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ABSTRACT: For micelles, “shape” is prominent in rheological computations of fluid
flow, but this “shape” is often expressed too informally to be useful for rigorous
analyses. We formalize topological “shape equivalence” of micelles, both globally and
locally, to enable visualization of computational fluid dynamics. Although topological
methods in visualization provide significant insights into fluid flows, this opportunity
has been limited by the known difficulties in creating representative geometry. We
present an agile geometric algorithm to represent the micellar shape for input into fluid
flow visualizations. We show that worm-like and cylindrical micelles have formally
equivalent shapes, but that visualization accentuates unexplored differences. This
global−local paradigm is extensible beyond micelles.

1. INTRODUCTION: FORMALIZING THE CHEMICAL
SHAPE

To envision the role of “shape” for fluid flow about a micelle,1,2

consider Figure 1 for the cylinder, C, and Figure 2 for a worm-
like micelle (WLM), denoted by Δ(Λ(κ)). Previous tractable
rheology calculations simplified “shape” to long cylinders,3

which is topologically consistent with WLMs emerging from
cylinders during molecular simulations.4 However, Figures 1
and 2 exhibit differences in their vector fields, contrasting flow
curves that are primarily linear versus those with noticeable
nonlinearity (the colors indicate speed which depends on the
cross section of the object, a geometric parameter which is
ignored here.) Further investigation by topological methods for
visualization5,6 requires a formal representation of the “shape” of
a micelle, with contributions here, globally by isotopy7a and
locally by curvature.9

Our Figures 1 and 2 represent instantaneous frames of a
synchronous visualization of a molecular simulation,4 showing a
micelle under laminar flow within a containing cylinder.

2. RELATED WORK
Topology is prominent in chemistry10−12�notably knot
theory.7 Ambient isotopy is the equivalence relation in knot
theory and is applied in computational geometry.13 The
formulation of simplified rheological calculations using long
cylinders3 is consistent with ambient isotopic equivalence
between WLMs and cylinders. Topological methods for
temporal changes across frames5,6 appear appropriate to
investigate the flow differences shown between Figures 1 and 2.

Previous data and simulation results4 were used in the present
work. Some of the current authors created topological methods
to visualize14 knotted proteins as 1-manifolds.7,8 Topology
formalisms were not explicated in other shape-based computa-
tions.3,15,16

The visualizations available from computational fluid
dynamics (CFD) software1,2 are integral to a comprehensive
workflow.17 Quantitative consideration of shape appears broadly
in chemistry.18−21 Shape modeling is pervasive in fluid analyses
in science, engineering,5,6 and athletics.22,23b

3. RESULTS AND DISCUSSION
In the following three subsections, we formalize intuition for
WLMs by presenting:

• a proof of isotopy to cylinders (Section 3.1)
• a geometric algorithm (Section 3.2, Algorithm 1) and
• an example of inequivalence (Section 3.3).

3.1. Global Equivalence of Isotopy for WLMs. The
global shape equivalence of ambient isotopy7,8,13,24 is chosen, as
“...a homotopy of homeomorphisms...”8 (see Definition 3.0
below.) We avoid the numeric calculations inherent in shape
quantif ication,18−21 providing a more abstract overview for
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refinement.5,6 Our dimensional extension from 1-manifolds14 to
3-manifolds is significant, as presented in Lemma 3.2.
Figures 3 and 4 illustrate a WLM as a union of subsets of a

cylinder,4 as formalized in Algorithm 1. The black dots in Figure
3 depict the 3D coordinates of point cloud data of atom centers,

used to produce the 3-manifold Λ(κ) and its approximation,
Δ(Λ(κ)) of Figure 2. There are no self-intersections.4
Figure 4 is a zoomed, exploded view of the 2 lowest sections of

Figure 3. Abstractly, the circular stock is cut into subsets. The
first cut is by a plane containing the vertex v1 so that the cut
pieces can be repositioned and joined at an angle bisecting α1.
These cuts share an elliptical cross-section. The process
continues until the final angle αm is bisected for a union that is
a 3-manifold (with boundary),7,8 denoted by Λ(κ).

Definition 3.0: Let X and Y be two subspaces of 3. A
continuous function

: 0, 13 3× [ ]
is an ambient isotopy between X and Y ifH(·, 0) is the identity,
H(X, 1) = Y, and t H t0, 1 , ( , )3[ ] is a homeomorphism
onto 3.

Figure 1. Flow over the cylinder, C.

Figure 2. Flow over the WLM, Δ(Λ(κ)).

Figure 3. Skeleton κ and 3-manifold Λ(κ).

Figure 4. Zoomed view of the lowest cut.
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Let C denote a solid, right circular cylinder [a 3-manifold
(with boundary)7,8]. Let κ denote a skeletal 1-manifold and
Λ(κ) denote the corresponding 3-manifold (with boundary)
previously described,4 as shown in Figures 3 and 4, with
geometric construction now formalized in Algorithm 1.
The skeletal κ is represented as a piecewise linear (PL) curve,

defined by finitely many, unique, ordered vertices, denoted by vi
and line segments between consecutive vertices, denoted by i.
The i are pairwise disjoint, except at the vertex shared by
consecutive segments. The angles between consecutive
segmentsc are denoted by αi. The boundary curves created at
the vi are parametrized over [0,1] for successive approximations
during the workflow.17 The value of a radius r was chosend so
that Λ(κ) is a 3-manifold for a WLM.

Lemma 3.1: The PL 1-manifold for a WLM skeleton is
ambient isotopic to [0,1].

Proof: The proof is shown by induction. For m ≥ 1, let κm
denote the PL curve for the WLM skeleton of m segments. The
base case of m = 1 is trivial.

Induction Hypothesis: There exists m ≥ 1 with κm ambient
isotopic to [0,1]. With m+1 as the terminal segment of κm+1, let

( )m 1+ be a tetrahedral neighborhood of m+1, with ( )m 1+ ∩
km = vm, vm ∈ ∂ ( )m 1+ , and m 1+ − vm ⊂ int ( )m 1+ .
Using ( )m 1+ as compact support,25 isotopically contract

m 1+ to m 1*+ with a suf f iciently small nonzero length such that
another neighborhood ( )m m1*+ is compact support for an
isotopy of κm+1 to κm, where ( )m m m m1* =+ and

v( ) int ( )m m m m m1 1 1* *+ + .
Apply the Induction Hypothesis.
Lemma 3.2: The 3-manifold Λ(κ) is ambient isotopic to C.
Proof: Extend the proof of Lemma 3.1.
For input to CFD code, our PL ambient isotopic

approximations of WLMs in Algorithm 1 follow the principles
of the Simulation Toolkit for Scientific Discovery.17

Corollary 3.3: By appropriate partitioning of [0,1], there are
PL approximations of Λ(κ), denoted by Δ(Λ(κ)), that are
ambient isotopic to Λ(κ) and to C.
3.2. Local WLM Curvature: Algorithm 1. The prior

isotopic equivalence narrowed our algorithm design to
specialized geometry for WLMs. We restricted attention to
planar-cylinder intersections for simplicity26 to avoid “...the
typical obstacles in construction and meshing...”,15 inclusive of
pernicious numeric issues.27 The resultant workflow agility17 is
formalized by Corollary 3.3. The impact of Algorithm 1 is that
agile, specialized geometric algorithms can be designed for
broader use of CFD for micelles.
Our Algorithm 1 represents local curvature8,9,27 to extend

beyond previous geometric models.3,4 In Figure 3, the defining
skeleton, κ, is the central PL curve, defined by finitely many
consecutive, unique vertices, denoted by v0, v1, ..., vm, with angles
α1, ..., αm between consecutive linear segments. These joining
angles approximate the local Gaussian curvature.4,9

The notation for a skeleton,4 κ, is summarized as:

• v0, v1, ..., vm, the unique, ordered vertices,

• 1, ..., m, the connecting segments, and

• α1, ..., αm the angles between segments.

Algorithm 1 produces micellar geometry with approximations
of the local Gaussian curvature for input to CFD.28 Our
synthesized geometry was created by invoking Algorithm 1 with
available software.1,2

3.3. Global Shape Inequivalence to a Cylinder. Figure 5
is a branched micelle,4 denoted as B. The 3-manifolds B and C
are not homeomorphic,7 hence not isotopic. Recent work on
branched micelles29 underscores the timeliness of the following
question.

3.3.1. Despite This Global Shape Inequivalence to C, Is B
Admissible Input for CFD Analyses? We answer “Yes” after
constructing a geometric representation of this branched
micelle. The vector field for fluid flow in Figure 5 differs from
the previous visualizations�an opportunity to consider
behavior over inequivalent shape classes.5,6 This classification
approach is extensible to branched micelles of different isotopy
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equivalence classes,29 depending upon creation of appropriate
geometric representations.
Our Branched Micelle Construction adapts and extends the use

of Algorithm 1 for applications beyond WLMs. We present
notation for geometric subsets of B from Figure 5, expecting the
correspondence to be intuitively obvious to the reader. Each
subset is visually similar to a WLM, denoted as:

• L for the lef t branch,
• M for the middle narrow bridge, and
• R for the right branch.
The modeling operation of “join” over regular closed sets27,30

is denoted here by “∨”.
Branched Micelle Construction.
Input: L, M, R,
Output: B.
B L M R=
This use of “∨” depends on a cylinder−cylinder intersection,

which can introduce subtleties.31−33 Pragmatically, those
subtleties were avoided here by user expertise so that any
broad adaptation of this approach remains a subject of further
investigation.

4. CONCLUSIONS AND FUTURE WORK
We present a promising proof of concept for formalizing “shape”
in rheological analyses by rigorous application of topology and
geometry. This novel theoretical approach supports the creation
of innovative micellar models for CFD input. These micellar
models:

• preserve global shape equivalence and
• approximate the local Gaussian curvature.
The micelles that are cylindrical and worm-like share a formal

shape equivalence by ambient isotopy, but the distinct
differential topology properties for fluid flow remain to be
investigated by methods from topological visualization. The
shapes of branched micelles are shown to be a formally separate
topological class. Three examples were constructed with a
creative algorithm presented here that requires minimal software
implementation by reliance on available geometric tools.

Verification of sufficient geometric coverage is relegated to
future work.
Our new “shape” paradigm for micelles can be extended by

additional data-specific algorithms for geometry creation. A
direct geometric interface between the HPC simulation and the
CFD software presents a formidable engineering task as a long-
term goal.
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