emphasized the wholeness of

living systems, with parts undergoing transformation to support

self-regeneration of the whole.38 His theoretical work contrib-

uted to a process-developmental view of cognition (microgene-

sis), analogous to embryogenesis, whereby complex mental

states differentiate out of a global core of putatively brainstem-

driven activity.39,40 Like transformations in embryological form

(morphogenesis), this view of cognition is conceptually geomet-

ric, but little empirical work has been devoted to the topic.

The term ‘‘dynamic core’’ was used by early gestalt psycholo-

gists41 and later adopted by Tononi and Edelman to capture a

continually varying, unified process that yields high degrees of

integration, differentiation, and complexity.42 Their hypothesis

was based on considering integration with respect to synchroni-

zation in the rhythmic activity of the brain and differentiation (neu-

ral complexity) in information-theoretic terms. The complexity of

neural activity has long been linked to the level, state, and content

of consciousness43,44; however, purely information-theoretic

measures might conflate levels of consciousness (e.g., degree

of arousal) with the content of consciousness (e.g., thoughts, sen-

sations, emotions).45,46 Therefore, the concept of a dynamic core
2 Patterns 5, 101025, September 13, 2024
can be re-examined in light of contributions from arrhythmic

(aperiodic) activity that is linked to changes in arousal47–49 and

geometric perspectives that could relate process-developmental

theories to computational work on the neural representation of

mental states.34,50

Cognitive aging provides an exemplar case of changes in the

aperiodic and periodic composition, in part linked to the hypoth-

esized loss of complexity51–53 and loss of signal differentiation in

aging.54–57 A ‘‘redundancy core’’ has been hypothesized for

older adults, a putative link between dynamic core models, the

loss of complexity, and loss of differentiation.58 Recent studies

of aperiodic EEG in cognitive aging are generally consistent

with a loss of complexity,59–61 reporting a flatter spectra (lower

aperiodic exponent) that has been interpreted as increased neu-

ral noise62 and/or a loss of long-range temporal correlations that

may help coordinate behavior and cognition across multiple

scales.5,63 Therefore, the geometry of ongoing aperiodic and pe-

riodic activity, as measures of a putative electrophysiologic dy-

namic core, provide a highly relevant framework to examine

complexity and signal differentiation in aging.

Given the promise of geometric, manifold-based representa-

tions of neural data, we reasoned that the dynamic core of

EEG might be evident in shared dynamics across the frequency

domain. To define the geometry and ascertain the complexity of

EEG spectral dynamics, we used state-space embedding pro-

cedures and a CCM-based measure of geometric cross-param-

eter coupling during a resting-state paradigm. We hypothesized

a loss of geometric complexity in older adults that would corre-

late with greater shared dynamics between EEG parameters,

yielding a less differentiated dynamic core. Across all partici-

pants we find that the dynamics of the alpha band and the aperi-

odic exponent contain a low-dimensional core set of dynamically

unstable, geometric signatures that predict the dynamics of

other EEG parameters. As hypothesized, older adults show re-

ductions in the geometric complexity of ongoing periodic and

aperiodic signals that are linked to more homogeneous core dy-

namics. We further examined associations between geometric

complexity and the form and content of resting-state thoughts.

Our findings emphasize the inherently unstable nature of the

EEG’s dynamic core, whereby higher-frequency operations

differentiate out of core dynamics to yield structures of higher

complexity. This work has implications for dynamical systems

theories of neural function and models of aging.

RESULTS

Aperiodic and periodic EEG parameters
EEG parameterization enables decomposition of an electrophys-

iologic signal into periodic (oscillatory) activity that appears to rise

above an aperiodic (arrhythmic) and scale-free background.12

Although the underlying generators of aperiodic activity remains

unknown,64,65 this activity is thought to reflect excitability across

neural networks66,67 and coordination across multiple temporal

scales,68,69 and to be linked to a wide range of cognitive pro-

cesses70,71 and pathologies.72 Since aperiodic and periodic sig-

nals are ongoing at rest and both likely contribute to the dynamic

core of resting brain activity, we first parameterized our EEG

spectra to examine group differences in average periodic and

aperiodic activity (Figures 1A and 1B). As expected, older adults
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Figure 1. EEG parameterization and embedding methods

(A) Average spectra from the subset of channels utilized for this study during eyes closed (EC) for young adult (YA; n = 138, black) and older adult (OA; n = 63, gray)

participants. Dashed line indicates full FOOOF model fit, and the solid, thick line indicates the aperiodic fit.

(B) An example of extracted EEG parameters using FOOOF for one epoch, from one participant; light green (delta), cyan (theta), blue (alpha), yellow (beta), and

red (gamma).

(C) Normalized time series for each parameter in the same colors from the participant in (B).

(D) Each parameter’s time series is used to reconstruct its high-dimensional attractor using traditional time-delay embedding.

(E) Eigen-time-delay attractors are plotted from the first three principal components (PC1, PC2, PC3).

ll
OPEN ACCESSArticle
(OAs) show a smaller aperiodic exponent, yielding a flatter aperi-

odic slope, compared with young adults (YAs), which was most

pronounced during the eyes-open (EO) condition (AGE3CONDI-

TION F(1,199) = 25.55, p < 0.00001; OAs: exponentEC = 0.98, ex-

ponentEO = 0.83 and YAs: exponentEC = 1.15, exponentEO = 1.10).

For residual periodic power, we found a significant AGE 3

CONDITION interaction effect (F(5,995) = 7.01, p = 0.002). This

was attributable to OAs showing less residual power in the theta

and alpha bands (Tukey’s honest significant difference [THSD],

all corrected p values <0.05), more residual power in the beta

range (THSD p values <0.00001), and more residual power in

the gamma range in the EO condition only (THSD p = 0.04).

Spectral attractor complexity
Variability in ongoing physiologic dynamics provides addi-

tional complexity that is thought to underpin fluctuations in
cognition and behavior.18,19 We reasoned that ongoing vari-

ability and complexity in periodic and aperiodic signals could

be examined from multidimensional embedding of signal dy-

namics. To assay complexity, we utilized an embedding

procedure known as eigen-time-delay (ETD) embedding that

orders manifold dynamics as principal components (dimen-

sions) from an intermittently forced linear approximation.73

That is, ETD embedding yields multidimensional manifolds

that capture the trajectory of an EEG parameter’s dynamics

over the course of a resting-state scan and that might be influ-

enced by state (eyes open or closed) or age. We used the

number of significantly retained components (dimensions) as

a measure of geometric complexity for each parameter and

participant.

Each parameter revealed idiosyncratic trajectories, although

there appeared to be globally regular dynamics, suggestive of
Patterns 5, 101025, September 13, 2024 3



Figure 2. Eigen-component dynamics

(A and B) The first 12 principal components of alpha (A) and 21 components for gamma (B) for one participant. Components are ordered from left to right, ranked

by the magnitude of the component eigenvalue.

(C) Mean frequency of components (ordinate) plotted against the component number (abscissa) and averaged across all EEG parameters for YA (black) and OA

(gray) participants during the EC (thick lines) and eyes-open (EO) (thin line) conditions.

(D) Maximal Lyapunov exponent (MLE, ordinate) plotted against the component number (abscissa) and averaged across EC and EO conditions for delta (green),

theta (cyan), alpha (blue), beta (orange), gamma (red), and aperiodic (black).

ll
OPEN ACCESS Article
complex attractor manifolds (Figures 1D and 1E). Examining the

ETD components individually reveals repetitive, rhythmic dy-

namics of increasing mean frequency and ranging from 0.01 to

0.1 Hz (Figures 2A–2C). This monotonic relationship between

increasing mean frequency and component number (main effect

of COMPONENT: F(1,3705) = 245.22, p < 0.00001) did not

depend on condition (p = 0.99) or age (p = 0.62), with a slight

reduction (absolute difference �0.0002 Hz) in the aperiodic

exponent and no differences between all other frequency bands

(main effect of PARAMETER F(1,3705) = 5.95, p < 0.00001 and

no interaction effects, all p values <0.13). We also characterized

the ETD components by their maximal Lyapunov exponent

(MLE, Figure 2D), which provides a statistical measure of the sta-

bility of the underlying dynamics, that is, whether the dynamical

trajectory is converging, diverging, or stable. We found a positive

MLE across all components, suggestive of unstable dynamics,

with the maximum exponent present at components 3 or 4
4 Patterns 5, 101025, September 13, 2024
(main effect of COMPONENT: F(1,3705) = 170.4, p < 0.00001,

Figure 2D). MLE did not depend on condition (p = 0.99) or age

(p = 0.76) and showed only subtle differences between EEG pa-

rameters across dimension (Figure 2D, PARAMETER 3

COMPONENT F(1,3705) = 1.53, p < 0.0008 and no other interac-

tion effects, all p values <0.4).

Thus, despite qualitatively idiosyncratic attractor trajectories, all

EEGparameters for all conditionsandgroupsshowedsimilarly un-

stable rhythmic dynamics. Nonetheless, the percent variance ex-

plainedbyeachETDcomponentwasdifferent for eachparameter,

condition, and group. For YA participants, the first component of

alpha during the eyes-closed (EC) condition captured the most

variance (�15%).Bycontrast, forOAparticipants, the first compo-

nent of the aperiodic parameter in the EC condition captured the

most variance (�18%; see Figure 3). These differences in the dis-

tribution of explained variance resulted in differences in attractor

complexity between parameters, conditions, and groups (based
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Figure 3. Parameter variance and geometric

complexity

The average percentage of variance explained by

each of the first 25 principal components (abscissa)

across YA participants (A) andOA participants (C) for

delta (green), theta (cyan), alpha (blue), beta (or-

ange), gamma (red), and aperiodic (black), for eyes

closed (filled circles) and eyes open (open circles).

Violin plots display a Gaussian smoothed distribu-

tion estimate of attractor dimensionality (geometric

complexity) for each EEG parameter across YA

(B) and OA (D) participants for EC (gray) and EO

(white) conditions, with the mean complexity score

indicated by the horizontal lines.
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on the number of statistically significant retainedcomponents, see

experimental procedures). All participants showed increased

complexity during EO for periodic parameters (main effect of

CONDITION, F(5,995) = 63.6, p < 0.0001) and the aperiodic expo-

nent (main effect of CONDITION, F(1,199) = 8.75, p < 0.005). We

found that the alpha attractors are the least complex relative to

all other periodic parameters (main effect of PARAMETER,

F(5,995) = 17,804, p < 0.0001). OA participants showed lower at-

tractor complexity (main effect of AGE, F(1,199) = 5.63, p < 0.05

and AGE 3 CONDITION 3 PARAMETER, F(5, 995) = 2.47,

p<0.05) in the beta andgammaattractors during theEOcondition

(THSD corrected p < 0.005) and gamma attractors in the EC con-

dition (THSD corrected p < 0.05). OAs similarly showed lower

complexity in their aperiodic attractors across conditions (main

effect of AGE, F(1, 199) = 13.30, p < 0.0005 without AGE3 CON-

DITION effects).
Pa
Ingeneral,we foundmodestor no associ-

ation between the magnitude of residual

periodic power and attractor geometric

complexity. When controlling for group and

condition, greater alpha power modestly

predicted less geometric complexity (partial

r = �0.37, p < 0.0005) with subtle, but

significantdifferences in this associationbe-

tween young and old participants (rYoung =

�0.27, pYoung < 0.005 and rOld = �0.3,

pOld < 0.05; AGE 3 POWER interaction

t-statistic = 5.07; p < 0.0001). There was

no significant association between delta,

theta, or beta power and corresponding

geometric complexity (delta: r = 0.02, p =

0.73; theta: r =�0.05, p = 0.34; beta: partial

r =�0.06, p = 0.20) and no significant differ-

ences in the association betweengroups (all

p values >0.05). Only gamma attractors in

young participants revealed significant as-

sociations between power and geometric

complexity (YAs: partial r = 0.23, p = 0.006;

OAs: partial r =�0.20, p = 0.12; AGE3 PO-

WER t-statistic = 1.99, p = 0.047). For aperi-

odic attractors, a larger aperiodic exponent

was minimally correlated with greater

complexity (partial r = 0.16, p = 0.001;

without differences between groups, p =
0.18). Thus, the geometric complexity of spectral attractors is not

simply a reflection of themeanpower ormean aperiodic exponent

and reflects unique dynamical signatures.

Geometric cross-parameter coupling
The above evidence for differences in the geometric complexity

of EEG parameters and for differences in complexity between

old and young participants motivated the examination of shared

dynamics from geometric reconstructions. Based on the dy-

namic core model of brain function, we reasoned that less com-

plex parameters would be more integrative, and thus contain the

simple dynamics that are shared across parameters. By

contrast, more complex parameters would be more differenti-

ated and specialized, that is, less integrative andwith less shared

dynamics across parameters. To examine themagnitude of geo-

metric cross-parameter coupling between spectral attractors,
tterns 5, 101025, September 13, 2024 5



Figure 4. Geometric cross-parameter

coupling methods

(A and B) (A) An example of geometric cross-

parameter coupling for a single participant. Top

row, alpha predicts gamma: A random point (large

yellow circle) on alpha’s attractor and its nearest

neighbors (small blue circles) are mapped onto

gamma’s attractor via the timestamps of the

neighbors on the alphamanifold (also designated by

yellow and blue circles). The distance-weighted

average of the mapped neighbors is designated by

the large red circle, and the total set of these aver-

ages is used to reconstruct a predicted gamma

manifold by alpha (shown in B). The distance be-

tween the actual point on gamma (yellow circle) and

the alpha’s prediction (red circle) is given by the

thick yellow line; this distance is less than the cor-

responding prediction of alpha by gamma (see

bottom row). Bottom row, gamma predicts alpha:

Utilizes the same convention as above.

(C) Bar plot of the magnitude of the correlation co-

efficients between alpha and gamma time series

(left), between the original alpha manifold and

gamma’s manifold prediction of alpha (middle), and

between the original gamma manifold and alpha’s

manifold prediction of gamma (right).
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we used eigen manifold cross-mapping (EMCM) to measure

shared non-linear dynamics between parameters on a partici-

pant-by-participant basis (Figure 4). EMCM (and CCM more

generally) generates a predicted attractor based on a nearest-

neighbor approximation that is then correlated with the other pa-

rameter’s attractor. Thus, EMCM provides a measurement of

shared shape between dynamics, whichwe refer to as geometric

cross-parameter coupling.

To quantify the degree of geometric cross-parameter

coupling, we report EMCM scores, which are the eigen-

weighted average of all pairwise predictions between ETD di-

mensions. In general, we find moderate to high geometric

coupling across all parameters, that is, most spectral attractors

can predict the dynamics of the others (mean EMCM score of

0.56, range 0.26–0.99 across all participants and conditions).

As described in the experimental procedures and unlike linear

correlation (which yields a singular statistic, Pearson’s r for the

pairwise relationship), EMCM yields two output statistics: one

indicating the strength of prediction when signal a is the ‘‘predic-

tor’’ and signal b ‘‘predicted’’ (a predicts b) and another when the

signals are reversed and parameter b is the ‘‘predictor’’ and

parameter a is ‘‘predicted’’ (b predicts a) Therefore, unlike a sym-
6 Patterns 5, 101025, September 13, 2024
metrical linear connectivity matrix (see

supplemental information), the top and

bottom of the EMCM matrix are non-iden-

tical (Figure 6). If we assume that each

parameter contains a dynamical signature

of the core, an asymmetry might arise if

one parameter is more integrative than

the other.

To illustrate an example of asymmetry in

shared dynamics between parameters, we

selected an exemplary participant and
parameter-parameter coupling to display (alpha to gamma and

gamma to alpha, Figures 4, 5A, and 5B). We found that the high-

est correlations between ‘‘predictor’’ dynamics and the ‘‘pre-

dicted’’ dynamics were for the lower dimensions of the manifold,

typically the first 15 dimensions that account for �56%–65% of

the variance, not only for this example participant but across all

participants, parameters, and conditions (Figures 5C–5F). This

finding suggests that a relatively low-dimensional set of core dy-

namics are shared across all EEG spectral parameters.

Across conditions, and in YAs andOAs alike, alpha predicted all

other spectral attractors the best, particularly in the EC condition

(PARAMETER 3 CONDITION, F(1,5,771) = 14.07, p < 0.0001;

Figures 6C and 6D, vertical yellow bands, THSD for all alpha EC

prediction p values <0.0001). In geometric terms, this means

that the alpha attractor contains signatures that are the most

shared among all other attractors (i.e., alpha has the most generic

dynamical signatures). The aperiodic exponent exhibits a similar

pattern, whereby most other parameters show greater EMCM

scores when they are predicted by the aperiodic parameter

(THSD for all aperiodic EC prediction p values (except alpha)

<0.0001). OAs show greater EMCM scores across conditions

(main effect of AGE, F(1,5,771) = 6.61, p = 0.010). This is most
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(A) The dynamics of the first 14 principal components of alpha and their prediction by nearest neighbors of gamma’smanifold (dashed orange) for one participant.

(B) The dynamics of the first 21 principal components of gamma and their prediction by nearest neighbors of alpha’s manifold (dashed orange) for one participant.

(C–F) Average prediction scores for each component by EEG parameter for YAs during EC (C) and EO (D) conditions and for OAs during EC (E) and EO

(F) conditions.
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pronounced when the higher-frequency attractors and the aperi-

odic exponent are predictors (AGE 3 CONDITION 3 PARAM-

ETER,F(1,5,771) = 2.63,p<0.0001; significance of follow-up tests

using THSD are shown in Figure 6).
In general, we find that EEG attractors with reduced dynamical

complexity are better predictors, that is, their dynamics are most

similar to the set of low-dimensional, core-like dynamics of more

complex attractors. This was true across all participants and
Patterns 5, 101025, September 13, 2024 7
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Figure 6. Geometric cross-parameter coupling

by condition and group

EMCMmatrices for all parameters (delta, theta, alpha,

beta, gamma, aperiodic); the magnitude of the EMCM

score is given by the color bar for YAs (left) and OAs

(right) in EC (A) and EO (B) conditions. Significant

differences are indicated by asterisks. Boxes denote

parameters with core-like, shared dynamics. The as-

terisks signify the Tukey’s honestly significant differ-

ences between YA and OA participants (*p < 0.05,

**p < 0.005, ***p < 0.0005, ****p < 0.00005).
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conditions. Alpha attractor complexity is inversely correlated

with EMCM scores across parameters while controlling for age

and condition (all partial r values <�0.86 and all p values

<0.0001, and no AGE 3 CONDITION effects). In contrast, the

geometric complexity of the other parameters was onlymodestly

associated with lower EMCM scores (delta complexity r =�0.46,

theta r = �0.37, beta r = �0.56, gamma r = �0.45, exponent =

�0.42, all p values <0.0001). Similar to alpha, aperiodic attractor

complexity inversely correlated with EMCM scores (all partial r

values <�0.79 and all p values <0.0001, no AGE 3 CONDITION

effects) and where dynamical complexity of the other bands only

modestly predicted lower EMCM scores (delta r = �0.50, theta

r = �0.54, alpha r = �0.52, beta r = �0.60, gamma complexity

r = �0.58, all p values <0.0001). These correlations are entirely

eliminated if the complexity of the opposite condition attractor

is used (e.g., the complexity of the EO alpha attractor cannot pre-

dict the EMCM scores of EC delta, theta, beta, and gamma). This

suggests that the correlation between complexity and prediction

scores depends on the unique condition-dependent geometric

structure of the spectral attractors.

Correlations with resting-state thoughts
Similar to others, we hypothesized that the geometric complexity

of EEG attractors might be associated with participants’ mental

state at rest.43,44 To explore this possibility, we utilized responses

to the New York Cognition Questionnaire collected from an fMRI

session the day before the EEG session. We reasoned that the
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form and content of mental activity at rest

would be habitual, automatic, and recur-

ring,74–76 and well captured by the attractor

paradigm.77 Thus, although we do not have

access to the form and/or content of the par-

ticipants’ mental state during the EEG

recording, we hypothesized that there might

be some similarity between the resting

mental state during EEG and fMRI sessions.

Following Gorgolewski et al., we used factor

analysis to identify dimensions of content

and form, yielding similar factor-loading

matrices.78

OA participants showed lower factor

scores related to thoughts about the past

or future (t = 3.30, p = 0.001, t = 5.35;

p<0.001) aswell as lower factor scoresabout

positive thoughts (t = 2.96, p = 0.003) but not

negative thoughts (t = 1.23, p = 0.21). OAs
showed higher factor scores related to thoughts about friends

(t = �3.32, p = 0.001). Regarding form, OAs showed lower factor

scores related to imagery (t = 5.04, p < 0.0001) and vagueness

(t = 5.58, p < 0.0001) but not verbal thoughts (t = 0.96, p = 0.34).

Given the exploratory nature of this analysis, we included the

complexity of all EEG parameters as predictors of form and con-

tent in repeated-measures, multiple linear regression analysis

that included age and condition as covariates. After controlling

for multiple comparisons, only the complexity of gamma-band at-

tractors was associated with factor scores for negative thoughts

(pFDR = 0.016, partial rYoung = 0.21, rOld = 0.17) without differences

in the magnitude of this correlation between groups (p = 0.11).

Except for aperiodic attractor complexity, there were no interac-

tion effects between parameter complexity and age in predicting

mental state. ForOAs (but not YAs) the complexity of the aperiodic

attractor correlateswith the factor scores for positive thought con-

tent (partial rYoung=�0.12, rOld=0.25,AGE3COMPLEXITYpFDR=

0.017) andvisual imagery (partial rYoung=�0.11, rOld= 0.31, AGE3

COMPLEXITY pFDR = 0.017).

DISCUSSION

In summary, we have implemented ETD embedding to charac-

terize the geometric complexity of EEG spectral dynamics.

This approach examines an EEG parameter’s signal embedded

in state space and uses principal component analysis to deter-

mine the minimum number of components (dimensions)
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necessary to capture those dynamics. The output of this

approach yields attractors that describe the ‘‘shape’’ of an

EEG parameter’s dynamics. The local geometry of this shape

is characterized by the Lyapunov exponent (instability) and the

extent to which local neighborhoods can predict the location of

neighborhoods on another parameter’s manifold, which we refer

to as geometric cross-parameter coupling. These analyses

reveal that the two hallmarks of ongoing activity in the resting

EEG spectra, alpha power and the aperiodic exponent, contain

generic geometric signatures that are shared among all other

parameters.

Following the terminology of Shine et al.,35 we refer to these

parameters as ‘‘core,’’ since the principal components of alpha

and aperiodic dynamics are geometrically represented across

other frequency bands (analogous to the dynamics of specific

brain networks being represented across multiple tasks in Shine

et al.). Our ‘‘core’’ designation is consistent with Varela’s unsta-

ble, dominant assembly,36,37 and his notion of eigenbehaviors,

which reflect preferential recurrence within neurobehavioral

state space (and is consistent with our extraction of dynamical

principal components).38,79 However, our core differs from the

concept of Tononi and Edelman42 in the sense that our approach

evaluates complexity in geometric rather than information-theo-

retic terms. Low-dimensional core dynamics are embedded in

parameters with higher geometric complexity (delta, theta,

beta, and gamma), suggesting that EEG spectral dynamics

reflect a spectrum from more integrative (alpha/aperiodic) to

more differentiated. Next, we interpret these findings in the

context of dynamical systems theory, geometric interpretations

of neural data, and theories of cognitive aging.

Geometric attractor complexity
Although there is a long history of applying state-space embed-

ding methods to EEG analysis,20,22 geometric analyses of mani-

folds have only recently been applied, and generally to the dy-

namics of the whole EEG or electrocorticography (ECoG)

spectrum.80–82 However, EEG dynamics reflect a mixture of pe-

riodic signals across a range of frequency bands in addition to

contributions from aperiodic components, sometimes referred

to as scale-free because this activity lacks a dominant temporal

frequency. Therefore, rather than representing a singular statistic

for the entire EEG, complexity scores may vary from parameter

to parameter, which informed the approach we took here. Criti-

cally, we found that alpha and aperiodic parameters are the least

complex whereas low- and high-frequency activity (on either

side of the alpha peak) showed greater geometric complexity.

This is consistent with a widely employed heuristic that a shift to-

ward higher-frequency activity is indicative of brain activation,83

as gamma-band power has been studied extensively in relation

to cognitive tasks84,85 and as a putative marker of E/I balance

in resting-state studies.86 Thus, our finding of increased

complexity in the beta and gamma bands is consistent with

these bands’ putative role in more complex cognitive tasks.

Further, that gamma complexity was the only parameter associ-

ated with thought content during the resting-state task is consis-

tent with evidence linking gamma-band activity to ruminative

thinking (negative recurring patterns of thought).87 If the resting

state represents a diverse sampling of states of mind,78,88 then

we speculate that participants with greater gamma complexity
may have been more engaged with ruminative thinking. This hy-

pothesis is supported by a shift toward lower-frequency activity

during states of mindfulness, a period of reduced ruminative

mental activity.89

Geometric cross-parameter coupling
Our use of geometric complexity enabled a novel analysis of

cross-parameter coupling based on the geometry of local dy-

namics for each EEG parameter. Whereas linear correlation

found modest relationships between nearby EEG parameters

(most notably alpha and beta), the geometric approach we uti-

lized found that alpha and aperiodic signals showed the most

robust coupling between other EEG parameters. Cross-param-

eter (typically cross-frequency coupling) is a well-established

analytical approach to task-based brain-cognition-behavior re-

lationships.2–5 A related concept of intrinsic coupling has been

advanced to examine resting or ongoing brain activity that con-

siders either band-limited phase coupling or coupling in the en-

velope (amplitude) of signal fluctuations.90 Our application of

geometric cross-parameter coupling adopts the latter approach,

embedding the signal envelope of EEG parameters into state

space. This enables us to examine potential interactions across

a range of periodic and aperiodic signals. More importantly, it al-

lowed us to examine non-linear and directed interactions be-

tween neural signals from cross-mapping methods.91

CCM was developed by Sugihara and colleagues to infer

directed-causal interactions between highly non-linear sig-

nals.23,24 Subsequently, CCM has been applied to ECoG record-

ings in non-human primates,91 multielectrode recordings in

rats,92 and to a limited extent in human EEG.93–95 Similar to Ta-

jima et al.,91 we found a high degree of bidirectional interaction

between neural signals that would be otherwise missed from

purely linear approaches. Alpha and aperiodic parameters stood

out in their ability to predict the non-linear dynamics of all other

frequency bands. In the language of Sugihara causality, this

means that all other frequency bands havemolded the dynamics

of these core bands (i.e., caused their dynamics). As a result of

being involved in more processes, alpha and aperiodic signals

ended up with the most generic and accommodating dynamics

that are the least complex. This perspective is broadly consistent

with contributions of alpha and aperiodic signals to general

arousal48,96–98 and alpha’s role as a brain-wide inhibitory signal

across task and resting states.99

Neurobiology of the dynamic core
Wehave utilized a geometric perspective to investigate a seeming

paradox of the dynamic core hypothesis: that neural activity is

simultaneously capable of integration (unification or binding

across diverse subsystems) and differentiation (access to a large

repertoire of dynamical states). By considering core dynamics

across frequency bands, we find that integrative dynamics are

embedded in more complex (differentiated) dynamics. That is,

we use geometric methods to examine temporal dynamics in a

spatial manner (‘‘time is neuronal space in the brain’’).1 This estab-

lishes an asymmetry within core dynamics such that aperiodic,

and particularly alpha, represents a geometric core of activity

that predicts all other frequency bands. This finding is highly

consistent with the hypothesis of a thalamic core of brain func-

tion,100,101 based on the prevailing view that alpha signals reflect
Patterns 5, 101025, September 13, 2024 9



Figure 7. Schematic of spectral features underlying the dynamics of

the geometric core

(A) Moment-by-moment fluctuations in arousal underlie integrative core dy-

namics via changes in the aperiodic slope and the magnitude of alpha power.

Top: Decreasing arousal and global inhibition increase the aperiodic slope and

alpha power (blue arrows). Bottom: Increasing arousal and global excitation

decrease the aperiodic slope and alpha power (red arrows).

(B) Moment-by-moment processing of content-specific, mental-state dy-

namics arises via differentiation into higher-complexity dynamics. This can

occur via shifts toward increased high-frequency power (top) or lower-fre-

quency power (bottom).

(C) Dynamics characterized by low geometric complexity are shared across

frequency bands and are therefore capable of integrating global processes

and signals (left). Dynamics characterized by high geometric complexity are

parameter specific and are therefore more differentiated, capable of repre-

senting the richness of mental experience (right).
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thalamocortical interactions.102–104Given the spatial limitations on

EEG generators, we are unable to make a strong claim about un-

derlying anatomy. In fact, it seems likely that our measures reflect

large-scale interactions across the brain, such as can occur via

non-linear broadcasting.105 Nonetheless, we speculate that the

neurobiology of the geometric core primarily reflects the neurobi-

ology of arousal (including thalamic and brainstem mechanisms),

given links between both alpha and aperiodic signals and the

arousal process.47–49,96,106 This perspective also has implications

for metabolic constraints on the dynamic core and the energetic

cost of signal differentiation and complexity.

Since the brain is incessantly active, the ongoing activity that

comprises the dynamic core must also be constrained by

energetic cost.107–110 Energetic constraints are important in

models of the dynamics of scale-free neural activity,111,112 sup-

ported by evidence that hypoxia113 and increased blood glucose

flatten the aperiodic slope.114 Therefore, aperiodic and scale-

free dynamics reflect both arousal and metabolic factors, rein-

forcing a long-established link between states of arousal and

metabolism.115–117 A geometric perspective emphasizes the

complexity of arousal,118–120 whereby heightened arousal is

linked to the increased complexity of representational geome-

try121 and where energy efficiency corresponds to reduced geo-

metric complexity,122 as occurs during sleep.123,124 The

complexity of arousal dynamics and diverse topological signa-
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tures in neural state space appear to be mediated by burst-like

processes in brainstem nuclei,120,125 consistent with a microge-

netic theory of mental process.39,40 These connections to

arousal, energetics, and metabolism suggest that the dynamic

core may be concerned with its own dynamical persistence—a

concept that Varela referred to as autopoiesis (self-making)

and that Deacon has referred to as the ‘‘teleodynamic’’ core of

the brain.126,127 On the basis of the above theoretical and empir-

ical work, we conceptually consider the ongoing dynamics of

EEG spectra as ‘‘sew-saw,’’ with the fulcrum at the alpha

band,128 and all rhythmic activity emerging from the beam of

aperiodic activity (Figure 7A). The dynamics of the aperiodic

spectral tilt or rotation reflect states of arousal,129 with alpha dy-

namics reflectingwhether attention is directed externally or inter-

nally andmodulated by thalamocortical inhibition.130,131 Specific

frequency-based parameters differentiate out of the more inte-

grative alpha/aperiodic dynamics to yield higher-complexity sig-

nals based on the nature or content of the ongoing mental state

(Figures 7B and 7C). This proposal sees EEG spectral dynamics

as the hallmarks of mental experience, whereby the dynamics of

attention and arousal generate an integrative core of activity from

which more detailed mental content differentiates. In this

manner, we are motivated by a process-developmental theory

of mental experience that considers mental states as evolving

in form (morphogenesis), more akin to embryology than tradi-

tional computation.39,40

Loss of complexity in aging
Similar to others, we have found a smaller spectral exponent

(shallower slope) in OAs12 and a reduction in alpha power,132–134

further supporting the importance of decomposing periodic and

aperiodic components for studies of EEG activity in aging.14

Despite these mean differences in alpha power, we found no dif-

ferences in alpha complexity between YAs andOAs. By contrast,

OAs showed reduced complexity of gamma, beta, and aperiodic

complexity. This suggests that the complexity of core dynamics

remains largely intact in late life and, in particular, alpha remains

a robust predictor of other frequency bands. Nonetheless, the

loss of complexity in beta, gamma, and aperiodic parameters

occurred concomitantly with an increase in geometric coupling

scores between these parameters. We interpret this finding as

a loss of high-frequency signal differentiation, that is, the aging

brain is more dynamically homogeneous and less complex but

more causally efficacious.

This interpretation is consistent with two well-established and

related theories of brain aging, namely the loss of complexity in

aging and the dedifferentiation hypotheses. The loss of

complexity in aging hypothesis proposes that a wide range of

physiologic signals show reduction in variability, richness of con-

nectivity, and the degree of hierarchical organization.51–53 In the

aging brain, loss of complexity might result from gray matter and

synapse loss, leading to decreased long-range connectiv-

ity.135–137 This process may be related to reduced specificity of

regional activation or broadening of tuning curves, generally in-

terpreted as a dedifferentiation in aging.54–57 Our finding that

OA participants showed reduced geometric complexity along

with greater geometric coupling is supportive of the signal dedif-

ferentiation hypothesis. This mirrors prior findings of exagger-

ated alpha-gamma synchronization between nodes of the
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default mode network in OAs during the resting state, interpreted

as being ‘‘stuck’’ in default mode,138 or as part of a more robust

‘‘redundancy’’ core.58 Enhanced synchronization and cross-

parameter coupling could reflect compensatory mechanisms

to sustain neural dynamics in the face of reduced signal power

or complexity.139–143 Longitudinal studies are needed to deter-

mine whether increased synchronization precedes the loss of

complexity or results from a compensatory process.

Limitations and future directions
This study has taken a novel geometric approach to analyze the

dynamics and cross-parameter coupling of EEG spectral data.

We havemade use of a publicly available dataset to demonstrate

the applicability of this approach to non-clinical human popula-

tions and normal aging. A primary limitation of this study is that

we have only examined resting-state data. Our approach does

not preclude application to task-based experimental design;

however, sufficiently long task blocks would be required to cap-

ture the EEG spectral manifold and cross-mapping interac-

tions.144 Nonetheless, that we find differences between EC

and EO conditions as well as correlations with the content or

resting-state thoughts suggests state dependence of both geo-

metric complexity and cross-parameter coupling. Our applica-

tion of the dynamic core concept complements fMRI-derived

(BOLD) dynamics that are consistent across diverse cognitive

tasks35 by examining dynamics that are consistent across EEG

parameters. For task-based applications, one could modify the

pipeline we have proposed here to identify principal dimensions

of interest based on experimental or task variables or to compare

against linear predictions.73

Our study is also limited by the fact that the resting-state

cognition questionnaire was conducted the day before the

EEG session and during an fMRI session. Differences between

EEG and fMRI experimental conditions notwithstanding, partic-

ipants might have had different thought patterns and content

during the two sessions. Our analysis was exploratory, so this

finding must be interpreted with caution. Nonetheless, it is

reasonable to consider that similar thought patterns may persist

from day to day.74–76 Future work will be needed to examine

whether such habits of mind can be detected from the geometric

shape of brain activity.

Lastly, we have not conducted an exhaustive comparison with

information-theoretic approaches that evaluate complexity

based on statistical redundancies in the data (e.g., Kolmogorov,

Lempel-Ziv, or multiscale entropy).145,146 Entropy-based ap-

proaches have also been applied to infer directed interactions

between signals and could be compared to provide an alterna-

tive information-theoretic approach to EMCM or CCM.25–28 In

addition, Information-theoretic approaches have not distin-

guished aperiodic and periodic contributions to the EEG

spectra.147–150 Thus, future work might identify differences be-

tween information-theoretic and geometric approaches to EEG

spectral data.

We were motivated to explore the geometric structure of EEG

data as part of a dynamic core hypothesis and increasing evi-

dence that variability in brain activity can be characterized by dy-

namic evolution in manifold structure. A rigorous computational

comparison of geometric and information-theoretic approaches

is outside the scope of the current study. While such a compar-
ison would undoubtedly be informative, it may be equally impor-

tant to investigate the foundational conceptual and theoretical

assumptions that guide the selection of computational models.

Our work highlights the need for more data-driven investigations

of a process-development model of cognition, whereby mental

states evolve from a global, integrative whole to differentiated

details.39,40 Combining a geometric and dynamical systems

approach to investigate this model, we might interpret the inter-

actions between neural signals as resemblances among multidi-

mensional shapes in order to characterize the diverse phenom-

enology of mental experience.151,152

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Dr. Michael Jacob (michael.jacob@ucsf.edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

All of the MATLAB code for the algorithm and analyses in this paper is publicly

available online in a Zenodo repository.153 The EEG and behavioral data uti-

lized is available from the International Neuroimaging Data-sharing Initiative

(https://fcon_1000.projects.nitrc.org/indi/retro/MPI_LEMON.html).

EEG dataset

We utilized public-access data from the ‘‘Leipzig Study for Mind-Body-

Emotion Interactions’’ (LEMON) dataset that includes 227 healthy participants,

including young adult participants (YAs, N = 153, mean = 25.1 years, median =

24 years, standard deviation = 3.1, 45 females) and older adult participants

(OAs, N = 74, mean = 67.6 years, median = 67 years, standard deviation =

4.7, 37 females).154 Participants in this study underwent a 2-day assessment

in Leipzig, Germany between the years 2013 and 2015. The study included

resting EEG, fMRI and completion of a battery of neuropsychological and

cognitive tests. Participants were free of psychiatric or neurological disorders.

For a full list of exclusion criteria, see Babayan et al.154

EEG acquisition and preprocessing

Details of the acquisition and preprocessing are available in Babayan et al.154

The resting-state EEG in the LEMON study was recorded from 216 partici-

pants and consisted of 16 resting-state blocks, each lasting 60 s. Half of the

blocks were performed with the participant’s eyes closed (EC) and the other

half with their eyes open (EO). The blocks were visually cued; the participants

were seated in front of a computer screen and were instructed to remain

awake and focus their gaze on a black cross displayed on a white background

during the EO blocks. The recording was done using a BrainAmp MR Plus

amplifier, 61 scalp electrodes, and one electrode below the right eye. The

EEG data were captured using a band-pass filter with a range of 0.015 Hz to

1 kHz, and the recordings were then converted into a digital format with a sam-

pling rate of 2,500Hz. After preprocessing, 15 participants were excluded from

the analysis due to missing participant demographic information, different

sampling rate, and poor data quality (according to Babayan et al.). The raw

EEG data were then preprocessed by downsampling to 250 Hz and applying

a 1- to 45-Hz band-pass filter. Outlier channels or data intervals were identified

by visual inspection and removed. ICA was utilized to reject eye movements,

eye blinks, and heartbeats. Here, we utilized the resting-state EEG data from

201 participants (138 YAs and 63 OAs).

EEG processing

The EEG spectra for all channels, participants, and conditions was parameter-

ized into canonical periodic oscillations and aperiodic components using the

FOOOF (Fitting Oscillations & One Over F) algorithm (Figure 1B), within a fre-

quency range of 1–45 Hz.12 We utilized the default parameters for FOOOF,

with peak width limits between 1 and 6, peak threshold of 2.0, and ‘‘fixed’’

background mode, which was applied on overlapping, 2-s sliding epochs
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with a 0.4-s slide size (80% overlap).155 The FOOOF algorithm provided good

fits for all participants and epochs, with mean R2 of 0.85 (range 0.76–0.89) for

YAs and 0.82 (range 0.72–0.89) for OAs.

The FOOOF fit also yields aperiodic parameters (slope and intercept) and re-

sidual periodic power for each epoch, which is determined by subtracting the

aperiodic fit from the original spectrum (Figure 1B). We extracted band-pass

periodic power within the frequency ranges delta (1–3Hz), theta (4–7Hz), alpha

(8–12 Hz), beta (15–25 Hz), and low gamma (30–45 Hz), based on the Interna-

tional Federation of Clinical Neurophysiology.156 For each of the canonical

EEG rhythms, an average across a set of channels that contained the highest

power was selected for further analysis ({Fz, FC1, FC2, F1, F2, AFz} for delta,

theta, and gamma, and {Pz, POz, P1, P2, CP1, CP2, CPz} for alpha and beta).

For the aperiodic exponent, an average across a set of channels that contained

the shallowest slope was selected for further analysis (F1, F3, FC1, FC3, F2,

F4, FC2, FC4).

Comparison of fixed vs. knee aperiodic fit

The complexity of attractor dynamics could be influenced by the nature of the

fit from which EEG parameters are derived. In particular, the aperiodic fit can

be determined from a bend or ‘‘knee’’ fit rather than a log-linear or ‘‘fixed’’ fit,

particularly above 50–75 Hz in intracranial EEG studies.157,158 Our selection of

fit type for EEG parameterization was largely guided by the relatively narrow

frequency range under study (1–45 Hz) and prior literature in studies of cogni-

tive aging. Adding a knee parameter did marginally improve the fit in YAs (Fig-

ure S1, FIT3 AGE F(1,199) = 30.84, p < 0.0001; yielding a mean improvement

in the R2 value of 0.02, THSD p < 0.00001) but did not improve the fit in OAs

(yielding a mean reduction in the R2 value of 0.001, THSD p = 0.055, without

FIT3 AGE3CONDITION effects F(1,199) = 0.02, p = 0.88). For generalizability

and interpretability with existing literature on aging, we selected to further

analyze the results for the ‘‘fixed’’ fit.

In the supplemental information, we conducted a methodological validation

by examining a ‘‘knee’’ fit for YAs. To ensure that any residual aperiodic activity

in the alpha signal was not influencing our measures of geometric complexity,

we examined instantaneous and laggedmeasures of collinearity between EEG

parameters before and after the knee fit. Instantaneous collinearity was deter-

mined from Pearson’s correlation coefficients and lagged correlation from

accumulated correlation asymmetry (a measure of temporal precedence be-

tween two signals, see supplemental experimental procedures). Reductions

in collinearity (Figure S2) and temporal precedence (Figure S3) after knee fit

confirmed a linearly purified alpha signal. Nonetheless, after knee fit we found

that the alpha attractor remained the least complex relative to all other periodic

parameters (Figure S3) and also predicted all other parameters the best (Fig-

ure S5). These confirmatory tests suggest that geometric complexity and pre-

dictive power are unaffected by whether residual alpha power is determined

from a fixed or knee aperiodic fit.

Attractor reconstruction

The overall intuition for our approach combines recent advances in the linear

approximation of otherwise non-linear attractor systems based on Koopman

theory,73 with cross-mapping methods to infer causal interactions between at-

tractor manifolds.23 Based on the assumption that an EEG time series is a pro-

jected measurement of higher-dimensional dynamics in the brain,16 our

approach utilizes time-delay embedding to reconstruct the EEG time series

in a lower-dimensional state space. This approach is based on Takens’ theo-

rem that a smooth attractor can be reconstructed from its one-dimensional

measurement such that it is diffeomorphic to the original attractor.

Given time series xðtÞ, its embedding in E dimensions can be represented

as: XE = ðxðtÞ; xðt � tÞ; xðt � 2tÞ;.; xðt � ðE � 1ÞtÞÞ;where t deter-

mines how much the original time series is lagged. A t value of 1 was selected

to maximize the noise-smoothing capability of principal component analysis

(PCA).159 The selection of E can be determined directly from the data.

Following Tajima et al.,91 we chose an embedding dimension at which further

increases of E would not lead to increases in the CCM score (see below). For

the EEG data, we found an average E value of 60 across all participants, pa-

rameters, and channels. Random noise (Gaussian with mean zero and stan-

dard deviation of 1) was applied to XEðtÞ bymultiplying a square randommatrix

from the left in order to reduce autocorrelation and contributions of non-statio-

narity in the delayed time series (see also Tajima et al.91). Other approaches for
12 Patterns 5, 101025, September 13, 2024
determining E were considered, such as the false-nearest-neighbor algo-

rithm,160 but this has been shown to be susceptible to large noisy data.159

After finding an appropriate E, we adopt a technique called ETD embed-

ding,73,161 which applies PCA to XEðtÞ and orders the ETD vectors by the frac-

tion of variance they contribute to the original state space, resulting in VE =

ðv1; v2; v3;.; vEÞ, where XEvi = livi for all eigenvectors v1;.; vE and eigen-

values l1;.lE . This approach to data reduction of non-linear methods has

been suggested as a way to reduce noise162 and further construct linear ap-

proximations of the system,73 although this was not further explored in this

study. Therefore, our application of PCA to delay embedding yields state

space axes that are weighted by their contribution to the overall signal, as

has been utilized by others to identify the dynamical core.35
Retained components and complexity

In accordance with the Kaiser criterion, we retained all the principal compo-

nents with eigenvalues above 1, which are the components that captured at

least as much variance as a single dimension of the original pre-ETD attrac-

tor.163 Hence, our final reconstructed attractors will be denoted as Vr = ðv1;
v2; v3; .; vrÞ;where r represents the number of principal components that

are retained. Additionally, we designate r to serve as a measure of geometric

complexity, since a larger number of retained components is needed to cap-

ture the variance in the data. This approach is intuitively similar to the term to-

pological complexity.164
Lyapunov exponent analysis and mean frequency of principal

components

We calculated the maximal Lyapunov exponent (MLE) for each ETD-recon-

structed dimension to characterize instability (chaotic nature) of their dy-

namics.53,165 MATLAB’s ‘‘lyapunovExponent’’ function with default parame-

ters was used to measure the MLE for all the retained principal components

of ETD-reconstructed attractors.166 The default variables are the normalized

frequency of 2p, embedding dimension of 2, lag of 1, minimum separation

time of
h
sampling frequency
mean frequency

i
; and expansion range of ½1; 5�. We calculated the

mean frequency of our ETD-reconstructed attractors’ dimensions to charac-

terize their periodicity using MATLAB’s standard ‘‘meanfreq’’ function.
Geometric cross-parameter coupling

We employ a variant of the CCM algorithm to assess shared dynamics and

causal influence between two dynamical systems.23 Briefly, CCM uses the

k-nearest-neighbors algorithm in Euclidean space to identify the neighbors

for all points in each attractor as well as the weight for each neighbor based

on Euclidean distance. The number of neighbors for each point is equal to

r + 1 (number of dimensions in the attractor, plus 1). For each point in an attrac-

tor VrðtÞ, the set of time indices for its neighbors (arranged in ascending order

of distance) and their corresponding weights can be represented as

ft1; t2;.; tr+1g and fw1;w2;.;wr+1g, respectively, where wi = uiP
uj
; for j =

1;.;r + 1; and ui = exp
�
� dðVr ðtÞ;Vr ðiÞÞ

dðVr ðtÞ;Vr ðt1ÞÞ
�
;where d is the Euclidean distance be-

tween the two given points. Subsequently, the algorithm uses the set of neigh-

bors from one attractor to estimate the other and vice versa. For example, we

can use attractor V1
r1
’s local neighborhood dynamics to estimate attractor V2

r2
,

where each point in the estimated attractor can be represented as

bV 2
r2
ðtÞ =

Xh
wi � V2

r2
ðtiÞ

i
;

for i = 1;.; r1 + 1 (see also Figure 4). To obtain a score for the degree of shared

dynamics and causality, CCM computes the average of all Pearson correla-

tions between the dimensions of the original manifold and its predicted mani-

fold. We use our eigen modified attractors in CCM to take a weighted average

of the correlations across all dimensions based on the eigenvalues from ETD

(see the section ‘‘attractor reconstruction’’). Traditionally, a higher score for

the estimation of bV 2 by V1 is interpreted as V2 having a causal influence on

V1: if V1 obtains a precise estimate of V2, this can be interpreted as V1 contain-

ing local dynamics about V2, implying V2 has previously impacted the dy-

namics of V1 by leaving a distinctive geometric imprint.
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Statistical approach

To apply both ETD and CCM to examine the dynamics of periodic and aperi-

odic EEG activity, we utilized the time series of epoched EEG data for delta,

theta, alpha, beta, gamma, and the aperiodic exponent (Figure 1B). This

yielded six parameter time series of 896 time points (corresponding to 2-s

sliding epochs over 6 mins in each condition; see Figure 1C). These time series

were subject to both traditional delay embedding and ETD (see Figures 1D and

1E) to determine the complexity for all parameters and all participants. We

used repeated-measures ANOVA to examine within-participant effects of

CONDITION (EO or EC) and PARAMETER (aperiodic exponent or frequency

band) as well as between participant effects of AGE (YA or OA) to examine ef-

fects of residual complexity.

We subsequently utilized EMCM and Z-scored these values prior to us-

ing repeated-measures ANOVA to examine within-participant effects of

CONDITION (EO or EC) and PARAMETER (aperiodic exponent or fre-

quency band) as well as between participant effects of AGE (YA or OA)

to examine differences in dynamical interactions.

Lastly, we applied factor analysis to the resting-state New York State Cogni-

tion Questionnaire. This yielded a distribution of factors matching the results of

the original study.78 We used multiple linear regression to examine relation-

ships between attractor complexity and the form or content of resting-state

thinking and corrected for multiple comparisons using the false discovery

rate (FDR p < 0.05).
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