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Abstract: Antibiotic resistance is a problem that continues to challenge the healthcare sector, especially
in clinically significant pathogens like methicillin-resistant Staphylococcus aureus (MRSA). Herein is
described the isolation and structure elucidation of a bioactive compound from Allium stipitatum
with antimicrobial activity. Crude Allium stipitatum dichloromethane extract (ASDE) was subjected
to systematic purification by chromatographic procedures to afford various bioactive fractions.
A fraction that exhibited anti-MRSA activity (4 µg·mL−1) was further characterized to determine the
structure. The structure of the compound was elucidated as 2-(methyldithio)pyridine-3-carbonitrile
(2-Medpy-3-CN). The 2-Medpy-3-CN compound, which was screened for antimicrobial activity,
exhibited minimum inhibitory concentrations (MICs) in the range of 0.5 to >64 µg·mL−1 for tested
bacterial species and 0.25 to 2 µg·mL−1 for Candida spp. Further studies are important to confirm the
drug target and mechanism of action.

Keywords: Allium stipitatum; antibacterial; minimum inhibitory concentration; methicillin-resistant
Staphylococcus aureus

1. Introduction

The sustained increase in life-threatening infectious diseases and emerging infectious diseases
(EID) due to the multidrug-resistant (MDR) pathogens is an immense and serious global
challenge. Infections associated with MDR Staphylococcus aureus, including methicillin-resistant
S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) [1], and with vancomycin-resistant
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Enterococcus faecium [2], MDR Acinetobacter baumannii [3], trimethoprim/sulfamethoxazole
(TMP-SMX)-resistant Stenotrophomonas maltophilia [4], and azole-resistant Candida albicans [5,6] are
adequately reported worldwide.

Among the many clinically challenging microbes, S. aureus is a well-armed virulent pathogen
that is currently the most common cause of hospital- and community-acquired infections worldwide.
Its increasing resistance to antibiotics indicates that its prevalence will continue to rise. In addition,
the high morbidity and mortality rates [7], and high treatment costs in combating MRSA
infections [8–10] strongly underscore the pressing need for new classes of antimicrobials to overcome
multidrug resistance.

There are a vast number of natural products that are a likely source of novel antibiotic
compounds [11]. In particular, plants serve as main source of bioactive substances including
antibacterial compounds, and there are noteworthy studies supporting their preliminary in vitro
efficacy [12–14]. Allium has a long history of its use in traditional medicine with high therapeutic
properties and its ethno-medicinal use is reported from most regions of the temperate world including
Asia. An extensive review by Petrovska and Cekovska [15] clearly showcased the use of garlic (Allium
sativum L.) for human health from the ancient times until today. Garlic was widely used as an antiseptic
to prevent gangrene in the First and Second World Wars [15,16]. Several edible products including
different species of Allium (garlic, onion, shallots) were shown to harbor remarkable antibacterial
activities [17–19].

In our earlier study, we identified dichloromethane extract of Allium stipitatum or Persian shallot,
popularly known as “Mooseer”, a wild edible plant mostly found in the cold mountains of central,
south, and western Iran, some provinces of Turkey, and central Asia, to exhibit strong antimicrobial and
wound-healing activity [20–24]. Pyridine-N-oxide alkaloids and analogs of disulfides from A. stipitatum
were reported to possess moderate to strong antibacterial activity against MDR S. aureus, Mycobacterium
tuberculosis, Escherichia coli, and Klebsiella and Proteus species [25,26]. The methyl disulfide analogs were
also reported to inhibit the mycobacterial drug efflux systems and biofilm formation in M. tuberculosis
H37Rv strains [25]. These data indicates that A. stipitatum retains intrinsic antimicrobial properties
that likely contribute to the positive outcomes observed in in vivo and in vitro studies.

The promising in vitro and in vivo antimicrobial activities prompted us to explore the isolation
of bioactive compounds from the bulbs of A. stipitatum. Therefore, the present study was aimed at
purifying the bioactive compound from A. stipitatum that exhibits antimicrobial activity.

2. Results

2.1. Bioassay-Guided Fractionation

A total of 80 fractions were obtained through silica gel column chromatography (CC) and all
the fractions were subjected for thin-layer chromatography (TLC) analysis. Fractions that displayed
similar TLC patters were pooled together and divided into six major fractions (D1–D6). Screening for
antibacterial activity of fractions D1–D6 showed fraction D3 to have strong anti-MRSA activity with
a minimum inhibitory concentration (MIC) of 32 µg·mL−1. The MICs of fractions D2 and D4 were
128 µg·mL−1 and 256 µg·mL−1, respectively. However, fractions D1, D5, and D6 did not show any
activity (Table 1). Fraction D3 which was subjected to further purification by preparative TLC (PTLC)
showed eight major fractions (D3/1–D3/8). Screening for antibacterial activity of fractions D3/1–D3/8
showed fraction D3/6 to have strong anti-MRSA activity with an MIC of 16 µg·mL−1. The MICs of
fractions D3/5 and D3/6 were 16 µg·mL−1, while the MICs of fractions D3/4 and D3/7 were 32 µg·mL−1.
Fractions D3/1–D3/3 and D3/8 did not show any activity (Table 2). Fraction D3/6 was separated into 120
subfractions by CC, which were pooled into six subfractions (D3/6a–D3/6f) based on the TLC patterns.
Screening for antibacterial activity of subfractions D3/6a–D3/6f showed D3/6e to have strong anti-MRSA
activity with an MIC of 4 µg·mL−1. Subfraction D3/6d inhibited the growth of MRSA at 32 µg·mL−1,
while subfractions D3/6a–c and D3/6f did not show any activity (Table 3).
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Table 1. Allium stipitatum dichloromethane (ASDE) fractions and their respective minimum inhibitory
concentrations (MICs) against methicillin-resistant Staphylococcus aureus (MRSA) American Type
Culture Collection (ATCC) 43300.

Fraction Weight (g) Physical Appearance MIC for MRSA (µg·mL−1)

D1 0.636 Yellow liquid No activity
D2 1.055 Brown solid 128
D3 1.354 Brown gum 32
D4 1.875 Brown gum 256
D5 1.206 Dark-yellow solid No activity
D6 0.749 Yellow solid No activity

Table 2. ASDE subfractions of D3 and their respective MICs against MRSA ATCC 43300.

Fraction Weight (g) Physical Appearance MIC for MRSA (µg·mL−1)

D3/1 0.153 Yellow gum No activity
D3/2 0.114 Brown solid No activity
D3/3 0.196 Dark brown solid No activity
D3/4 0.115 Brown gum 32
D3/5 0.087 Brown gum 16
D3/6 0.302 Brown gum 16
D3/7 0.180 White solid 32
D3/8 0.242 White solid No activity

Table 3. ASDE subfractions of D3/6 and their respective MICs against MRSA ATCC 43300.

Fraction Weight (mg) Physical Appearance MIC for MRSA (µg·mL−1)

D3/6a 17 Brown gum and white solid No activity
D3/6b 35 Brown gum and white solid No activity
D3/6c 48 Brown gum and yellow solid No activity
D3/6d 65 Yellow liquid 32
D3/6e 31 Yellow liquid 4
D3/6f 28 Pale-yellow solid No activity

2.2. Structure Elucidation and Identification

Fraction D3/6e was identified as 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN)
(Figure 1) based on spectroscopic methods.
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Figure 1. Two-dimensional (2D) structure of 2-(methyldithio)pyridine-3-carbonitrile (2-Medpy-3-CN).

2-Medpy-3-CN: yellow crystalline; ultraviolet (UV) (MeOH) λmax nm (log ε): 221 (1.19), 272 (2.35);
yield 85.86%; melting point (m.p.) 70.6–71.4 ◦C; infrared (IR) (KBr, disc) νmax cm−1: 3064, 2911, 2221,
1567, 1544, 1430, 1383, 1258, 1230, 1128, 1066, 957, 731; positive LC–MS/MS m/z 183.0047 [M + H]+,
(calculated for C7H6N2S2, 182.27); m/e: 182 (100.0%), 183 (9.3%), 183.99 (9.5%); 1H-NMR (500 MHz,
CDCl3) and 13C-NMR (125 MHz, CDCl3) spectral values were recorded in one-dimensional (1D) and
two-dimensional (2D) models (Table 4).
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Table 4. One-dimensional (1D) and two-dimensional (2D) NMR spectral data of 2-(methyldithio)pyridine-
3-carbonitrile (2-Medpy-3-CN).

Position δH (J in Hz) δC, Type DEPT 90 DEPT 135 COSY NOESY HMBC HSQC

2 162.18, C 4,6
3 107.87, C 4,5,6
4 7.89, 1H, dd (1.5, 7.5 Hz) 141.02, CH 141.04, CH 141.04, CH 5,6 5 5,6 4
5 7.26, 1H, dd (4.5, 7.5 Hz) 120.58, CH 120.58, CH 120.58, CH 4,6 4,6 4,6 5
6 8.77, 1H, dd (1.5, 4.5 Hz) 152.87, CH 152.88, CH 152.89, CH 4,5 5 4,5 6

–CN 114.96, C 4,5,6
–CH3 2.60, 3H, s 23.23, CH3 23.23 7 6 –CH3

2.3. Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), and Minimum
Fungicidal Concentration (MFC) of 2-Medpy-3-CN

Based on the susceptibility testing results obtained, 2-Medpy-3-CN exhibited strong antibacterial
activity against six out of nine pathogens tested. The MICs of 2-Medpy-3-CN ranged from 0.5
to >64 µg·mL−1 (Table 5). Gram-positive MSSA (methicillin-sensitive S. aureus) and MRSA
and Gram-negative Acinetobacter iwoffii and Acinetobacter baumannii were highly susceptible to
2-Medpy-3-CN. The lowest MIC was observed for A. iwoffii (0.5 µg·mL−1), while A. baumannii,
MRSA, and MSSA showed MICs of 4 µg·mL−1. Escherichia coli and Stenotrophomonas maltophilia were
susceptible at slightly high concentration (32 µg·mL−1). However, Pseudomonas aeruginosa, Salmonella
typhi, and Shigella dysenteriae were not susceptible to 2-Medpy-3-CN even at 64 µg·mL−1 (highest
concentration tested). In addition to its broad-spectrum antibacterial activity, the compound also
exhibited excellent antifungal activity against all five Candida strains tested. The MICs for Candida spp.
ranged from 0.25 to 2 µg·mL−1. Candida glabrata was susceptible to 2-Medpy-3-CN at 0.25 µg·mL−1 and
Candida tropicalis at 2 µg·mL−1. The highest bactericidal and fungicidal concentrations that inhibited
the growth of bacteria (MBC) and fungi (MFC) were 64 µg·mL−1 and 4 µg·mL−1, respectively.

Table 5. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC),
and minimum fungicidal concentration (MFC) determinations of 2-Medpy-3-CN against human
pathogenic bacteria and Candida spp. DMSO—dimethyl sulfoxide.

Microorganisms

Antimicrobial Activity

2-Medpy-3-CN Antibiotic
(µg·mL−1)

DMSO (10%)
(20 µL Per Disk)MIC (µg·mL−1) a MBC (µg·mL−1) b

Bacteria

Acinetobacter baumannii 4 8 ≤4 (IMP) -
Acinetobacter iwoffii 0.5 1 ≤4 (IMP) -

Escherichia coli 32 64 0.5–2 (TET) -
Methicillin-resistant
Staphylococcus aureus 4 8 0.5–2 (VAN) -

Methicillin-sensitive S. aureus 4 16 ≤8 (VAN) -
Pseudomonas aeruginosa >64 >64 >64 (TMP) -

Salmonella typhi >64 >64 <1 (CIP) -
Shigella dysenteriae >64 >64 ≤8/4 (AM/CL) -

Stenotrophomonas maltophilia 32 >64 ≥2–38 (TP/SX) -
Yeast

Candida albicans 0.5 1 0.12 (FLU) c -
Candida glabrata 0.25 1 16 (FLU) c -
Candida krusei 1 4 1 (FLU) c -

Candida parapsilosis 0.5 2 0.5 (FLU) c -
Candida tropicalis 2 4 32 (FLU) c -

a Determined using microbroth dilution method. b Determined using spread plate technique. c Determined using
Etest method.
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2.4. Time-to-Kill Assay

Studies on the bacterial killing kinetics of 2-Medpy-3-CN on MRSA showed that the growth
control in brain heart infusion(BHI) without any antibiotics (non-treated) maintained viability for 24 h,
while MRSA treated with the test antibacterial compound at 1×, 2×, and 4× MIC showed significant
reduction in growth, indicating that 2-Medpy-3-CN is strongly bactericidal in killing >90% of the
cells at 2 h post-treatment. The compound did not exhibit a concentration-dependent activity, and no
significant difference in log10 colony-forming units (CFU)·mL−1 reduction was observed. It was
observed that, with an initial inoculum of ~106 CFU·mL−1, 2-Medpy-3-CN (1×, 2×, and 4× MIC)
declined the growth of MRSA as the incubation time increased from 0 to 2 h. The average reductions
in CFUs were found to be 1.8-log10, 2.1-log10, and 1.8-log10 decreases in CFU·mL−1 at 0.5, 1, and 2 h
post-treatment, respectively (Figure 2).
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grown in BHI at concentrations of 1×, 2×, and 4× MIC with control (0× MIC). MIC—minimum
inhibitory concentration; CFU—colony-forming units.

3. Discussion

The 2-Medpy-3-CN compound was isolated as a yellow-colored oil (later formed as yellow
crystals). The LC–MS data displayed a molecular mass of 183.00471 m/z, signifying a molecular
formula of C7H6N2S2, and the spectrum also gave the isotype motif for two sulfur atoms. The 1H-NMR
spectrum (Table 5; Figure S1, Supplementary Materials) showed a deshielded methyl singlet at δ 2.60
and the presence of four hydrogens represented a characteristic ABCD aromatic structure/scheme.
The 13C-NMR and DEPT-135 spectra (Table 5; Figures S2 and S8, Supplementary Materials) showed
the presence of three methine aromatic carbons at δ 152.18–120.58, a deshielded quaternary carbon at δ
120.58S, and a methyl carbon at δ 23.23. This deshielded nature of the hydrogen atom (δ 8.77, H-6) of
2-Medpy-3-CN points out the phenomenon of a typical coupling of an alpha hydrogen to the nitrogen
of a pyridine structure [27]. Hence, this pattern of coupling and correlation strongly underscores the
possibility that 2-Medpy-3-CN could be a pyridine ring-containing natural compound.

Correlation spectroscopy (COSY) revealed the correlations of the aromatic hydrogens of
2-Medpy-3-CN (Figure S6, Supplementary Materials). In particular, the double-doublet of H-3 (δ 8.77)
was coupled to a H-4 triplet (δ 7.89), which finally coupled to αH-6 doublet (δ 7.26). At δ 2.60,
the presence of a methyl group appeared as a singlet featuring without couplings, indicating that it
belongs to the aromatic nucleus. Its selected appearance in the 1H spectrum at 2.60 ppm determined
that it was deshielded slightly and was attached to one of the sulfur atoms (apparently as a heteroatom).
Heteronuclear multiple bond correlation spectroscopy (HMBC) showed the weak correlation (4J)
between the methyl hydrogens and the C-2 quaternary carbon (HSQC), which suggested its terminal
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position on a disulfide side-chain α to the nitrogen (Figures S3 and S4, Supplementary Materials).
Stereochemistry on the nuclear Overhauser spectroscopy (NOESY) effect of methyl hydrogens to H-3
was also determined (Figure S5, Supplementary Materials).

The IR data indicated the presence of nitrile (2221 cm−1) and pyridine (1544, 1430, 1230, 731 cm−1)
moieties (Figure S10, Supplementary Materials). The molecular formula of 2-Medpy-3-CN was
C7H6N2S2 (Figure S11, Supplementary Materials), which left the placement of the nitrile group in
the skeleton of 2-Medpy-3-CN. Thus, the structure of the pure fraction D3/6e was determined as
2-(methyldithio)pyridine-3-carbonitrile (Figure 1). Previously, pyridine-N-oxide compounds were
reported from A. stipitatum [25,26,28]; however, this is the first report on a naturally existing pyridine
compound with a nitrile as a functional group from A. stipitatum.

The promising antibacterial activities of pyridine and thiopyridines derivatives ere
adequately reported [29–31]. The 2-Medpy-3-CN compound demonstrated outstanding
potency with low MIC values ranging from 0.5 to >64 µg·mL−1. The MICs of 2-Medpy-3-CN
are consistent with the earlier data on pyridine based compounds from other research
groups [25,26,28]. O’Donnell and his colleagues were the first to isolate and report pyridine-N-oxide
alkaloids with disulfide functional groups from natural sources [26]. Three compounds
named 2-(methyldithio)pyridine-N-oxide, 2[(methylthiomethyl)dithio]pyridine-N-oxide,
and 2,2’-dithio-bis-pyridine-N-oxide (dipyrithione) were reported. Of the three compounds,
2-(methyldithio)pyridine-N-oxide and 2[(methylthiomethyl)dithio]pyridine-N-oxide were shown
to possess strong antibacterial activity against fast-growing Mycobacterium sp., MRSA, and MDR
variants of S. aureus with MICs of 0.5–8 µg·mL−1. These results were in accordance with the present
study results where an MIC of 4 µg·mL−1 was observed for MSSA and MRSA strains. Following
O’Donnell’s discovery of pyridine N-oxide compounds, Krejčová and his colleagues reported
the anti-inflammatory and neuroprotective effects of five naturally occurring sulfur-containing
pyridine-N-oxides from A. stipitatum [28]. The compound of the present study, 2-Medpy-3-CN,
harbors nitrile as a functional group, which is another likely perception for its strong antimicrobial
properties. Carbonitrile-containing semisynthetic derivatives of pyridine molecules exhibit strong
antibacterial activity [32–34]. In addition to antibacterial activity, 2-Medpy-3-CN also exhibited
very strong anticandidal activity, attributed to a broad-spectrum antimicrobial activity at a very low
MIC level of 2 µg·mL−1 for C. tropicalis. Semisynthetic pyrimidine derivatives with carbonitrile as
the functional group at the fifth position were reported to have strong antibacterial and antifungal
activities at 12.5 µg·mL−1 [33,35]. The extreme potency of 2-Medpy-3-CN foreshadows its possibility
in clinical use.

Time kill study was used to explore the bactericidal activity of 2-Medpy-3-CN using MRSA
American Type Culture Collection (ATCC) 43300. The killing kinetics of 2-Medpy-3-CN demonstrated
time-dependent killing instead of a dose-dependent pattern. At 1× MIC (4 µg·mL−1), 2-Medpy-3-CN
effected a time-dependent reduction in the viability of the tested bacterial strain. Increasing the
concentration of 2-Medpy-3-CN did not show any change in the bactericidal action. The killing rates
were very much similar at 2× and 4× MIC, with 1.8-log10, 2.1-log10, and 1.8-log10 reductions in the
number of CFU·mL−1 after 0.5, 1, and 2 h of incubation, respectively. For the first time, our study
reports the killing kinetics or the rate of killing of pyridine compounds on MRSA. A recent study on
novel 2-thiopyridines against actively growing and dormant cells of M. tuberculosis for seven days
at 10 µg·mL−1 showed more than 2-log-unit killing effect [31]. Remarkably, the tested concentration
and the CFU reductions were similar to the results of the present study. Testing 2-Medpy-3-CN on
a diverse panel of antibiotic-resistant S. aureus isolates at various MICs disclosed the consistency of
anti-MRSA activity.

Absorption, distribution, metabolism, and excretion (ADME) properties were used to determine
the “drug-like” characteristics of the ligand molecule. ADME predictions can be used to focus lead
optimization efforts in enhancing the desired properties of a given compound. The expected ADME
property of the tested compound was evaluated with the QikProp module of Schrodinger. Almost
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all the predicted properties of the tested compound were in the range as predicted by QikProp for
100% (>80% is high) of known oral drugs, and the compound also satisfies Lipinski’s rule of five to be
considered as having drug-like potential.

4. Materials and Methods

4.1. Chemistry

4.1.1. Plant Material and Preparation of Extracts

The source and the preparation of the extract were described earlier [22]. Briefly, dried bulbs (5 kg)
of A. stipitatum were ground into fine powder and extracted with 10 L of dichloromethane for 72 h (for
each solvent) by maceration at room temperature. The extract was filtered through Whatman No.1
paper to remove solid plant materials, and the filtrate was dried under vacuum (BÜCHI Rotovapor
R-200, Flawil, Switzerland) at 40 ◦C. Upon filtration and solvent volatilization, the dichloromethane
extract yielded 164 g (3.28%) of residue.

4.1.2. General Experimental Procedures

Analytical-grade solvents, including hexane and dichloromethane used for extraction and
isolation, were purchased from (Merck KGaA, Darmstadt, Germany). Column chromatography was
carried out using silica gel Merck 7734 (70–230 mesh ASTM) and Merck 9385 (230–400 mesh ASTM).
Thin-layer chromatography (TLC) analyses were carried out on Merck silica gel DC-plastikfolien 60
F254 plastic sheets and TLC spots were visualized using a UV lamp at 254 and 366 nm, respectively.
Melting point was recorded using an electrothermal digital melting point apparatus. Ultraviolet
(UV) and IR spectra were recorded on a Varian UV–visible light (UV–Vis) 50 and Perkin-Elmer
100 Fourier-transform infrared (FTIR) spectrophotometers, respectively. The isolated compound was
dissolved in CDCl3 (deuterated chloroform), and the NMR spectra (1D and 2D NMR) were recorded on
a Bruker AVANCE 500 Ultrashield NMR spectrometer. The molecular weight of the isolated compound
was determined on an Agilent 1290 Infinity II LC system (Agilent Technologies, Santa Carla, CA,
USA) coupled to a 6520 Q-TOF tandem mass spectrometer for separation. The chemical shifts (δ) were
determined from the residual solvent peaks.

4.1.3. Isolation of Potential Antimicrobial Compounds

TLC analysis of the Allium stipitatum dichloromethane (ASDE) extract showed the presence of
large, clear spots when visualized under a UV chamber and iodine staining. The crude dichloromethane
extract of A. stipitatum bulbs (164 g) was subjected to silica gel column chromatography (CC) using
CH2Cl2 as the mobile phase. A total of 80 fractions (50 mL in volume) were collected in 100-mL conical
flasks. All fractions were subjected to TLC analysis. Fractions that showed similar TLC patterns were
pooled together which yielded six major fractions (D1–D6). The six fractions (D1–D6) were tested for
their antibacterial activity against MRSA. Fraction D3 (1.354 g) which exerted remarkable antibacterial
activity, was subjected to preparative thin-layer chromatography (PTLC) using CH2Cl2 as the mobile
phase to yield eight subfractions (D3/1–D3/8). Subfraction D3/6 (302 mg) was further subjected to
column chromatography (CC) using CH2Cl2 as the mobile phase to yield 120 fractions (10 mL in
volume). Fractions were pooled together based on TLC patterns. Subfraction D3/6e (31 mg) was
identified as a pure fraction and subjected to NMR and mass analysis. The purification scheme of
fraction D3/6e is illustrated in Scheme 1. At each purification step, the fractions and subfractions were
tested for their antibacterial activity using the micro-broth dilution method.
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4.2. Biological Evaluation with Methicillin-Resistant S. aureus (MRSA)

4.2.1. Test Microorganisms

MRSA ATCC 43300 was used as model organism to screen for the antimicrobial activity. For the
anti-MRSA activity, the confirmed compound was further screened for broad-spectrum activity against
other pathogenic bacteria including Acinetobacter baumannii, A. iwoffii, Enterobacter sp., Escherichia coli,
Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, and Stenotrophomonas
maltophilia through MIC (minimum inhibitory concentration) and MBC (minimum bactericidal
concentration) determinations. The compound was also tested for antifungal activity against five
different pathogenic forms of Candida species, namely C. albicans, C. glabrata, C. krusei, C. parapsilosis,
and C. tropicalis, for MIC and MFC (minimum fungicidal concentration).

4.2.2. MIC, MBC, and MFC Measurements

For the determination of MIC, MBC, and MFC, the compound was dissolved in 10% dimethyl
sulfoxide (DMSO) with a graded concentration in the range of 64–0.125 µg·mL−1 with MHB for
bacteria and Roswell Memorial Park Institute (RPMI-1640) medium for Candida strains. The MIC
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of the compound was determined using microbroth dilution method as described for bacteria and
yeast [36,37]. Fluconazole was used as an antifungal standard and its MIC was determined using
the Etest method. Appropriate antibiotic controls were included as positive controls based on the
recommendations by the Clinical Laboratory Standards Insititute CLSI (2012). DMSO (10%) was used
as a negative control and broth cultures without antibiotics served as growth controls.

4.2.3. Time-To-Kill Assay for Detecting the Bactericidal Effect of the Compound for MRSA

The killing kinetics of the compound on MRSA ATCC 43300 at 0×, 1× (4 µg·mL−1), 2× (8 µg·mL−1),
and 4× (16 µg·mL−1) MIC was determined according to the method described previously [38] with
some modifications. Bacterial and yeast suspensions were diluted to 1 × 106 CFU·mL−1. The compound
concentrations were adjusted to 1× MIC, 2× MIC, and 4× MIC. Cultures treated with the varying
concentrations of the compound were incubated at 37 ◦C for 0, 0.5, 1, 2, 4, 8, and 12 h. Aliquots of
100 µL were pipetted out from each tube at each time point, serially diluted in phosphate-buffered
saline (PBS) and spread onto Mueller Hinton Agar MHA plates. Tubes without the compound served
as growth controls (0×). The plates were incubated at 37 ◦C for 24 h followed by the enumeration of
the colonies. Killing curves were constructed by plotting the log10 CFU·mL−1 versus time over a 24 h
time period. A decline in bacterial/fungal growth to ≥3log10 CFU·mL−1 from the initial inoculum
was considered to be bactericidal/fungicidal.

4.3. Prediction of ADME Properties

Schrodinger’s QikProp module is an accurate, quick, and easy-to-use absorption, distribution,
metabolism, and excretion (ADME) prediction program that was designed to produce certain
ADME-related descriptors. QikProp consists of two modes: normal mode and fast mode. In the
present study, the QikProp program, version 3.4 was run in normal processing mode with default
options [39]. To set up the calculation, a pose viewer file (generated after docking with Glide) was
used to consider the receptor and source of ligands. The program was run (with default options) and
reasonable descriptors were produced.

4.4. Statistical Analysis

All experiments were performed in triplicate except for the time-to-kill assay. Differences between
the treated and untreated (control) groups were analyzed using GraphPad Prism 5.0. One-way
ANOVA was performed and a Dunnett’s post hoc test was used for the comparison of multiple means.
Significance was set at a p-value of <0.05.

5. Conclusions

The present study isolated a novel broad-spectrum antimicrobial compound 2-(methyldithio)pyridine-
3-carbonitrile. The 2-Medpy-3-CN compound showed excellent antimicrobial activity against a
panel of bacterial and fungal pathogens. The compound inhibited the growth of Gram-positive
and Gram-negative pathogens along with Candida species at MICs ranging from 0.5 to >64 µg·mL−1.
The 2-Medpy-3-CN compound was strongly bactericidal against MRSA in less than 2 h post-treatment.
Further studies are vital to identify the drug target and mechanism of action for this highly potent
antimicrobial compound.

Supplementary Materials: The following are available online at http://www.mdpi.com/1420-3049/24/6/1003/
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