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Abstract

Summary: This article presents multi-omic integration with sparse value decomposition (MOSS), a free and open-source
R package for integration and feature selection in multiple large omics datasets. This package is computationally efficient
and offers biological insight through capabilities, such as cluster analysis and identification of informative omic features.

Availability and implementation: https://CRAN.R-project.org/package=MOSS.

Contact: agugonrey@gmail.com

Supplementary information: Supplementary information can be found at https://github.com/agugonrey/Gonzalez
Reymundez2021.

1 Introduction

Omic data are characterized by many features from multiple layers of
data (e.g. genome, transcriptome and proteome). Thus, traditional
methods (e.g. ordinary least squares) are insufficient to obtain signifi-
cant insights from this multi-layer, high-dimensional data. To effective-
ly integrate multi-omic data, novel methods have been developed
(González-Reymúndez et al., 2017; Lock et al., 2013; Rohart et al.,
2017; Shen et al., 2009, 2016; Zhang et al., 2016). These methods have
profoundly contributed to our understanding of variation in complex
traits across diverse levels of regulation (e.g. mutations in coding genes
and epigenetic regulation) (Hasin et al., 2017; Ritchie et al., 2015).

Thanks to ongoing data collection efforts, omic data increase in the
number of features and available samples. This increase in sample size
provides more opportunity for inference and prediction of characteris-
tics of interest (Müller et al., 2020). However, more extensive data sizes
can make computations progressively lengthier and impossible to per-
form in some cases (Mangul et al., 2019). Moreover, extensive data
sizes also compromise parallelizing complex algorithms (e.g. convolu-
tional neural networks) (Chiroma et al., 2019).

We developed ‘multi-omic integration with sparse value decom-
position’ (MOSS) to handle these limitations. MOSS is a free and
open-source R package that performs data integration and feature
selection on large datasets. It combines the flexibility of sparse value
decomposition (SVD) with parallel and in-disk computations to ac-
commodate data sizes reaching biobank dimensions.

2 Implementation

The package’s primary function is called moss. Omic data are
given to moss as a list where each element corresponds to a

different omic (see help pages for function moss). Each omic enters
the function as a numeric array. The rows of each array represent
samples (e.g. a subject per row) and the column of each array an
omic feature (e.g. expression of a gene). The rows of the different
numeric arrays on the list need to be sorted in the same order (i.e.
each row belongs to the same sample across omic blocks).
Integration of omic blocks occurs by appending them, column-
wise, into an extended matrix. Before making the extended matrix,
blocks are normalized and standardized. If missing values are pre-
sent, they are imputed by the mean. The effects of potential con-
founders can be internally adjusted by giving moss a data frame,
vector or matrix with covariates. When omic blocks are too big to
be handled in memory, File-backed Big Matrix (FBM) (Priv�e et al.,
2018) can be passed to moss. For this task, the package bigstatsr
(Priv�e et al., 2018) must be installed. Suppose the omic blocks fit
in memory but are still too large to be handled in a reasonable
time. In that case, moss allows turning the omic blocks into FBM
objects internally.

MOSS performs a sparse singular value decomposition (sSVD)
on the integrated omic blocks to obtain latent dimensions as sparse
factors (i.e. with zeroed out elements), representing variability
across subjects and features. Sparsity is imposed via Elastic Net
(Zou et al., 2005) (EN) on the sSVD solutions. MOSS allows an
automatic tuning of the number of elements different from zero,
adapting the procedure in Shen and Huang (2008). The primary out-
put of MOSS is a list with the results of standard (dense) and sSVD.
However, a flexible set of arguments extends the output to include
cluster analysis, non-linear embedding and accompanying visualiza-
tions (Supplementary Information). Further statistical and algorith-
mic details and a description of moss’ arguments, plus examples of
usage, are provided in Supplementary Information.
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3 Moss identifies informative omic features as
competently as existing methods

MOSS matches the performance of current analogous methods
(Fig. 1A). To illustrate this point, we compared MOSS against exist-
ing methods of omic integration and feature selection. This compari-
son was done in terms of the methods ability to detect informative
features. The methods included iCluster (Shen et al., 2009), NMF
(Gaujoux and Seoighe, 2010), SNFtool (Wang et al., 2014),
mixOmics (Rohart et al., 2017) and OmicsPLS (el Bouhaddani
et al., 2018). The data consisted of simulations on top of gene and
protein expression profiles from breast tumors from The Cancer
Genome Atlas (TCGA; Chang et al., 2013) repository (see
Supplementary Information) and supplied within mixOmics. In each
simulation, omic features were decorrelated by randomly shuffling
tumors, one feature at a time. To define informative features in each
simulation, a subgroup of randomly chosen features was left intact.
These features conserved the naturally occurring correlation present
in the data. The two scenarios compared used 10% and 80% of the
total features to define the signal. A total of 1000 random simula-
tions were run by scenario. Figure 1A shows MOSS’s ranking

amongst the best performance methods. When using strict variable
selection (EN parameter equal to 1), MOSS’s performance is in-
versely related to the number of informative features. In scenarios
with a larger number of informative features, methods like NMF,
more suitable for dense solutions, are more sensible. However,
MOSS can compensate for the loss in sensitivity by compromising
variables selection in favor of shrinkage (e.g. by setting EN param-
eter to values between 0 and 1).

4 Moss requires less computational time than
existing methods and scales to datasets reaching
biobank sizes

One of MOSS’s essential capabilities is the handling of big data.
While other tools demonstrate similar analytical performance
(Fig. 1A), MOSS is specifically designed for big data. As a result,
even when regular R matrices are used (i.e. omic data handled in
RAM), MOSS can still perform in a short amount of time compared
to other omic integration and feature selection methods (Fig. 1B).

Fig. 1. (A) Performance of MOSS and existing omic integration and features selection methods. Each panel represents a different proportion of informative features. Each curve

represents the average specificity and sensitivity of features selection across 1000 random simulations for increasing sparsity degrees (e.g. null effect features). Confidence bands

represent inter-simulations noise. (B) Comparison of computational time between MOSS and other methods. The plot shows the computational time taken by MOSS and five

other omic integration methods. Scenarios corresponded to a different combination of samples (n) and features (p) in simulated data. Column panels represent the number of

samples, and row panels represent the number of features. Each bar represents a different omic integration method. The y-axis shows the time in hours. The symbols ‘*’ and

‘†’ represent a method running for more than a day or crashing, respectively. MOSS was used with dense matrices (reg. matrices) or filed-backed big matrices (FBM).

(C) Performance of MOSS on real high-dimensional data. The plot shows the performance of MOSS on simulations using data presented in (González-Reymúndez and

Vázquez (2020). Different colors represent alternative proportions of features with signals
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For huge datasets (e.g. scenario n¼1e5 and p¼1e6 in Fig. 1B), tun-
ing of degree of sparsity with MOSS becomes prohibitive. However,
dense solutions are still possible (i.e. without imposing sparsity).

5 Moss can be applied to high-dimensional real
datasets

In González-Reymúndez and Vázquez (2020), we showed that
MOSS could also retrieve biologically meaningful results from real
data. Figure 1C shows the results of applying the above simulation
scheme to data used in González-Reymúndez and Vázquez (2020),
consisting of �60 000 features from whole-genome gene expression
profiles, DNA methylation and copy numbers across �5000 tumors
from 33 different cancer types.

6 Conclusions

Omic integration emerged as a group of techniques to collectively
analyze multiple omic data layers and retrieve helpful information
of shared biological processes (Hasin et al., 2017). However, the
computational and statistical tools used to carry out these tasks are
constantly challenged by the vast amount of data generated (Conesa
and Beck, 2019; Gomez-Cabrero et al., 2014). As a result, omic inte-
gration can become a vast and challenging problem. Consequently,
existing algorithms can become painfully slow or impossible to run.

As a features selection tool, MOSS performance is best as the
number of signal features decreases (e.g. some signaling pathways
affected in cancer, such as canonical MAPK pathway; Braicu et al.,
2019). However, lower performance for a larger number of signal
features is an unsolved challenge among omic integration and fea-
ture selection methods (Tini et al., 2017). In MOSS, this perform-
ance could be increased by compromising variable selection in favor
of shrinking by varying the value of the EN parameter. For instance,
in González-Reymúndez and Vázquez (2020), a EN parameter value
of 0.5 was used to show MOSS’s ability to detect clusters of tumors
beyond original diagnoses and molecular signatures of potential
therapeutic use. The training of this additional parameter, however,
can drastically increase computational time, particularly for large
datasets. More sophisticated alternatives might involve the use dif-
ferent penalties by omic block or set of features, a capability that we
are considering for future versions of MOSS.

Despite its benefits as a data integration and mining tool, MOSS
lacks statistical inference to support feature selection. Future ver-
sions of MOSS can deal with these limitations by adopting fast boot-
strap techniques applied to high-dimensional SVD (Fisher et al.,
2016). In addition to unsupervised analysis, MOSS can fit super-
vised analyses via partial least squares, linear discriminant analysis
and low-rank regressions. Nevertheless, these options are currently
limited by the lack of cross-validation schemes to evaluate super-
vised models and address their performance.

In sum, MOSS is a flexible and fast tool to perform data integra-
tion. It shares capabilities with popular methods, including estima-
tion of latent data dimensions, feature selection and convenient
graphical displays. Nevertheless, unlike these methods, MOSS inte-
grates datasets too large to be handled in RAM and requires consid-
erably shorter amounts of time.
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