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Multidimensional integrative 
analysis uncovers driver candidates 
and biomarkers in penile carcinoma
Fabio Albuquerque Marchi1, David Correa Martins2, Mateus Camargo Barros-Filho1, Hellen 
Kuasne1, Ariane Fidelis Busso Lopes3, Helena Brentani4, Jose Carlos Souza Trindade Filho5, 
Gustavo Cardoso Guimarães1, Eliney F. Faria6, Cristovam Scapulatempo-Neto7, Ademar 
Lopes1 & Silvia Regina Rogatto5,8

Molecular data generation and their combination in penile carcinomas (PeCa), a significant 
public health problem in poor and underdeveloped countries, remain virtually unexplored. An 
integrativemethodology combin ing genome-wide copy number alteration, DNA methylation, miRNA 
and mRNA expression analysis was performed in a set of 20 usual PeCa. The well-ranked 16 driver 
candidates harboring genomic alterations and regulated by a set of miRNAs, including hsa-miR-31, 
hsa-miR-34a and hsa-miR-130b, were significantly associated with over-represented pathways in 
cancer, such as immune-inflammatory system, apoptosis and cell cycle. Modules of co-expressed genes 
generated from expression matrix were associated with driver candidates and classified according to 
the over-representation of passengers, thus suggesting an alteration of the pathway dynamics during 
the carcinogenesis. This association resulted in 10 top driver candidates (AR, BIRC5, DNMT3B, ERBB4, 
FGFR1, PML, PPARG, RB1, TNFSF10 and STAT1) selected and confirmed as altered in an independent 
set of 33 PeCa samples. In addition to the potential driver genes herein described, shorter overall 
survival was associated with BIRC5 and DNMT3B overexpression (log-rank test, P = 0.026 and P = 0.002, 
respectively) highlighting its potential as novel prognostic marker for penile cancer.

Data integration has emerged as a promising mechanism for the association of events affecting biological path-
ways and tumor development1. Due to the high mutational burden of cancer genomes, the distinction between 
driver and passenger genes is a challenge2. Passenger mutations were believed to not affect cell growth and to be 
accumulated during tumor progression. However, more recently, the accumulation of deleterious passengers has 
been suggested as being associated with carcinogenesis, leading to an immune response and cellular stress, as well 
as contributing to therapy-resistance3, 4.

The identification of these biomarkers is hampered by genome complexity and limited investigation at a 
molecular level, which does not allow a broad overview of the different mechanisms involved in gene activity5. 
In order to overcome this issue, the combination of different molecular alterations in a comprehensive manner 
has been explored as a mechanism to reveal potential gene candidates associated with targeted pathways by ther-
apeutic agents6.

Recent initiatives, such as TCGA (The Cancer Genome Atlas) and ICGC (International Cancer Genome 
Consortium), rendered novel insights on cancer system biology compared with isolated events7. At the same time, 
the combination of heterogeneous datasets is particularly difficult to analyze. This encouraged initiatives to design 
a broad-spectrum of integrative analysis6. Module-based approaches have emerged as an efficient mechanism to 
reconstruct modules of co-regulated genes and their regulatory programs8. This methodology has been widely 
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used to explore various biological contexts in cancer studies9, 10. Although novel targeted-genes for cancer therapy 
have been described, there is a lack of studies generating and combining molecular data of penile carcinomas.

Penile carcinoma (PeCa) is a rare genitourinary malignancy in developed countries, with an incidence of 0.2 
per 100,000 men in the United States and Europe11, 12 and 2.9 to 6.8 cases per 100,000 in the Brazilian popula-
tion13. The risk factors described in PeCa include phimosis with chronic inflammation, poor hygiene, smoking, 
low socioeconomic status, number of sexual partners, a history of genital warts and/or other sexually transmitted 
diseases14. Approximately 40% of PeCa are HPV positive, however, the impact of high-risk HPV in the progno-
sis has not been clarified15. Recently, in a large international study applied in 25 countries, HPV positivity was 
described in 33% of PeCa (N = 1010) and 87% of precancerous lesions (N = 85)16.

Several prognostic factors have been established for PeCa patients, while regional inguinal lymph node 
involvement remains the most important predictor of an unfavorable prognosis17. Patients with locally advanced 
penile squamous cell carcinoma and lymph node metastasis are submitted to total or partial penile amputation, 
followed by primary chemotherapy or radiotherapy18. In a recent review, Burnett et al.19 presented different sur-
gical options available for penile-preservation at early stages and the need for patient monitoring. Besides having 
a curative effect even in the most advanced diseases, these surgical procedures results in a significant burden of 
social and psychological impact for the patient, highlighting the importance of identifying molecular markers for 
penile cancer therapy20.

Previously, we reported an association between genomic alterations involving losses of 3p21.1-p14.3 and 
gains of 3q25.31-q29 with reduced cancer-specific and disease-free survival16. DLC1 and PPARG losses were 
also associated with worse prognosis. By integrating methylome and gene expression data, we described a panel 
of 54 genes with inverse correlation (including TWIST1, RSOP2, SOX3, SOX17, PROM1, OTX2, HOXA3 and 
MEIS1), pointing out driver epigenetic events associated with dysregulated pathways in PeCa, such as stem cells, 
Wnt/β-catenin signaling and cell cycle21. More recently, by assessing 23 PeCa patients we identified a high sensi-
tivity and specificity of PPARG, MMP1 and MMP12 and hsa-miR-31-5p, hsa-miR-223-3p and hsa-miR-224-5p 
to distinguish penile tumors from normal tissue22. Next generation sequencing studies in penile carcinomas 
revealed the involvement of well-described genes, such as EGFR, PIK3CA, TP53 and CCND123–25 and dysregu-
lated miRNAs26, all associated with cancer signaling pathways.

In this study, we used a module-based integrative methodology to identify and contextualize driver genes 
in pathways involved in penile carcinogenesis aiming to explore genome-wide copy number alteration (CNA), 
DNA methylation, miRNA and gene expression (GE) data. To our knowledge, this is the first study with a mul-
tidimensional integrative approach using four molecular levels to identify novel driver candidates with potential 
therapeutic application.

Results
Integrative analysis to uncover candidate genes involved in PeCa development and progres-
sion. The first step of the integrative analysis resulted in 389 genes with varying score between 4.11 and 101.56, 
with expression levels regulated by at least two other molecular mechanisms. A cutoff of 48.72 was considered 
to separate 47 potential driver candidate genes used in the module-based analysis (Table 1) and 342 passenger 
candidates (Supplementary Table S1). Seventeen of 47 (36%) genes were mapped in chromosome 3, followed by 
chromosomes 2 (6/47) and 8 (6/47). The genomic alterations included 34 losses and 13 gains. Although the 47 
driver candidates presented significant copy number alterations, with frequency varying from 35% to 90% of 
cases, 17 (36%) of them presented expression levels regulated by methylation, with a predominance of hyper-
methylation (16 of 47 genes). Fifty differentially expressed miRNAs were associated with the regulation of 47 
driver candidates (Supplementary Table S2). hsa-miR-34a and hsa-miR-130b overexpression were predicted as 
regulators of the higher number of downexpressed driver candidates (17 and 16, respectively). Interestingly, 17 of 
47 driver candidates (including 26 miRNAs) showed expression levels regulated by three molecular mechanisms 
investigated in this study (i.e. copy number alteration, methylation and miRNA).

Modules identification and assignment of driver candidates. A matrix with 4,607 differentially 
expressed genes was submitted to clustering analysis using a Gibbs sampling algorithm27, which generated 418 
modules composed by 3,322 genes. Modules with less than five genes were removed, resulting in 113 mod-
ules and 2,846 genes (approximately 25 genes per module). The previously identified 47 driver candidates were 
assigned as regulators of the 113 selected modules, resulting in 6,561 driver-module associations that were 
ranked by score. The top 1% high-scoring association was selected for detailed analysis. Modules with less than 
10% of passenger genes were filtered out, resulting in 19 modules associated with 16 driver candidates (STAT1, 
BIRC5, TNFSF10, PML, FGFR1, DNMT3B, ERBB4, RB1, AR, PPARG, SOX7, BCL2, IGFBP5, PAX3, CUL3 and 
RANBP3) (Table 2). Modules 55 (RB1 and IGFBP5), 49 (FGFR1 and BIRC5) and 97 (PPARG and AR) were pre-
dicted to be regulated by two driver candidates. A median of 41 genes, including 12 passengers, was detected in 
each module. The modules 52 (13/25), 73 (7/14), 92 (6/11), 95 (7/14) and 97 (8/16) presented more than 50% 
of passenger genes. The highest score was detected in module 38 (Score = 119.19), which is regulated by STAT1 
gene (Table 2).

In silico enrichment of biological process and pathways of the driver-module associa-
tion. Nineteen modules with high scores were submitted to an enrichment analysis (GSEA, P < 0.05), 
revealing an association with 843 GO categories and 42 pathways (KEGG and Reactome). The majority of these 
modules was associated with cancer-related pathways. Biological processes associated with immune system, sig-
nal transduction, transcription factor activity, carbohydrate metabolism and cytoskeleton were the most signifi-
cant categories in modules 2, 11, 48 and 102 (P-value varying from 1.14 × 10−8 to 3.31 × 10−14) (Supplementary 
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Table S3). Pathways involved with tumor development, including homeostasis, immune system and apoptosis 
were predominantly enriched for modules 2 (10 pathways), 48 (5 pathways) and 55 (5 pathways) (Supplementary 
Table S4).

Gene Chromosome
LR 
CNA

FC Gene 
Expression FC Methylation

FC 
miRNA Score

IL17RD 3 −0.33 −2.71 1.62 8.03 101.56

BCL2 18 −0.42 −2.70 1.45 7.53 96.73

IGFBP5 2 −0.35 −3.13 1.60 6.50 92.68

FOXP1 3 −0.51 −1.84 1.70 6.98 88.17

MTUS1 8 −0.39 −1.37 1.94 6.85 84.39

SOX7 8 −0.57 −1.14 1.97 6.64 82.52

AR X −0.35 −4.84 −1.38 8.01 79.20

MMP9 20 0.31 4.25 −1.44 −3.87 79.00

GNG7 19 −0.27 −2.30 1.53 5.66 78.00

SORCS3 10 −0.54 −4.27 −1.40 7.74 75.31

POLQ 3 0.73 3.01 0 −8.58 73.95

PPARG 3 −0.36 −3.58 1.40 3.49 70.65

ERBB4 2 −0.50 −3.23 0 7.96 70.11

MMP1 11 0.57 5.44 0 −5.56 69.39

SVIL 10 −0.44 −2.05 1.42 4.59 68.01

TACC1 8 −0.43 −2.87 0 7.69 65.98

SORBS1 10 −0.26 −5.06 0 5.58 65.38

OGG1 3 −0.38 −1.29 1.21 5.03 63.29

TFRC 3 1.40 2.31 0 −6.80 63.07

RFX2 19 −0.28 −2.45 1.71 3.44 63.00

CUL3 2 −0.50 −2.16 0 7.75 62.49

ZEB1 10 −0.46 −1.81 0 8.01 61.67

PML 15 0.39 1.43 0 −8.31 60.78

BIRC5 17 0.33 3.74 0 −5.94 60.07

ITPR1 3 −0.49 −2.57 0 6.72 58.69

CTDSP1 2 −0.49 −1.41 2.00 3.34 57.94

PAX3 2 −0.41 −3.39 −1.52 5.68 56.84

DNMT3B 20 0.39 1.39 0 7.35 54.77

GSK3B 3 0.81 1.26 1.45 −6.99 54.38

RB1 13 0.97 0.92 2.12 −7.11 54.03

ARHGEF12 11 −0.63 −0.98 0 7.22 52.94

CADM1 11 −0.78 −2.27 −1.26 5.71 52.59

PPP2CB 8 −0.63 −0.86 1.40 3.68 52.50

STAT1 2 0.26 1.94 1.75 −6.53 52.39

LRIG1 3 −0.55 −1.92 0 6.25 52.31

FGFR2 10 −0.38 −1.05 1.37 3.73 52.24

TNFSF10 3 0.40 1.07 0 −7.23 52.23

ADAMTS9 3 −0.52 −1.89 −1.37 6.27 52.12

MKRN2 3 −0.45 −1.10 0 7.10 51.96

TGFBR2 3 −0.72 −1.31 0 6.62 51.88

ITGA9 3 −0.42 −2.52 0 5.70 51.80

FGFR1 8 −0.60 −3.08 0 4.91 51.54

RANBP3 19 −0.43 −0.92 1.43 3.63 51.34

MYOM2 8 −0.37 −1.82 1.48 2.74 51.26

CADM2 3 −0.42 −1.55 0 6.54 51.04

SERP1 3 0.42 1.22 1.63 −6.78 50.50

FNDC3B 3 0.63 1.20 1.34 −6.37 49.21

Table 1. Forty-seven candidate genes selected in the first step of the integrative analysis. Scores higher than 
48.72 (median among the lowest: 4.11 and highest: 101.56 scores) were used to select potential driver genes 
among the 389 candidates. Transcript levels were regulated by three molecular mechanisms in 32% (15 of 47) 
of the genes. Significant alterations considered in this step were identified in more than 20% of the patients. LR: 
Log ratio; FC: Log transformed Fold-Change; CNA: Copy Number Alteration.
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Using the Molecular Signatures Database (MSigDB), 16 driver candidates were categorized in 
cancer-associated groups, such as cytokines and growth factors, transcription factors, homeodomain proteins, 
cell differentiation markers, protein kinases, translocated cancer genes, and also oncogenes and tumor suppres-
sors. Ten (TNFSF10, FGFR1, PAX3, PML, PPARG, BCL2, ERBB4, AR, STAT1 and RB1) of 16 genes were anno-
tated in at least one of these biological functions. Moreover, PML, ERBB4, AR, PPARG, BCL2 and FGFR1 were 
identified as drug-targets (DrugBank database) (Table 2).

A protein-protein interaction (PPI) analysis revealed an association among the 16 driver candidates and 19 
modules. RB1 and AR genes presented the higher connectivity degree with modules (19 edges), followed by 
CUL3 and PPARG (18 edges). Passenger genes were over-represented in all modules and the enrichment analysis 
revealed significant gene ontology categories associated with well-connected modules, such as module 6 (17 
passengers and 12 GO categories), 48 (16 passengers and 9 GO categories) and 102 (19 passengers and 10 GO 
categories) (Fig. 1).

Cross-study validation test to identify PeCa driver candidates in other SCC histological sub-
types. Transcriptomic profile of the selected 16 driver candidates identified in the set of PeCa was compared 
to the expression profile of head and neck (460 T and 44 N), cervical (19 T and 3 N) and lung squamous cell 
carcinomas (501 T and 51 N) using data retrieved from TCGA. As shown in the online Supplementary Table S5, 
15 genes displayed significant differential expression in at least one tumor type (Limma, P < 0.05). Although not 
significant, RB1 overexpression was found in head and neck carcinomas.

Gene expression pattern of driver candidates by RT-qPCR. The cutoff of 44.54, which is the median 
value between the lowest (30.11) and highest (119.19) score, was used to rank the 22 associations, including 
16 driver candidates and 19 modules. Ten selected transcripts were evaluated by RT-qPCR in the same set of 
20 PeCa used in the arrays and in 33 cases selected for data validation. Significant overexpression of BIRC5, 
DNMT3B, PML, RB1, STAT1 and TNFSF10 genes was confirmed as altered (Fig. 2A; Supplementary Table S6). 
Downexpression of AR, PPARG, ERBB4 and FGFR1 was previously confirmed in the same set of PeCa samples 
used in this study21. Of note, BIRC5 and DNMT3B overexpression were associated with shorter overall survival 
(log-rank test, P = 0.026 and P = 0.002, respectively) (Fig. 2B). Although our set of patients includes a limited 

Regulator Module
Assignment 
Score

Total 
number 
of genes/
module

Passengers/
module

MSigDB 
categories Drug(s)

STAT1 38 119.19 28 9 (32%) TF

BIRC5 16 109.21 38 14 (37%)

TNFSF10 48 68.60 70 17 (24%) CDM, CGF

PML 85 67.12 31 10 (32%) O, TF, TCG D

FGFR1 49 66.73 39 10 (26%) O, CDM, PK, 
TCG D

BIRC5 49 65.83 39 10 (26%)

DNMT3B 1 65.24 71 22 (31%)

ERBB4 10 64.55 33 12 (36%) PK D

RB1 55 64.22 37 11 (30%) TS, TF

AR 52 63.89 27 15 (56%) TF D

PPARG 97 63.84 17 9 (53%) O, TF, TCG D

BIRC5 102 56.81 174 20 (11%)

BCL2 2 53.36 45 10 (22%) O, TCG D

BCL2 40 52.92 68 10 (15%) O, TCG D

IGFBP5 55 49.01 37 11 (30%)

SOX7 6 44.23 43 18 (42%)

AR 97 42.66 17 9 (53%) TF D

PAX3 73 42.20 15 8 (53%) O, TF, HP, 
TCG

STAT1 72 39.37 17 8 (47%) TF

BIRC5 34 37.53 29 12 (41%)

CUL3 95 31.17 14 7 (50%)

RANBP3 11 30.11 45 15 (33%)

Table 2. Driver candidates identified in the module-based analysis. Sixteen genes were assigned as regulators 
of 19 modules, with scores ranging from 30.11 to 119.19. Modules with less than 10% of passenger genes were 
removed. Eight genes were described as drug targets and 62.5% (10/16) were annotated in at least one biological 
function using MSigDB categories. Modules 49, 55 and 97 were associated with two driver candidates. D: Drug 
target; TF: Transcription Factor; CDM: Cell Differentiation Markers; CGF: Cytokines and Growth Factor; O: 
Oncogenes; TCG: Translocated Cancer Genes; PK: Protein Kinase; TS: Tumor Suppressor; HP: Homeodomain 
Protein.
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number of death events(11), the multivariate analysis confirmed DNMT3B as significantly associated with shorter 
overall survival, revealing its potential as a prognostic marker in PeCa (Cox Regression, P = 0.015 OR = 5.4 CI 
1.4-21.2) (Supplementary Table S7).

Discussion
Studies implementing and exploring integrative approaches have unveiled therapy candidates in many tumors26, 28.  
Nevertheless, molecular mechanisms underlying penile cancer remain poorly understood. Here, an integrative 
study was performed with four molecular levels to investigate penile carcinoma. AR, BIRC5, DNMT3B, ERBB4, 
FGFR1, PML, PPARG, RB1 and STAT1 genes were highlighted as potential driver candidates. In addition, 40 miR-
NAs, including hsa-miR-130b and hsa-miR-320, were associated with the regulation of these genes.

Recently, McDaniel et al.23 reported somatic variants in 60 PeCa from 43 patients using a panel with 126 
potentially actionable genes. The authors reported non-synonymous mutations covering well-described cancer 
related genes, including CDKN2A, TP53, PIK3CA, MYC and BRAF. In addition to the somatic variants, genomic 
profile was also investigated. In accordance to our data, RB1 gains and AR, FGFR1 and PPARG losses were pre-
viously reported. Ali et al.24 described genomic variants of AR and RB1 genes using a panel of 236 cancer-related 
genes in 20 PeCa. We also reported significant low levels of AR expression (P < 0.001) and four overexpressed 
miRNAs (hsa-miR-31-5p, hsa-miR-34a- 5p, hsa-miR-205-5p and hsa-miR-185-5p) predicted to regulate this 
gene22. In the present study, AR and RB1 genes were identified as potential driver candidates, harboring genomic 

Figure 1. Protein-protein interaction (PPI) network illustrating the connectivity betwen 16 driver candidates 
and 19 modules. All driver candidates showed association with at least two modules, indicating a possible 
interconnection among driver genes activity in the regulation of an important biological process related with 
cancer development. RB1 and AR genes presented the highest connectivity with modules (19 edges), followed 
by CUL3 and PPARG (18 edges). Passenger genes and significant GO categories associated with modules were 
illustrated. Modules 48 and 102 presented associations with the largest number of GO categories (12 and 10, 
respectively). Transcription levels of the driver candidates selected and confirmed by RT-qPCR were highlighted 
with black outline in the rounded rectangle.
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and epigenetic alterations that are consistent with the transcriptomic profile. Overall, these findings pointed out 
that multiple genetic events in AR and RB1 genes are involved in penile carcinogenesis.

The tumor ability to rapidly acquire new mutations is a major limitation of targeted-gene therapies. The accu-
mulation of alterations in passenger genes may alter the dynamics of cancer development and explain clinical 
events, including unconstrained tumor growth, spontaneous regression and long periods of dormancy3. Based 
on these evidences, we mapped the modules with passenger candidates and used the accumulation frequency to 
identify a driver-module association that would be more critical for penile carcinogenesis. Considering the final 
22 driver-module association list, a high frequency of passengers was detected in modules enriched for cell cycle 
and immune-inflammatory response pathways. Increased levels of BIRC5 were associated with the regulation 

Figure 2. (A) Boxplot representation of the RT-qPCR data performed in the microarray-independent set 
of samples, showing expected significant results for all assessed transcripts (Mann Whitney test *P < 0.05; 
**P < 0.01; ***P < 0.001). (B) Overall survival curves of BIRC5 and DNMT3B, demonstrating a significant 
short overall survival (log rank test P < 0.05) in patients who exhibit overexpression of these genes. Legend: 
NG: Normal glans; PeCa: Penile Carcinoma.
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of the majority of these modules (16, 34, 49 and 102). This gene plays an important role in cell proliferation and 
apoptosis inhibition29. Due to the overexpression of BIRC5 during carcinogenesis, treatment targeting this gene 
has been increasingly recognized as a promising therapy to various cancers30–32. In our study, BIRC5 gene copy 
number gain and downexpression of hsa-miR-135a and hsa-miR-320 were significantly associated with increased 
expression levels of BIRC5 suggesting that multiple events could be involved with the aberrant activity of this gene 
in penile cancer.

Although poorly investigated in PeCa, aberrant levels of miRNAs were recently reported. In 10 PeCa paired 
with adjacent non-tumor tissues, Zhang et al.33 reported 56 miRNAs and their targets associated with the mod-
ulation of MAPK, p53, Wnt, TGF-β and PI3K-Akt signaling pathways. A miRNA-based signature including 
hsa-miR-1, hsa-miR-101 and hsa-miR-204 was significantly associated with lymph node metastasis and unfa-
vorable prognosis in 24 PeCa samples34. Recently, by integrating miRNA and gene expression data (23 PeCa and 
12 non-neoplastic penile tissues-NPT), we identified 255 mRNAs specifically regulated by 68 miRNAs22. In this 
study, 34 of 40 differentially expressed miRNA were associated with tumor development or progression. A recent 
study reported hsa-miR-34a as potential therapeutic target in human cancer with an essential role in tumor cell 
response to chemotherapeutic agents35. In addition to hsa-miR-34a regulation involved in the BCL2 activity, 
we found increased methylation levels of BCL2, suggesting its importance in penile carcinogenesis. Although 
not selected to validation as a top driver candidate in PeCa, BCL2 was one of the 47 driver candidates herein 
described.

Effective anti-cancer immunotherapy strategies are hindered by the lack of knowledge of key driver mech-
anisms that contribute to tumor aggressiveness and immune system evasion. The association of multiple 
deregulated driver-pathways may allow the design of new strategies to target driver genes that promote can-
cer. A significant association of STAT1 (logFC = 1.9; Score = 119.19; Module 38) and PPARG (logFC = −3.5; 
Score = 63.84; Module 97) with immune-inflammatory pathways was detected. Furthermore, STAT1 copy number 
gain and PPARG loss were identified as a regulatory mechanism in combination with 11 differentially expressed 
miRNAs. An increased level of STAT1 has been reported as conferring cellular resistance to DNA-damaging 
agents and mediating tumor growth aggressiveness36. PPARG was recognized to play an important role in the 
immune regulation through its ability to inhibit the activity of various transcription factors, including signal 
transducers and transcription activators (STATs), leading to an anti-inflammatory phenotype37, 38. Copy number 
losses and miRNA regulation in genes associated with PPARG signaling pathway have the potential to contribute 
to an aberrant activity of the inflammatory process in PeCa. In addition, an association between driver genes and 
immune-inflammatory pathways may suggest a need for novel strategies to hit druggable genes and find new 
routes to evade the resistance acquired by tumor cells.

Despite current advances in penile carcinomas investigation, effective markers clinically useful to identify 
lymph node metastasis, which increase morbidity in consequence of unnecessary inguinal lymphadenectomy, 
are poorly described in literature39, 40. In 2008, Kroon et al.41 reported a 44-probe classifier able to identify patients 
with lymph node metastases compared with patients with no lymph nodes involvement. However, the validation 
set of cases was not able to confirm the results. In a previous study focusing on aberrant copy number alteration 
profile in PeCa, we reported a significant association between PPARG loss and lymph node metastasis in 46 
PeCa samples42. Recently, we verified that higher MMP1 expression levels revealed to be a better predictor of 
lymph node metastasis than the clinical-pathological features22. Here, MMP1 was one of the 47 driver genes 
obtained in the integrative analysis, with increased expression levels possibly associated with copy number gains 
and down-expression of its miRNAs regulators (hsa-let-7b, hsa-let-7c, hsa-miR-342-3 and hsa-miR-134).

The combination of different molecular mechanisms involved in the regulation of gene expression pointed 
out two overexpressed driver candidates, BIRC5 (Score = 109.21) and DNMT3B (Score = 65.24), associated with 
shorter overall survival (log-rank test, P = 0.026 and P = 0.002, respectively). Despite the small number of death 
event in our cohort (11 patients), a multivariate analysis confirmed that DNMT3B overexpression was signif-
icantly associated with poor overall survival (Supplementary Table S7). Increased expression levels of BIRC5, 
a member of the inhibitor of apoptosis protein (IAP), was described in a large number of malignancies43–45. 
The protein encoded by BIRC5 was reported to be involved in cell-cycle regulation and apoptosis by inhibiting 
caspase-3 and −746. Both activities are associated with tumor progression and resistance to therapy, highlighting 
BIRC5 as a potential therapeutical target47, 48.

In addition to the association of BIRC5 increased expression levels with unfavorable prognosis in PeCa, we 
identified copy number gains and downexpression of its miRNAs regulators (hsa-miR-320 and hsa-miR-135a) as 
alternative events to alter the gene expression levels and to contribute with the penile tumorigenesis.

DNMT3B copy number gains and down-expression of its miRNAs regulators (hsa-let-7b, hsa-let-7c and 
hsa-miR-145) are able to explain the increased expression levels of this gene. DNA methyltransferase 3B par-
ticipates in de novo DNA methylation and has been reported to be involved in multiples cancer types, including 
gastric and lung49, 50. Increased levels of DNMT3B and hsa-miR-145 downexpression were powerful in predicting 
shorter survival (P < 0.05) in endometrial carcinomas51. An additional evidence to highlight the importance of 
this gene was the association between DNMT3B overexpression and higher incidence of lymph node metastasis 
in oral squamous cell carcinomas52.

In conclusion, novel driver candidates associated with penile carcinogenesis were described. The multidi-
mensional analysis was able to identify high-scored genes, including STAT1 and PPARG, which have potential 
association with dysfunctional activity of the immune system. Higher connectivity with dysregulated modules 
was observed for AR gene. The well ranked BIRC5 and DNMT3B were significantly associated with unfavorable 
prognosis in PeCa patients.
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Methods
Patients. Fifty three fresh-frozen usual penile squamous cell carcinomas obtained from untreated patients 
who underwent tumor resection at A.C.Camargo Cancer Center (São Paulo, Brazil), Barretos Cancer Hospital 
(Barretos, SP, Brazil) and Medical School, UNESP (Botucatu, SP, Brazil) were included in this study. Twenty-
one normal glans were obtained from autopsies. Samples were submitted to cellular macrodissection and his-
tology confirmation. PeCa samples composed of at least 80% of malignant cells were further processed. Written 
informed consent was obtained from all patients or relatives. This study was approved by The Human Research 
Ethics Committees of the Institutions (Protocols #1230/09: A.C. Camargo Cancer Center; #363–2010: Barretos 
Cancer Hospital, and #501.229/2013: Faculty of Medicine, Botucatu, SP, Brazil). Twenty PeCa samples were eval-
uated for genome-wide copy number alteration, DNA methylation, gene expression and miRNA screening. HPV 
status was established for all PeCa using the Linear Array HPV Test Genotyping (Roche Molecular Diagnostics). 
Fifteen of 53 patients were positive for high-risk HPV (16 or 18) infection. Patients were advised of the proce-
dures and provided written informed consent. The Human Research Ethics Committees of A.C.Camargo Cancer 
Center (#1230/2009), Barretos Cancer Hospital (#363/2010) and Medical School-UNESP (#501.229/2013) 
approved this study. Clinical data is summarized in Table 3.

Data acquisition and processing. The data used for integrative analysis were obtained from previous 
studies of our group14, 22, 42. Genome-wide copy number alteration analysis was performed using Agilent Human 
4 × 44 K CGH Microarrays (Agilent Technologies)42. Aberrant regions were identified using Fast Adaptive States 
Segmentation Technique 2 (FASST2) algorithm, considering significance threshold of 1 × 10−6, three consecutive 
altered probes per segment and the average log2 ratio of +0.15 for copy gains and −0.15 for losses. Alterations 
detected in at least 20% of the samples were selected for the integrative analysis. Datasets are available in the Gene 
Expression Omnibus (GEO) database (GSE50134).

Global gene expression data were obtained using the Whole Human Genome 4 × 44 K microarray platform 
(Agilent Technologies) as described by Kuasne et al.21. Data processing, quality control filter and normalization 
were obtained with Agilent Feature Extraction Software (v. 10.1.1.1) and an in-house pipeline. Genes with a mean 
log2 signal ratio (Cy3/Cy5) of ≥0.6 and ≤−0.6 within a 95% confidence interval (CI) were considered differen-
tially expressed. Datasets are available in Gene Expression Omnibus (GEO) database (GSE57955).

Genome-wide methylation was performed using the Agilent 244 K Human DNA Methylation Microarray 
(Agilent Technologies)14. Workbench Standard (Ed. 5.0.14, Agilent Technologies) software and Limma 3.30.6 

Variable

Dependent 
group Independent group

N (%) N (%)

Number 20 33

Age (years)

Median (interquartile 
range) 54.5 (46–74) 55 (45–71)

Follow-up (months)

Median (interquartile 
range) 8.5 (6–14) 12.7 (8–29)

Histological grade

  I-II 12 (60%) 23 (79.3%)

  III 8 (40%) 6 (20.7%)

  ND 0 4

HPV infection

  HPV-Positive# 5 (25%) 12 (36.4%)

  HPV-Negative 15 (75%) 21 (63.6%)

Lymph node metastasis

  Presence 9 (45.0%) 11 (33.3%)

  Absence 11 (55.0%) 22 (66.7%)

Perineural Invasion

  Presence 7 (35%) 9 (27.3%)

  Absence 13 (65%) 24 (72.7%)

Vascular Invasion

  Presence 3 (15%) 4 (12.1%)

  Absence 17 (85%) 29 (87.9%)

T Stage

  1–2 10 (50.0%) 24 (72.7%)

  3–4 10 (50.0%) 9 (27.3%)

Table 3. Clinical and histopathological features of PeCa cases (N = 53). Patients were divided into two groups – 
dependent (N = 20) and independent (N = 33), according to the microarray analysis.
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method53 algorithm were used for data normalization (Lowess) and statistical analyses, respectively. Significant 
genes were selected considering P < 0.05.

Non-coding RNA (miRNA) analysis were conducted using TaqMan Human MicroRNA Assay System Set 
v2.0 (Applied Biosystems), as previously described22. Pfaffl model was used for data normalization54, considering 
MammU6, RNU44 and RNU48 as reference. Statistical analysis considered a two-sample t-test (P < 0.01 and 
FDR < 0.05) to select differentially miRNA expression. Target transcripts of differentially expressed miRNAs were 
predicted by at least six algorithms using miRWalk 2.0 software (http://www.umm.uni-heidelberg.de/apps/zmf/
mirwalk/).

All experiments were performed in accordance to relevant guidelines and following manufacturer’s recom-
mendations. Details of the labeling, hybridization and normalization of the experiments were described in the 
Supplemental Methods S1.

Integrative Analysis. The integrative analysis was performed in four major steps: (1) cross-platforms com-
bination to select the most representative candidates; (2) module-based analysis, partitioning the expression 
matrix in significant modules of co-expressed genes; (3) driver-module assignment, to identify regulatory mod-
ules and their condition-specific regulator and (4) enrichment analysis, to select top driver-module association. 
The integrative strategy was illustrated in Supplementary Fig. 1.

Differentially expressed genes (GE) were compared with genome-wide copy number alteration (CNA), meth-
ylation (Me) and miRNA (Mi) data to identify genes whose expression could be explained by aberrant genomic 
alterations and/or epigenetic events. The most representative candidates for module-based analysis were selected 
using the following formula:

∑= αβ
=

Score CNA Me Mi Ge
k

n

k k k k
1

with α as a bonus to genes identified in at least 20% of the patients and β the bonus for event agreement. For each 
event concordant with the gene expression profile, an added bonus was assigned (2 for two events agreement, 3 
for three events and 4 if gene expression is in accordance with the other three molecular levels). For example, one 
overexpressed gene mapped in an amplified region, having promoter hypomethylated and regulated by a down-
expressed miRNA, has bonus 4. We considered a median value between the lowest and highest scores as cutoff to 
select potential driver candidates for module-based analysis. Genes with score below the cutoff were defined as 
potential passenger genes.

In order to iteratively infer modules where genes systematically cluster together we used a Gibbs sampling 
procedure27. Modules with less than 5 genes were filtered out. The LeMoNe algorithm55 was used to infer a set 
of regulatory programs for all selected modules assigning the set of candidate genes, previously identified as the 
modules’ potential regulators. Using regression tree, genes were associated to each node, composed by a set of 
genes having similar mean and standard deviation. A score was computed to each gene-module association and 
the top 1% high-scoring genes were investigated.

The modules associated with the top candidates were mapped with passenger candidates to ensure the iden-
tification of modules with accumulation of secondary alterations and possibly involved in penile carcinogenesis. 
Modules with more than 10% of passenger candidates were selected for an enrichment analysis using Gene Set 
Enrichment Analysis (GSEA) algorithm considering GO (geneontology.org/), KEGG (http://www.genome.jp/
kegg/) and Reactome (http://www.reactome.org/) databases. The statistical significance of module enrichment 
was defined with P < 0.05. The median value between the highest and lowest score was the cutoff to select the top 
potential driver candidates for expression levels validation using RT-qPCR.

Cross-validation of top driver candidates and comparison with other squamous cell carcinoma 
(SCC) available in TCGA. RNA-seq data of 1,423 squamous cell carcinomas samples (1,325 T and 98 NT) 
were retrieved from TCGA (http://tcga-data.nci.nih.gov/tcga/). A total of 397 samples were excluded for having 
indeterminate or non-squamous cell histology and Human Papilloma Virus (HPV) positivity. The final set of 
samples was composed by 1,026 patients (928 SCC HPV- and 98 NT), which included head and neck (415 T and 
44 NT), cervical (12 T and 3 NT) and lung squamous cell carcinomas (501 T and 51 NT). The results obtained 
with the TCGA data were compared with the driver candidates selected in PeCa. Samples were obtained from 
“level 3”, quantified at the gene levels using RSEM (RNA-Seq by Expectation Maximization), and normalized with 
upper-quartile.

Gene expression analysis by RT-qPCR. A total of 53 PeCa (33 used in the array assays) and 21 NG (18 
array independent) were used for RT-qPCR (following the MIQE guideline recommendations). As previously 
reported56, GUSB was selected as reference. Relative quantification of the expression levels was calculated accord-
ing to Pfaffl method54. Non-parametric Mann-Whitney test was applied to compare tumors with NG samples 
according to the clinicopathological features.

Human protein-protein interaction and enrichment analysis. The protein-protein interaction was 
obtained from I2D57 that contains 71,694 predicted interactions for human identified with high-throughput data 
analysis. NAViGaTOR software package (ophid.utoronto.ca/navigator) was used for visualizing and analyzing 
protein-protein interaction networks58. Molecular Signatures Database (MSigDB) (software.broadinstitute.org/
gsea/msigdb) and DrugBank (http://www.drugbank.ca) were used to identify association among significant 
modules with specific gene families (cytokines and growth factors, transcription factors, oncogenes, tumor sup-
pressors, homeodomain proteins, cell differentiation markers and protein kinases) and drug-target genes, respec-
tively. Databases were consulted in October 2016.

http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
http://www.umm.uni-heidelberg.de/apps/zmf/mirwalk/
http://S1
http://1
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.reactome.org/
http://www.drugbank.ca
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Statistical analysis. Statistical analysis was performed using GraphPad Prism5 and SPSS version 21.0 soft-
ware, adopting Two-Tailed Test and P < 0.05 value as significant. Overall survival analysis was performed using 
Kaplan-Meier and log rank test. High and low transcript levels in the tumor samples were defined as superior and 
inferior outliers compared with NG expression levels. Cross-validation of top driver candidates and comparison 
with other squamous cell carcinomas (SCC) available in TCGA were conducted using R 3.3.2 software59 and 
Limma 3.30.6 method (two-tailed P < 0.05 and FDR < 0.05)53.

References
 1. Zhang, S. et al. Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res. 40, 

9379–91 (2012).
 2. Vogelstein, B. et al. Cancer genome landscapes. Science. 29, 1546–58 (2013).
 3. McFarland, C. D., Korolev, K. S., Kryukov, G. V., Sunyaev, S. R. & Mirnya, L. A. Impact of deleterious passenger mutations on cancer 

progression. Proc Natl Acad Sci USA 110, 2910–2915 (2013).
 4. Budzinska, M. A. et al. Accumulation of Deleterious Passenger Mutations Is Associated with the Progression of Hepatocellular 

Carcinoma. PLoS ONE. 11, e0162586 (2016).
 5. Kristensen, V. N. et al. Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer. 14, 299–313 (2014).
 6. Ritchie, M. D. et al. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 16, 85–97 (2015).
 7. Beck, A. H. Open access to large scale datasets is needed to translate knowledge of cancer heterogeneity into better patient outcomes. 

PLoS Med. 12, 1001794 (2015).
 8. Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. 

Nat Genet. 34, 166–76 (2003).
 9. Bonnet, E., Calzone, L. & Michoel, T. Integrative multi-omics module network inference with Lemon-Tree. PLoS Comput Biol. 11, 

e1003983 (2015).
 10. Madhamshettiwar, P. B., Maetschke, S. R., Davis, M. J. & Ragan, M. A. RMaNI: Regulatory Module Network Inference framework. 

BMC Bioinformatics. 14, S14 (2013).
 11. Barnholtz-Sloan, J. S., Maldonado, J. L., Pow-sang, J. & Giuliano, A. R. Incidence trends in primary malignant penile cancer. Urol 

Oncol. 25, 361–367 (2007).
 12. Hakenberg, O. W. et al. EAU guidelines on penile cancer: 2014 update. Eur Urol. 67, 142–150 (2015).
 13. Favorito, L. A. et al. Epidemiologic study on penile cancer in Brazil. Int Braz J Urol. 34, 587–91 (2008).
 14. Kuasne, H., Marchi, F. A. & Rogatto, S. R. & de Syllos Cólus, I. M. Epigenetic mechanisms in penile carcinoma. Int J Mol Sci. 14, 

10791–808 (2013).
 15. IARC. Human papillomaviruses. IARC Monogr Eval Carcinog Risks Hum. 90, 1–636 (2007).
 16. Alemany, L. et al. Role of Human Papillomavirus in Penile Carcinomas Worldwide. European Urology. 69, 953–961 (2016).
 17. da Costa, W. H. et al. Prognostic factors in patients with penile carcinoma and inguinal lymph node metastasis. Int J Urol. 22, 669–73 

(2015).
 18. Chiang, P. H., Chen, C. H. & Shen, Y. C. Intraarterial chemotherapy as the first-line therapy in penile cancer. British Journal of 

Cancer. 111, 1089–1094 (2014).
 19. Burnett, A. L. Penile preserving and reconstructive surgery in the management of penile cancer. Nat Rev Urol. 13, 249–57 (2016).
 20. Guimarães, G. C., Rocha, R. M., Zequi, S. C., Cunha, I. W. & Soares, F. A. Penile Cancer: Epidemiology and Treatment. Curr Oncol 

Rep. 13, 231 (2011).
 21. Kuasne, H. et al. Genome-wide methylation and transcriptome analysis in penile carcinoma: uncovering new molecular markers. 

Clin Epigenetics. 7, 46 (2015).
 22. Kuasne, H. et al. 2017. Integrative miRNA and mRNA analysis in penile carcinomas reveals markers and pathways with potential 

clinical impact. Oncotarget (2017).
 23. McDaniel, A. S. et al. Genomic Profiling of Penile Squamous Cell Carcinoma Reveals New Opportunities for Targeted Therapy. 

Cancer Res. 75, 5219–27 (2015).
 24. Ali, S. M. et al. Comprehensive Genomic Profiling of Advanced Penile Carcinoma Suggests a High Frequency of Clinically Relevant 

Genomic Alterations. Oncologist. 21, 33–9 (2016).
 25. Feber, A. et al. CSN1 Somatic Mutations in Penile Squamous Cell Carcinoma. Cancer Res. 76, 4720–7 (2016).
 26. Zhang, W., Edwards, A., Fang, Z., Flemington, E. K. & Zhang, K. Integrative Genomics and Transcriptomics Analysis Reveals 

Potential Mechanisms for Favorable Prognosis of Patients with HPV-Positive Head and Neck Carcinomas. Sci Rep. 6, 24927 (2016).
 27. Joshi, A., Van de Peer, Y. & Michoel, T. Analysis of a Gibbs sampler method for model-based clustering of gene expression data. 

Bioinformatics. 24, 176–83 (2008).
 28. Yang, C. et al. Integrative analysis of microRNA and mRNA expression profiles in non-small-cell lung cancer. Cancer Gene Ther. 23, 

90–7 (2016).
 29. Yamamoto, H., Ngan, C. Y. & Monden, M. Cancer cells survive with survivin. Cancer Sci. 99, 1709–14 (2008).
 30. Shepelev, M. V. et al. hTERT and BIRC5 gene promoters for cancer gene therapy: A comparative study. Oncol Lett. 12, 1204–1210 

(2016).
 31. Wang, S. et al. Nanoparticle-mediated inhibition of survivin to overcome drug resistance in cancer therapy. J Control Release. 240, 

454–464 (2016).
 32. de Jong, Y. et al. Targeting survivin as a potential new treatment for chondrosarcoma of bone. Oncogenesis. 5, e22 (2016).
 33. Zhang, L. et al. MicroRNA Expression Profile in Penile Cancer Revealed by Next-Generation Small RNA Sequencing. PLoS ONE 10, 

e0131336 (2015).
 34. Hartz, J. M. et al. Integrated Loss of miR-1/miR-101/miR-204 Discriminates Metastatic from Nonmetastatic Penile Carcinomas and 

Can Predict Patient Outcome. J Urol. 196, 570–8 (2016).
 35. Li, X. J., Ren, Z. J. & Tang, J. H. MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death and Disease. 5, e1327 

(2014).
 36. Khodarev, N. N., Roizman, B. & Weichselbaum, R. R. Molecular Pathways: Interferon/Stat1 Pathway: Role in the Tumor Resistance 

to Genotoxic Stress and Aggressive Growth. Clin Can Res. 18, 3015–3021 (2012).
 37. Martin, H. Role of PPAR-gamma in inflammation. Prospects for therapeutic intervention by food components. Mutat Res. 690, 

57–63 (2010).
 38. Wohlfert, E. A., Nichols, F. C., Nevius, E. & Clark, R. B. Peroxisome proliferator-activated receptor gamma (PPARgamma) and 

immunoregulation: enhancement of regulatory T cells through PPARgamma-dependent and -independent mechanisms. J Immunol. 
178, 4129–35 (2007).

 39. Protzel, C. et al. Lymphadenectomy in the surgical management of penile cancer. Eur Urol. 55, 1075–88 (2009).
 40. Sonpavde, G. et al. Penile cancer: current therapy and future directions. Ann Oncol. 24, 1179–1189 (2013).
 41. Kroon, B. K. et al. Microarray gene-expression profiling to predict lymph node metastasis in penile carcinoma. BJU Int. 102, 510–5 

(2008).
 42. Busso-Lopes, A. F. et al. Genomic profiling of human penile carcinoma predicts worse prognosis and survival. Cancer Prev Res. 8, 

149–56 (2015).



www.nature.com/scientificreports/

1 1SCIENtIFIC REPORTS | 7: 6707 | DOI:10.1038/s41598-017-06659-1

 43. Ambrosini, G., Adida, C. & Altieri, D. C. A novel anti-apoptosis gene, Survivin, expressed in cancer and lymphoma. Nat Med. 3, 
917–21 (1997).

 44. Porebska, I., Sobańska, E., Kosacka, M. & Jankowska, R. Apoptotic regulators: P53 and survivin expression in non-small cell lung 
cancer. Cancer Genomics Proteomics. 7, 331–5 (2010).

 45. Cao, L. et al. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. BMC 
Cancer. 13, 82 (2013).

 46. Shin, S. et al. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry. 40, 1117–23 (2001).
 47. Brun, S. N. et al. Survivin as a therapeutic target in Sonic hedgehog-driven medulloblastoma. Oncogene. 34, 3770–9 (2015).
 48. Garg, H., Suri, P., Gupta, J. C., Talwar, G. P. & Dubey, S. Survivin: a unique target for tumor therapy. Cancer Cell Int. 16, 49 (2016).
 49. Su, X. et al. Expression pattern and clinical significance of DNA methyltransferase 3B variants in gastric carcinoma. Oncol Rep. 23, 

819–826 (2010).
 50. Teneng, I. et al. Global identification of genes targeted by DNMT3b for epigenetic silencing in lung cancer. Oncogene. 34, 621–30 

(2015).
 51. Zhang, X. et al. Down-regulation of miR-145 and miR-143 might be associated with DNA methyltransferase 3B overexpression and 

worse prognosis in endometrioid carcinomas. Hum Pathol. 44, 2571–80 (2013).
 52. Chen, W. C., Chen, M. F. & Lin, P. Y. Significance of DNMT3b in Oral Cancer. PLoS ONE 9, e89956 (2014).
 53. Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 

43, e47 (2015).
 54. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).
 55. Michoel, T. et al. Validating module networks learning algorithms using simulated data. BMC Bioinformatics. 8, S5 (2007).
 56. Muñoz, J. J. et al. Down-Regulation of SLC8A1 as a Putative Apoptosis Evasion Mechanism by Modulation of Calcium Levels in 

Penile Carcinoma. J Urol 194, 245–51 (2015).
 57. Brown, K. R. & Jurisica, I. Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biol. 

8, R95 (2007).
 58. Brown, K. R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics. 25, 3327–9 (2009).
 59. R Development Core Team. R: A language and environment for statistical computing. http://www.R-project.org (2016).

Acknowledgements
The authors would like to thank the Nucleic Acid Bank of A.C. Camargo Cancer Center, São Paulo Tumor Bank of 
Barretos Cancer Hospital, Barretos, and the Urology Department, UNESP, Botucatu, São Paulo, Brazil for sample 
collection and processing. The study was supported by São Paulo Research Foundation (FAPESP 2009/52088-3 
and 2010/51601-6) and by the National Council for Scientific and Technological Development (CNPq).

Author Contributions
F.A.M. and S.R.R. conceived and designed the project. F.A.M., H.B. and D.C.M.J. designed the data analysis. 
F.A.M., H.K., A.F.B.L. and M.C.B.F. performed and analyzed the data. F.A.M. and S.R.R. interpreted the results 
and drafted the manuscript. J.C.S.T.F., E.F.F., G.C.C., C.S.N. and A.L. contributed to the sample collection and 
histopathological revision. All authors revised and approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at doi:10.1038/s41598-017-06659-1
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://www.R-project.org
http://dx.doi.org/10.1038/s41598-017-06659-1
http://creativecommons.org/licenses/by/4.0/

	Multidimensional integrative analysis uncovers driver candidates and biomarkers in penile carcinoma

	Results

	Integrative analysis to uncover candidate genes involved in PeCa development and progression. 
	Modules identification and assignment of driver candidates. 
	In silico enrichment of biological process and pathways of the driver-module association. 
	Cross-study validation test to identify PeCa driver candidates in other SCC histological subtypes. 
	Gene expression pattern of driver candidates by RT-qPCR. 

	Discussion

	Methods

	Patients. 
	Data acquisition and processing. 
	Integrative Analysis. 
	Cross-validation of top driver candidates and comparison with other squamous cell carcinoma (SCC) available in TCGA. 
	Gene expression analysis by RT-qPCR. 
	Human protein-protein interaction and enrichment analysis. 
	Statistical analysis. 

	Acknowledgements

	Figure 1 Protein-protein interaction (PPI) network illustrating the connectivity betwen 16 driver candidates and 19 modules.
	Figure 2 (A) Boxplot representation of the RT-qPCR data performed in the microarray-independent set of samples, showing expected significant results for all assessed transcripts (Mann Whitney test *P < 0.
	Table 1 Forty-seven candidate genes selected in the first step of the integrative analysis.
	Table 2 Driver candidates identified in the module-based analysis.
	Table 3 Clinical and histopathological features of PeCa cases (N = 53).


