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ABSTRACT: We report the first chemical syntheses of
both (−)-majucin and (−)-jiadifenoxolane A via 10 net
oxidations from the ubiquitous terpene (+)-cedrol.
Additionally, this approach allows for access to other
majucin-type sesquiterpenes, like (−)-jiadifenolide,
(−)-jiadifenin, and (−)-(1R,10S)-2-oxo-3,4-dehydroxyneo-
majucin (ODNM) along the synthetic pathway. Site-
selective aliphatic C(sp3)-H bond oxidation reactions serve
as the cornerstone of this work which offers access to
highly oxidized natural products from an abundant and
renewable terpene feedstock.

Exclusive to the Illicium species of plants, seco-prezizaane
sesquiterpenes are noted for their highly oxidized polycyclic

architectures. Within this family, over 20 members possess the
majucin core, including the eponymous member (−)-majucin
(1), first isolated in 1988 from pericarps of the Chinese flowering
plant Illicium majus (Figure 1A).1,2 Majucinoids are among the
most highly oxidized members of the seco-prezizaane family, and
1 in particular features a complex scaffold containing both a
bridging δ-lactone and a fused γ-lactone, along with four
stereodefined hydroxyl groups in close proximity.2 These
attributes loom as challenges to chemical synthesis efforts, and
indeed, majucin stands as one of the few flagship Illicium
sesquiterpenes yet to succumb to chemical synthesis. Work
toward the synthesis of other majucin-type natural products,
however, has been prolific. Jiadifenin (4), the first member of this
subtype to fall to synthetic efforts, has been prepared on multiple
occasions.3 (−)-(1R,10S)-2-Oxo-3,4-dehydroxyneomajucin
(ODNM, 3) serves as the direct precursor to 4 in the
aforementioned syntheses and thus has also been synthesized.3

By far though, (−)-jiadifenolide (5) has received the most
attention from the synthetic community with a multitude of
impressive formal and total syntheses reported.4,5 No doubt such
interest has arisen from the long-known GABA-modulatory
properties of members of this Illicium class and especially the
ability of 2−5 (and derivatives) to promote neurotrophic
phenotypes in both cultured rat cortical neurons and, more
recently, human induced pluripotent stem cells.3a,d,5k,6−8 To the
best of our knowledge, the neurotrophic activity of 1 has not
been reported.
As part of our continued efforts directed toward a unifying

synthesis of all Illicium sesquiterpenes using C(sp3)−H
activation strategies,9 we recently disclosed an oxidative
approach to the simpler family member (+)-pseudoanisatin
(6) from the abundant sesquiterpene (+)-cedrol (Figure 1B).10

During our work, iron- and radical-mediated oxidations of the
cedrol C-4 methine (shown in green) and C-14 methyl positions
(shown in blue) respectively were employed as key steps. In
extending this strategy to the more highly oxidized majucinoids,
such as 1 and 2, it is also necessary to oxidize all the C−H bonds
of the C-12 methyl group and the indicated C−H bond of the C-
10 methylene (both shown in magenta, seco-prezizaane
numbering). Moreover, the low yields encountered in previous
studies using acid-directed Fe-catalysis prompted us to seek
alternative solutions to the C-4 methine oxidation problem.
Herein, we present our studies toward realizing these−and
other−goals which have culminated in the first chemical
syntheses of (−)-majucin (1) and (−)-jiadifenoxolane A (2)
via 10 net oxidations from (+)-cedrol. Moreover, formal
syntheses of (−)-ODNM (3), (−)-jiadifenin (4), and
(−)-jiadifenolide (5) have also been accomplished along the way.
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Figure 1. (A) Complex majucinoids from Illicium sp. (B) An oxidative
strategy for the construction of Illicium sesquiterpenes from the
feedstock chemical (+)-cedrol.
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We began our synthetic studies in analogy to previous work on
6, but found that the strained THF ring formed in the initial
Suaŕez oxidation (I2, PhI(OAc)2, hν) could be conveniently
converted to acetoxy cedrene (7) simply by adding acetic
anhydride and phosphoric acid directly to the reaction mixture
(Scheme 1). This procedure delivered 7 in 67% yield and on 120
mmol scale.11 Diverging from past work, in which an olefin
oxidative cleavage reaction was used to generate a keto acid,10 we
found that 7 could be converted into ketone 8 directly via a
hydroboration/double oxidation sequence (BH3·THF/CrO3·
2pyr.). The use of Collin’s reagent avoided hydrolysis of the
acetate protecting group as compared to many other oxidants
examined. Ketone 8 was then easily reduced (NaBH4) from the
convex face to give alcohol 9 in 72% yield over 2 steps as
essentially a single diastereomer. Taking inspiration from the
work of Waegell on simpler cedrene scaffolds,12 we explored the
use of Suaŕez conditions to oxidize the C-4 methine position at
this stage. Owing to the very close spatial proximity of the
secondary hydroxyl to the ring junction C-4 methine, an
exceptionally high yielding (93%) C−H functionalization ensued
(I2, PhI(OAc)2, hν). In contrast to our previous work employing
iron complexes to oxidize this position, the presence of

preexisting C-14 oxidation had little impact on this trans-
formation. Next, prolonged stirring with in situ generated RuO4
(RuCl3·xH2O, KBrO3) accomplished a remarkably clean triple
oxidation reaction, cleaving the C-6/C-11 bond and delivering
ketone lactone 11.12,13 While not optimized, we were also able to
isolate quadruple oxidation product 12wherein an additional C−
H bond has been hydroxylated.14

With the construction of the tricyclic propellane-like core
accomplished in five steps, we were poised to address the crucial
majucin-type γ-lactone which called for the exhaustive oxidation
of the cedrol C-12 methyl group (vide supra). In a single,
remarkable step, we found that a quadruple oxidation of allC−H
bonds α to the ketone group in 13was achieved under anhydrous
Riley oxidation conditions (SeO2, 4 Å MS, Δ).15 In order to
facilitate handling of this compound, it proved essential to
methylate the intermediate acid (K2CO3, Me2SO4) prior to
workup, thus delivering unsaturated keto ester 13. Upon
treatment of 13 with L-selectride, a diastereomeric mixture of
allylic alcohols was obtained via 1,2-reduction of the ketone
moiety. When the reaction was quenched with basic methanol,
both intermediates converged to enol lactone 14, presumably via
an acetate cleavage/translactonization/alkene isomerization

Scheme 1. Synthesis of Complex Majucinoidsa

aReagents and conditions: (a) PhI(OAc)2 (1.1 equiv), I2 (0.4 equiv), cyclohexane, hν (visible), 1.5 h then Ac2O (10.0 equiv), H3PO4 (2.0 equiv),
67%; (b) BH3·THF (1.3 equiv), THF, 1.5 h then CrO3·2pyr (25.0 equiv), DCM, 30 min; (c) NaBH4 (1.5 equiv), MeOH, 30 min, 72% over two steps;
(d) PhI(OAc)2 (3.0 equiv), I2 (1.0 equiv), DCM, hν (visible), 0 °C, 1.5 h, 93%; (e) KBrO3 (2 × 5.0 equiv), RuCl3·xH2O (3 × 0.03 equiv), MeCN/
CCl4/H2O (2:2:3), 75 °C, 3 d, 72% of 11, 7% of 12; (f) SeO2 (3.5 equiv), 4 Å MS (1.0 mass equiv), diglyme, 130 °C, 4 h then K2CO3 (3.0 equiv),
Me2SO4 (1.5 equiv), 1 h; (g) L-selectride (1.2 equiv), THF, −78 °C, 30 min then KOH (10.0 equiv), MeOH, 0 °C, 30 min, 50% over two steps; (h)
DMDO (1.5 equiv), 12 h; (i) PhCF3, 170 °C, 2 h; (j) Me4NBH(OAc)3 (7.0 equiv), MeCN/AcOH (3:1), − 40 °C, 16 h, 64% over three steps; (k)
TsOH·H2O (2.2 equiv), n-BuOH, 150 °C, 26 h, 71%; (l) LHMDS (3.0 equiv), MoOPH (5.0 equiv), THF, −78 → 0 °C, 2.5 h, 65%; (m)
[Ru2(PEt3)6(OTf)3](OTf) (0.1 equiv), NMM (0.2 equiv), TFE/dioxane (1:1), 120 °C, 18 h then i-PrOH (3.0 equiv), 120 °C, 5 h, 75%; (n) OsO4·
TMEDA (1.0 equiv), DCM, −78 → 0 °C, 2 h then NaHSO3 (10.0 equiv), H2O, 16 h, 61%; (o) MsCl (5.0 equiv), pyr. (10.0 equiv), DCE, rt →80
°C, 15 h, 92%. DMDO = dimethyldioxirane, LHMDS = lithium bis(trimethylsilyl)amide, MoOPH = oxodiperoxymolybdenum(pyridine)-
(hexamethylphosphoric triamide).
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cascade process. Overall 14, whose rigid tetracyclic skeleton was
confirmed by X-ray crystallographic analysis, was obtained in
50% yield from 11 without intermediate silica-gel purification.
In order to rearrange the 5,5-fused ring system found in

tetracycle 14 into the majucinoid 5,6-fused core typified by 1−5,
we envisioned employing an α-ketol rearrangement. However,
unlike our previous work on 6, this system required a
transannular bond migration event (Scheme 2). Experimentally,

we found that enol lactone 14 could be oxidized to a single,
somewhat unstable, α-hydroxyketone diastereomer (see 19)
using DMDO. A solvent swap from acetone to trifluorotoluene
followed by heating to 170 °C elicited clean bond reorganization
to the majucin core. Precedented directed reduction (Me4NBH-
(OAc)3) of the α-ketol group then furnished known tetracyclic
diol 15 in 76% yield over 3 steps, without the need for
intermediate silica-gel purification, and as essentially a single
diastereomer. The structure of 15, which completes a formal
synthesis of 5,3d,4,16 was secured by X-ray crystallographic
analysis.
Exploration into the diastereoselective oxidation of the enol

lactone 14 revealed that while DMDO gave α-ketol 19
selectively, formation of the epimeric α-ketol 20 could be
accomplished with SeO2 (Scheme 2).17 Reduction of 20 gave
diol 21 and X-ray crystallographic analysis unambiguously
assigned its stereochemistry. Although the rearrangement of α-
ketol 19 was facile, 20 did not rearrange under a variety of
conditions.18

To gain access to 1 and 2, we first converted the jiadifenolide-
type γ-lactone ring system into the δ-lactone system via simple
treatment with acid (TsOH/n-BuOH, Δ) which unveiled
trisubstituted alkene-containing 16 in 71% yield (Scheme 1).
Theodorakis and co-workers have demonstrated the synthesis of
(−)-ODNM (3) and (−)-jiadifenin (4) in two and three steps,
respectively, from 16.3d,16 Direct α-hydroxylation of δ-lactone 16
from the convex face had been reported using the Davis
oxaziridine, although reagent byproduct removal proved
problematic.3d Seeking an alternative method, we found that
enolate oxidation with the molybdenum(VI) reagent MoOPH
led to the isolation of clean hydroxy lactone 17.19 We viewed 17
as an excellent testing grounds for Hartwig’s recently reported
epimerization methodology via Ru-catalyzed transfer hydro-
genation.20 Much to out delight, the catalyst [Ru2(PEt3)6-
(OTf)3][OTf] in combination with isopropanol delivered
diastereomer 18, a recently isolated natural product itself,21

cleanly in 75% yield. To complete the synthesis of majucin (1) a
challenging dihydroxylation was required. While we observed no
desired reactivity of 18 with OsO4, application of precomplexed
osmium tetroxide and tetramethylethylenediamine (OsO4·
TMEDA) ultimately provided (−)-majucin (1) in 61% yield.22

X-ray crystallographic analysis unambiguously confirmed the
structure of 1. Finally, selective monomesylation (MsCl, pyr.) of
(−)-majucin followed by heating elicited a high-yielding
intramolecular etherification to give neurotrophic natural
product (−)-jiadifenoxolane A (2) in 92% yield. While the
enzymatic pathways to 1−5 are not known, this facile
displacement could have relevance to the biosynthetic
connection between 1 and 2.
In summary, we have demonstrated the first chemical synthesis

of the complex majucin-type natural products (−)-majucin (1)
and (−)-jiadifenoxolane A (2) in 14 and 15 steps, respectively,
and the formal synthesis of (−)-ODNM (3), (−)-jiadifenin (4),
and (−)-jiadifenolide (5) from the chiral-pool feedstock
(+)-cedrol, a building block available for ∼$0.05 USD/gram.23

During this process, 13 oxidations were employed; however, 3
reduction steps were necessary for oxidation state and stereo-
chemical adjustments,24 highlighting existing gaps in the
oxidative synthetic repertoire. Nevertheless, combined with our
previous C−H hydroxylation strategy for the anisatin series, this
work definitively establishes (+)-cedrol as a versatile platform for
the synthesis of nearly all subtypes of seco-prezizaane natural
products. Moreover, the formation of C−H hydroxylated
intermediate 12 hints to the possibility of accessing even further
oxidized, unnatural analogs of these sesquiterpenoids using
similar chemistry.
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