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Abstract: Recently, grating-structured triboelectric nanogenerators (TENG) operating in freestanding
mode have been the subject of intensive research. However, standard TENGs based on interdigital
electrode structures are unable to realize real-time sensing of the direction of the freestanding
electrode movement. Here, a newly designed TENG, consisting of one group of grating freestanding
electrodes and three groups of interdigitated induction electrodes with the identical period, has been
demonstrated as a self-powered vector angle/displacement sensor (SPVS), capable of distinguishing
the real-time direction of the freestanding electrode displacement. Thanks to the unique coupling
effect between triboelectrification and electrostatic induction, periodic alternating voltage signals
are generated in response to the rotation/sliding movement of the top freestanding electrodes on
the bottom electrodes. The output peak-to-peak voltage of the SPVS can reach as high as 300 V at
the rotation rate of 48 rpm and at the sliding velocity of 0.1 m/s, respectively. The resolution of
the sensor reaches 8◦/5 mm and can be further enhanced by decreasing the width of the electrodes.
This present work not only demonstrates a novel method for angle/displacement detection but also
greatly expands the applicability of TENG as self-powered vector sensors.

Keywords: self-powered; triboelectric nanogenerator (TENG); three-group electrodes; freestanding
electrode; phase difference

1. Introduction

Ever since TENG was proposed by Wang’s group in 2012, it has been developed
rapidly nowadays [1–3]. Originating from the first of Maxwell’s equations, the TENG can
serve as a sustainable power supply and developed four different working modes [3,4],
including vertical contact-separation mode [5], lateral sliding mode [6], single-electrode
mode [7], and freestanding mode [8]. Owing to its unique working principle and significant
advantages of high efficiency, low cost, reliable robustness, and environmental-friendly, it
is widely used in wearable electronics, energy harvesting, and self-powered sensing [9–12].

Among these four modes mentioned above, nowadays, the freestanding mode of
TENG has been commonly applied in the fields of sensing and energy harvesting due
to its excellent output performance, reliable robustness, and high efficiency, such as har-
vesting ocean wave energy, mechanical vibration, and sensing of human motions [13–18].
Lai et al. devised a single-thread-based wearable and stretchable sensor [19], and Dong et al.
designed a versatile core-sheath yarn sensor [20]. Both sensors can generate signals repre-
senting the movement of joints, however, lacking of precise resolution. Afterwards, various
types of TENG sensors based on freestanding mode for quantitative sensing is also re-
ported, mainly composed of two or more grating-structured TENG [7,14,21–23]. Wang et al.
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reported a high precision self-powered angle sensor [14] and Pu et al. designed a TENG-
based finger-wearable sensor [22], which both used two separate grating-structured TENG
to obtain vector motion information. However, these sensing methods consume up more
areas for the extra phase-referenced TENG [24].

In this work, we proposed a self-powered vector angle/displacement sensor (SPVS),
which consists of a grating-segmented freestanding triboelectric layer and three groups
of interdigitated electrodes with the same period. Compared to other TENG sensors,
SPVS fabrication is facile, and this approach can be applied in both transverse and rotating
motions [25,26]. Two grid-shaped SPVS were designed for sensing characterization because
the strip and the disc grating-structured TENG have their own advantages and adaptation
occasions, respectively. For the strip-shaped SPVS, the length and width of each TENG
unit: 0.9 cm × 1.5 cm, while the freestanding electrode’s linear velocity is 0.1 m/s at
an acceleration of 1 m/s2, the output voltage can reach 125 V/mm, and the minimum
resolution is 3 mm. For the disc-shaped SPVS (The size of PCB is 6.2 cm in diameter),
as the rotational rate ranges from 24 to 192 rpm, the voltage can reach 30 to 80 V/◦ and
the corresponding minimum resolution is 8◦. Notably, the minimum resolution of this
grid structure can be further improved by reducing the width of the electrode. In all,
this present work demonstrates an active vector angle/displacement sensor composed of
a newly designed three-group electrode grating-structured freestanding nanogenerator,
which greatly expanded TENG’s accessibility and applicability in sensing applications due
to its facile fabrication process, excellent output performance, and vector characteristics.

2. Materials and Methods
2.1. Design and Fabrication of the SPVS

The fabrication of SPVS is mainly based on the current mature printed circuit board
(PCB) technology [16]. As schematically illustrated in the left of Figure 1a (SPVS with a
disc structure), the upper and lower PCBs are installed coaxially. The upper disc is the
rotor, and the bottom disc is the stator. Similarly, as for the strip-shaped SPVS (the right of
Figure 1a), the upper and lower strips of the PCB are the slider and the stator, respectively.

The Kapton film (~35 µm thick) is employed as the dielectric triboelectric materials. It
has been etched by ICP (inductively coupled plasma etching system) to achieve a rough
surface and then attached to the stator’s surface to enhance the output performance of
the SPVS [27]. In the ICP etching process, the Kapton film’s surface is rinsed with alcohol
and deionized water and then dried with nitrogen gas. The reaction gas of argon, oxygen,
and carbon tetrafluoride is introduced into the ICP chamber at flow rates of 15, 10, and
30 sccm, respectively, and etched by ICP for about 300 s (RF power is 100 W and ICP
power is 400 W), and finally, Kapton film with nanorod structure was fabricated. The
insert in Figure 1a represents the scanning electron microscopy (SEM) image of the etched
nanostructures on the Kapton surface, and the scale bar is 5 mm. Besides, the Kapton film
covered in the stator is visible in Figure S1.

Figure 1(bi,ii) depict the PCB optical photographs of SPVS with two different shaped
structures, respectively, where a set of interdigital electrodes on the bottom stators are
connected together by conducting wires. Moreover, the surface of the PCB substrate is
embedded with periodic copper pattern gratings, and the copper (~35 µm thick) is plated
with a layer of nickel-phosphorus alloy on the surface by electroless nickel/immersion
gold to prevent the copper on the PCB surface from being oxidized or corroded, thereby
enhancing the conductivity of the PCB circuit board. The base material of PCB is made of
stiff woven glass-reinforced epoxy resin (FR4). For SPVS with a disc structure, the central
angle corresponding to the electrodes A, B, and C is 5◦ and the gap between the bottom
electrodes is 3◦, and therefore, the minimum resolution is equal to 8◦. For the strip-based
structure SPVS, the width of the electrodes A, B, and C is 2 mm and the gap is 1 mm, and
thus, the minimum resolution is 3 mm. The corresponding circuit schematic diagram of
SPVS can be seen in Figure S2.
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2.2. The Working Principle of SPVS

The working principle of SPVS is shown in Figure 1(ci,ii), representing two different
measuring methods, respectively. Figure 1(ci) shows a connection that each bottom elec-
trode is connected out to the measuring equipment, with the other end of the measuring
equipment grounded. Another detection method is displayed in Figure 1(bii), where one
of the bottom electrodes serves as a common end, e.g., electrode B, and thus electrode A
and C acts as two output ends, forming two output voltage ports (Vop1 and Vop2).
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microscopy (SEM) image of the etched nanorods on the surface of Kapton film (the scale bar: 5 
μm). (b) Optical photos of disc-shaped and strip-shaped SPVS, where a set of interdigital elec-
trodes are connected together by conducting wires on their bottom stator. (c) Schematic operating 
principle of SPVS with two different detect modes. 
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3.1. FEA Potential Simulation of SPVS 
Figure 2 illustrates the finite element analysis (FEA, by COMSOL Multiphysics 5.4, 

Stockholm, Sweden) results of the open-circuit potential distribution on the disc-shaped 
and strip-shaped SPVS. As depicted in Figure 2a, for the research convenience and sim-
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central angle of the rotor to be 20° in the simulation model (the dashed line in Figure 2(ai)). 
With the rotor’s rotation from the initial position to the final position under a given gra-
dient of 30° in radian, the electric potential distribution diagram can be obtained in Figure 
2(ai–iv). 

Similarly, as shown in Figure 2b, there are five TENG units in the simulation model, 
where we set each TENG unit of the width of the electrodes and the gap between the 
bottom three electrodes (stator) to be 2 and 1 mm, respectively. By sliding 24 mm of the 
slider from the initial position to the final position under a given step length of 1 mm, the 
diagrams of three potential distribution states can be provided in Figure 2b. The inserted 

Figure 1. Structural design and working mechanism of the self-powered vector angle/displacement sensor (SPVS). (a)
Schematic illustrations of disc-shaped (left) and strip-shaped (right) SPVS as well as the corresponding enlarged view of
rotor/slider and stator. Inset: a scanning electron microscopy (SEM) image of the etched nanorods on the surface of Kapton
film (the scale bar: 5 µm). (b) Optical photos of disc-shaped and strip-shaped SPVS, where a set of interdigital electrodes are
connected together by conducting wires on their bottom stator. (c) Schematic operating principle of SPVS with two different
detect modes.

As the top freestanding electrode (rotor/slider) rotates/slides along the surface of
the Kapton film, contact electrification-induced charges will be generated and accumu-
lated on the surface of the two triboelectric layer materials (metal copper electrode and
Kapton film) [28,29]. In the initial stage, since the coupling effect of triboelectrification
and electrostatic induction, the surface of the bottom electrode A overlapping with the top
freestanding electrode will be negatively charged [30]. In contrast, the non-overlapped
electrode (bottom metal electrodes B and C) will be positively charged. Subsequently, the
bottom electrode A/B/C (stator) surface will alternately induce charges to bring about
potential outside with the freestanding layer’s electrodes continuously rotate/slide, and
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then several groups of voltage signals with a fixed phase difference obtained through
different ways of connecting the bottom electrode.

For the first connection method (the bottom electrode is grounded), as the rotor slides
to the left or right, free electrons keep flowing from electrode A/B/C to the ground until
the rotor returns to its initial state, forming three groups of voltage signals with a fixed
phase difference. For the second connection method, free electrons keep flowing from
electrode A to electrode B (or from electrode B to electrode C) until the rotor reaches the
final state where the charge density on both electrodes is reversed in polarity compared
with the initial state. Similarly, in this detection way, two groups of voltage signals with a
fixed phase difference can also be formed. Accordingly, we can achieve real-time sensing
of motion information by analyzing this analog signal in these methods, such as sensing of
movement direction, sliding displacement (or rotation angle), and speed.

3. Result and Discussion
3.1. FEA Potential Simulation of SPVS

Figure 2 illustrates the finite element analysis (FEA, by COMSOL Multiphysics 5.4,
Stockholm, Sweden) results of the open-circuit potential distribution on the disc-shaped and
strip-shaped SPVS. As depicted in Figure 2a, for the research convenience and simplicity,
we set the gap between each group of electrodes at the bottom to be 10◦ and the central
angle of the rotor to be 20◦ in the simulation model (the dashed line in Figure 2(ai)). With
the rotor’s rotation from the initial position to the final position under a given gradient of
30◦ in radian, the electric potential distribution diagram can be obtained in Figure 2(ai–iv).

Similarly, as shown in Figure 2b, there are five TENG units in the simulation model,
where we set each TENG unit of the width of the electrodes and the gap between the
bottom three electrodes (stator) to be 2 and 1 mm, respectively. By sliding 24 mm of the
slider from the initial position to the final position under a given step length of 1 mm, the
diagrams of three potential distribution states can be provided in Figure 2b. The inserted
enlarged image indicates the positional relationship between the top freestanding electrode
as well as the bottom electrode A/B/C at the initial position.
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Figure 2. COMSOL simulation of the SPVS with different structure mode. (a) Potential simulation of
disc structure (i), rotating from the initial state (ii) to final state (iv) under the rotation step of 30◦.
(b) Potential simulation of strip structure under three different states. The inset picture illustrates the
position relationship between the freestanding electrode and the bottom electrodes.

3.2. The Simulation Results of SPVS

Figure 3a–f shows the simulation results of two different connection modes of SPVS.
Since the simulation results of disc-shaped and strip-shaped are similar, the strip-shaped
SPVS are taken as an example for further analysis. To better understand the variation of
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electrode potential on each TENG unit, three points on the surface of the bottom three
groups electrodes were marked to obtain the potential distribution curve of the strip-shaped
SPVS using the method of parametric scanning.

For the first connection method (the bottom electrode is grounded), as shown in
Figure 3a,b, variations on potential curves of the bottom three groups of electrodes can be
induced as the slider (the freestanding electrode) slides 24 mm in different sliding directions.
However, since there is an immutable physical distance L1 between the bottom three group
electrodes of SPVS, three sets of output potential curves with a phase difference will be
acquired. The corresponding enlarged images in Figure 3c,d can vividly demonstrate
the phase relationship between the three groups of output potential signals as the slider
slides in different directions. To be specific, each set of output voltage curves has a phase
difference of L1, which is precisely equal to the distance between two adjacent bottom
electrodes and the distance of peaks between each potential curve. Besides, similar results
are capable of being given while the slider slides in the opposite direction.
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signals in different directions. (e,f) Theoretical calculation results of the slider sliding from left to right and from right to left,
respectively, under the second connection mode.

As for the second detection method, there exists a fixed phase difference between
the bottom electrodes AB and BC, and thus the output voltage signals will have a phase
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difference of L1. Figure 3e,f, exhibits the simulated output voltage signals of the slider under
different sliding directions, respectively, which is consistent with the theoretical analysis.

3.3. Strip-Shaped SPVS as a Vector Sensor

According to the simulation results mentioned above, an oscilloscope (type: DSO2014A
Keysight, Santa Rosa, CA, USA) has been employed for the experimental measurement.
The experiment setup is shown in Figure 4, respectively, for the testing of disc-shaped SPVS
(Figure 4a) and strip-shaped SPVS (Figure 4b).

Taking the measured results of strip-shaped SPVS as an example (measured by a
linear motor), as shown in Figure 5a,b, when the slider slides from left to right, three sets
of voltage signals with a fixed phase difference L1 can be continuously generated from
the bottom metal electrodes A/B/C (the first detection method is utilized), which can be
treated as “AB, BC, and CA,” where A, B, and C, respectively, represent the output voltage
waveform curve of electrodes A, B, and C. The peak-to-peak voltage of the strip-shaped
SPVS is highly about 300 V at the sliding velocity of 0.1 m/s, which the waveform of
the voltage signal is similar to the superposition of triangular waves and square waves,
indicating identical to the previous work and theoretical analysis. Subsequently, as the
slider slides from right to left (Figure 5a,c), the bottom metal electrode A/B/C will also
induct three sets of voltage signals in real-time, namely, “CB, BA, and AC.” Following the
method mentioned above, one of the six waveforms in those mentioned above will appear
once the slider’s sliding displacement is greater than the minimum resolution L1. Besides,
the sliding displacement L of the slider can also be calculated by counting the total peak
number of waveform N and substituting it into the formula L = N × L1, where N can be
obtained by peak-counting algorithm (including the functions of filtering and derivation).

For another connection method, two different channels on the bottom metal electrodes
A and B and electrodes B and C are connected to the oscilloscope (B is connected to the
negative terminal) to form voltage output ports Vop1 and Vop2, respectively. As illustrated
in Figure 5d,e–f, showing the electrical output performance of strip-shaped SPVS under
this connection way. Due to the different physical distances between the two adjacent
electrodes at the bottom, there will also generate two sets of voltage signals continuously
with a fixed phase difference equal to L1 as the slider slides from left to right or from right
to left. Moreover, similar to the first detection method for displacement calculation, for
the second connection method, the sliding displacement L of the slider can be obtained by
calculating the total number of wave peaks of Vop1 (or Vop2) N and substituting it into the
formula L = N × (L1 + L2) = 3L1, where L2 = 2L1.

It is worth noting that for the SPVS based on the disc shape, the above two methods
are also applicable, except that L1 represents the arc length of rotor rotation rather than
the linear displacement. Furthermore, based on the above analysis, we can conclude that
the resolution of the SPVS using the first connection method is higher than that of the
SPVS using the second connection method. However, compared with the first connection
method, the SPVS’s signal processing algorithm of the second connection method is simpler
because only two sets of signals are involved.
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3.4. Disc-Shaped SPVS as Vector Sensor

Figure 6 depicts the servo motor measured results of SPVS, since the electrical perfor-
mance of the disc-shaped/the strip-shaped SPVS is similar, taking the results of disc-shaped
SPVS as an example. For the first mode of three group electrode grounding detection, the
rotor rotates clockwise relative to the stator at the rotation rate of 24, 48, 96, and 192 rpm,
respectively, and the corresponding measured results are available in Figure 6(ai–iv), ex-
hibiting the peak-to-peak voltage value reach as high as 400 V with a significant phase
relationship after a comprehensive optimization. Similarly, three sets of output voltage
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curves with different phases can be obtained with the rotor rotating anti-clockwise at the
same rotation rate mentioned above (Figure 6(bi–iv)). It is noteworthy that the results of
sensing vector characteristics demonstrate that the output peak-to-peak voltage value could
reach high of 400 V, showing the advantage and feasibility of constructing a self-powered
vector measurement sensor based on TENG technology [31].

Based on the second detection mode of disc-shaped SPVS, the measured output
voltage results are depicted in Figure 6(ci–iv), representing the electrical performance of
disc-shaped SPVS at a clockwise rotation speed of 24, 48, 96, and 192 rpm. Similarly, as
shown in Figure 6(di–iv), when the rotor rotates counterclockwise relative to the stator,
the voltage curves can also be obtained at different rotation rates from 24 to 192 rpm. The
peak-to-peak voltage of this connection mode can reach about 500 V with a relatively less
triboelectric area, consistent with the simulation result and further verifying the TENG-
based self-powered vector sensor’s feasibility.
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alone. 
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without lowering the output voltage and increasing the area of the triboelectric layer, the 
SPVS could be applied for quantitative analysis of the movement with vector characteris-
tic. In addition, the resolution of SPVS reaches 8°/5 mm and simultaneously can be further 
improved by decreasing the width of electrodes. In addition, using advanced PCB pro-
cessing technology, SPVS will be stable facile to manufacture and low in cost, making it 
suitable for large-scale popularization. Furthermore, the SPVS of disc-shaped can be uti-
lized on real-time sensing of joint motion, water flow and mechanical bearing, etc. and 
strip-shaped SPVS as a self-powered stretchable sensor, displacement sensor, and droplet 
sensor, etc. Totally, the newly designed grating-structured TENG serving as a self-pow-
ered vector angle/displacement sensor has largely expanded TENG sensors’ accessibility 

Figure 6. Measurement results of SPVSs’ electrical outputs working in different connection mode. (a), (b) Output voltage of
disc-shaped SPVS at clockwise and anti-clockwise rotation speed of 24, 48, 96, and 192 rpm, respectively, under the first
connection mode. (c), (d) Output voltage of disc-shaped SPVS at clockwise and anti-clockwise rotation speed of 24, 48, 96,
and 192 rpm, respectively, under the second connection mode.

4. Conclusions

This work proposed a novel designed self-powered vector angle/displacement sen-
sor (SPVS) based on freestanding-mode TENG, consisting of three sets of interdigitated
electrodes with an identical period. By detecting the phase difference of output voltage
from different channels and calculating the total number of wave peaks, the active sen-
sor based on granting-structured TENG can realize real-time monitoring and sensing of
vector motion information of rotor/slider, such as angle/displacement and direction of
movement [14,20]. Not only the mentioned above but we also proposed two quite efficient
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detection methods, both of which could be applied as vector angle/displacement sensors
alone.

Furthermore, compared with other angles/displacement sensors based on TENG, the
novel SPVS based on three-sets grating-structured TENG primarily has the advantage
that without lowering the output voltage and increasing the area of the triboelectric layer,
the SPVS could be applied for quantitative analysis of the movement with vector charac-
teristic. In addition, the resolution of SPVS reaches 8◦/5 mm and simultaneously can be
further improved by decreasing the width of electrodes. In addition, using advanced PCB
processing technology, SPVS will be stable facile to manufacture and low in cost, making
it suitable for large-scale popularization. Furthermore, the SPVS of disc-shaped can be
utilized on real-time sensing of joint motion, water flow and mechanical bearing, etc. and
strip-shaped SPVS as a self-powered stretchable sensor, displacement sensor, and droplet
sensor, etc. Totally, the newly designed grating-structured TENG serving as a self-powered
vector angle/displacement sensor has largely expanded TENG sensors’ accessibility and
applicability due to its unique design, facile fabrication, excellent output performance, and
vector characteristics.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-666
X/12/3/231/s1, Figure S1: Kapton film with a thickness of around 35 µm is adhesive and can be
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