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Abstract
Bone structure dynamically adapts to its mechanical environment throughout on-
togeny by altering the structure of trabecular bone, the three-dimensional mesh-like 
structure found underneath joint surfaces. Trabecular structure, then, can provide a 
record of variation in loading directions and magnitude; and in ontogenetic samples, 
it can potentially be used to track developmental shifts in limb posture. We aim to 
broaden the analysis of trabecular bone ontogeny by incorporating interactions be-
tween ontogenetic variation in locomotor repertoire, neuromuscular maturation, and 
life history. We examine the associations between these variables and age-related 
variation in trabecular structure in the calcaneus of Japanese macaques (Macaca fus-
cata). We used high-resolution micro-computed tomography scanning to image the 
calcaneus in a cross-sectional sample of 34 juvenile M. fuscata aged between 0 and 
7 years old at the Primate Research Institute, Japan. We calculated whole bone av-
erages of standard trabecular properties and generated whole-bone morphometric 
maps of bone volume fraction and Young’s modulus. Trabecular structure becomes 
increasingly heterogeneous in older individuals. Bone volume fraction (BV/total vol-
ume [TV]) decreases during the first month of life and increases afterward, coinciding 
with the onset of independent locomotion in M. fuscata. At birth, primary Young’s 
modulus is oriented orthogonal to the ossification center, but after locomotor onset 
bone structure becomes stiffest in the direction of joint surfaces and muscle attach-
ments. Age-related variation in bone volume fraction is best predicted by an interac-
tion between the estimated percentage of adult brain size, body mass, and locomotor 
onset. To explain our findings, we propose a model where interactions between age-
related increases in body weight and maturation of the neuromuscular system alter 
the loading environment of the calcaneus, to which the internal trabecular structure 
dynamically adapts. This model cannot be directly tested based on our cross-sectional 
data. However, confirmation of the model by longitudinal experiments and in multiple 
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1  |  INTRODUC TION

Bone morphology is partially determined by genetic processes 
regulating growth and development, and partially by bone cells 
sensing and responding to their mechanical environment (Carter & 
Beaupré, 2001; Currey, 2002; Huiskes et al., 2000). The structure of 
spongy (trabecular) bone found inside bones is thought to be partic-
ularly responsive to mechanical stimuli (Carter et al., 1996; Carter & 
Beaupré, 2001; Kivell, 2016). The link between mechanical loading 
and the three-dimensional (3D) structure of trabecular bone allows 
locomotor and postural behavior to be reconstructed in fossil taxa 
(Bardo et al., 2020; Barak et al., 2013; Bishop et al., 2018; Dunmore 
et al., 2020; Kivell, 2016; Ryan et al., 2018; Ryan & Ketcham, 2002; 
Skinner et al., 2015; Stephens et al., 2016; Zeininger et al., 2016). 
To understand how variation in trabecular structure arises within 
and between species, it is imperative to understand how it forms 
during growth and development (Gosman & Ketcham, 2009; Ryan 
et al.,  2017; Ryan & Krovitz,  2006; Saers et al.,  2020). Indeed, al-
terations to ontogenetic trajectories are the principal ways 
in which evolutionary changes in life history and morphology 
occur (Gould,  1977; Hallgŕimsson & Hall,  2005; Kardong,  2018; 
Woronowicz & Schneider, 2019). Recent methodological and tech-
nological advances in the analysis of trabecular bone structure have 
opened new possibilities for studying the development of trabecular 
bone structure (DeMars et al., 2020; Gross et al., 2014). Here we 
apply these new techniques to analyze the ontogeny of trabecular 
structure in the calcaneus of Japanese macaques (Macaca fuscata).

The musculoskeletal system undergoes striking changes 
throughout growth and development. Movements starting in 
utero and continuously changing throughout development, gener-
ate loads that shape bone morphology into the general adult form 
(Carter & Beaupré, 2001). These processes are essential for gen-
erating the adult morphology that is required for typical species-
specific gait and posture (Tardieu, 1999). Mammalian locomotion 
usually develops in a stereotypical species-specific sequence of 
events that dramatically change how their skeletons are loaded 
(Doran,  1997; Lacquaniti et al.,  2012; Sarringhaus et al.,  2014). 
Changes in loading direction, magnitude, and frequency (Barak 
et al.,  2011; Rubin et al.,  2002; Sugiyama et al.,  2010) alter the 
trabecular structure during development so that the structure 
provides a “functional record” of behavioral changes through-
out development (Barak et al.,  2011; Gosman & Ketcham,  2009; 

Pontzer et al., 2006; Ryan et al., 2017; Ryan & Krovitz, 2006; Saers 
et al., 2020, 2021; Tsegai et al., 2018; Wolschrijn & Weijs, 2004). 
Although the study of trabecular bone development is in its in-
fancy, previous research on humans (Acquaah et al.,  2015; 
Colombo et al.,  2019; Cunningham & Black,  2009; Gosman & 
Ketcham, 2009; Raichlen et al., 2015; Reissis & Abel, 2012; Ryan 
et al., 2017; Ryan & Krovitz, 2006; Saers et al., 2020), great apes 
(Ragni,  2020; Tsegai et al.,  2018), and other mammals (Gorissen 
et al., 2016, 2018; Tanck et al., 2001; Wolschrijn & Weijs, 2004) 
suggests a strong link between changes in loading conditions as 
gait develops and responses in trabecular structure.

1.1  |  Trabecular bone ontogeny

The connections between trabecular morphology and habitual 
loading patterns have been demonstrated experimentally (Barak 
et al.,  2011; Biewener et al.,  1996), but trabecular bone ontogeny 
is still not yet thoroughly understood, particularly how the degree 
of plasticity versus genetic canalization varies throughout devel-
opment and into adulthood (Cunningham & Black, 2009; Gorissen 
et al.,  2016; Raichlen et al.,  2015; Reissis & Abel,  2012; Ryan 
et al., 2017; Saers et al., 2020). Bone growth occurs via the trans-
formation of growth plate cartilage into bone through a series of 
cell and matrix changes (Burr & Organ,  2017; Byers et al.,  2000; 
Parfitt et al., 2000). The transformation from growth plate cartilage 
to trabecular bone is similar among mammals, indicating a highly 
conserved process (Byers et al., 2000; Frost & Jee, 1994). This pro-
cess sets up a basic trabecular structure which can later be modi-
fied through metabolic and mechanical factors. Trabecular bone is 
laid out orthogonal to the growth plate in a dense and anisotropic 
structure which is later refined into bone- and species-specific het-
erogeneous adult states. Frost and Jee (1994) argue that the effects 
of mechanical usage during periods of rapid bone growth in early 
ontogeny explain many of the features observed during the ossifica-
tion process. They propose that mechanical strain is the controlling 
mechanism for endochondral ossification, in which the underloaded 
elements of the dense bone structure during the first years of life are 
removed and bone is added in strained areas, resulting in a mechani-
cally adapted state (Frost & Jee, 1994). This model correctly predicts 
observations of bone loss at early stages of ontogeny and explains 
it as the result of the removal of redundant material below a certain 

species would show that trabecular structure can be used both to infer behavior from 
fossil morphology and serve as a valuable proxy for neuromuscular maturation and 
life history events like locomotor onset and the achievement of an adult-like gait. This 
approach could significantly expand our knowledge of the biology and behavior of 
fossil species.

K E Y W O R D S
calcaneus, life history, macaques, ontogeny, plasticity, trabecular bone



    |  69SAERS et al.

strain threshold (Carter et al. 1991, 1996; Carter & Beaupré, 2001; 
Frost, 2003; Pivonka et al., 2018).

1.2  |  The brain–bone connection

Brains and trabecular bone have more in common than one might 
initially think. Both are made up of complex, interconnected 3D 
structures and broadly share developmental patterns. At birth, 
both trabeculae and neurons are overproduced (Collin & Van Den 
Heuvel,  2013; Rabinowicz et al.,  1996). Structures are refined to a 
more heterogeneous state during ontogeny through modeling in bone 
and synaptic pruning in neurons (Sakai, 2020). This happens under the 
influence of some input, presumably mechanical in terms of trabecular 
bone (Carter & Beaupré, 2001; Huiskes et al., 2000), and through neu-
ral activity in the brain (Sakai, 2020; Shatz, 1990). In both cases, there 
is a long history of debate as to how much of its respective morphol-
ogy is genetically canalized versus plastic in response to its environ-
ment, that is, nature versus nurture, and in both cases, the consensus 
is “both.” While starting with an excess of connections to remove many 
of them later may seem inefficient, the result is a state that is adapted 
to an individual’s specific environment. Indeed, this process is so ef-
ficient that it is found in many other tissues as well including connec-
tive tissues like ligaments and tendons (Grinnell, 2000) to the nervous 
system (Sakai, 2020).

The patterns of the growth and development of trabecular 
structure reviewed above are consistent with a model where a 
generalized trabecular structure is formed by dynamic adaptation 
to local, bone- and region-specific loading patterns. These loading 
patterns are generated by neural circuits that develop in paral-
lel to increases in physical size and weight of a growing organism 
(Forssberg,  1985). Locomotor patterns are transformed from an 
immature state to increasingly adult-like patterns during devel-
opment. During the early ontogeny of gait, infants are mainly fo-
cused on minimizing the risk of falling. When individuals increase 
in strength, stability improves, and postural constraints are re-
duced (Vaughan & Langerak, 2003). It is thought that development 
subsequently proceeds to select the most optimal neural net-
works (Forssberg, 1999), resulting in a reduction in the variability 
of muscle activation and co-contraction, and the adult gait pattern 
emerges (Okamoto et al., 2003). If trabecular structure is a reliable 
reflection of gait mechanics, then changes in trabecular structure 
during growth should reflect gait mechanics, which in turn reflects 
the degree of neurological maturation of locomotion, as well as an 
animal’s degree of precociality. If this link can be demonstrated, 
then trabecular structure could be a valuable proxy for neuromus-
cular maturation in fossil species.

Across mammals (Garwicz et al.,  2009) and birds (Iwaniuk & 
Nelson, 2003), adult brain size strongly predicts time to locomotor 
onset after conception. In addition, the onset of walking is strongly 
correlated with the timing of several important aspects of brain de-
velopment. In humans, locomotion is not just a developmental pre-
cursor to numerous psychological changes but plays a causal role in 

their formation (Anderson et al.,  2013; Campos et al.,  2000; Dahl 
et al., 2013; Uchiyama et al., 2008). The onset of human independent 
locomotion is followed by a revolution in perception-action coupling, 
spatial cognition, memory, and social and emotional development 
(Anderson et al., 2013). Research indicates that neural function and 
structure reciprocally influence one another throughout develop-
ment (Anderson et al., 2013; Campos et al., 2000), placing the activ-
ity of locomotor development in the center of development, rather 
than being just a consequence of neural maturation. In other words, 
the onset of independent locomotion is an important life history 
event related to adult brain size and the timing of neuromuscular 
development. If we can detect bony markers of locomotor devel-
opment, this would be able to provide a unique insight into fossil 
locomotion as well as aspects of life history (Zihlman, 1992).

1.3  |  Locomotor development in 
Japanese macaques

The basic locomotor characteristics of Japanese macaques appear in 
the first 2 months after birth (Dunbar & Badam, 1998; Kimura, 2000; 
Nakano,  1996; Torigoe,  1984). Newborns cannot walk, stand, or 
sit on their own and reflexively hang on to their mother for trans-
port. Initial, somewhat poorly coordinated quadrupedal move-
ments emerge in the second half of the first month (Nakano, 1996; 
Torigoe, 1984). Macaques begin to locomote primarily by walking in 
both diagonal and lateral sequences, followed after 4 weeks by occa-
sionally running and trotting (Nakano, 1996). Independent locomo-
tion away from the mother becomes regular after 2 months of age. 
Coordinated walking appears after 3 months. Prior to this, their style 
of walking is limited by the immature development of their muscu-
loskeletal system (Nakano, 1996). Locomotion becomes increasingly 
refined and independent throughout the first year of life (Dunbar & 
Badam, 1998). Locomotor activities include unskilled locomotion be-
tween 1 and 6 months when monkeys still frequently lose their foot-
ing. After 6 months, the macaques are skilled at both terrestrial and 
arboreal locomotion (Kimura, 2000; Nakano, 1996; Torigoe,, 1984).

Between the age of 1- and 3-years macaques enter the juvenile 
phase which contains the most diverse range of posture and locomo-
tion. Juveniles have a well-developed musculoskeletal system which, 
combined with a small body size, enables juvenile macaques to ex-
ploit terrestrial and arboreal environments to their fullest potential 
(Dunbar & Badam  1998). After the juvenile phase macaques are 
considered adults but they continue to grow in size, albeit at a de-
creasing rate, until around 10 years of age (Hamada et al., 2004). The 
postural and locomotor repertoires of adults are reduced compared 
to juveniles, potentially due to increases in body size. The largest re-
duction is among play behaviors in the small-branch setting of trees, 
and below-branch postures and locomotion disappear (Dunbar & 
Badam, 1998). Passive joint mobility of macaques declines rapidly be-
tween 6 and 15 months and more gradually afterward (DeRousseau 
et al., 1983;Turnquist & Wells, 1993; Wells & Turnquist, 2001). These 
studies on the ontogeny of joint mobility, postural, and locomotor 
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behaviors indicate that the most substantial changes in locomotor 
anatomy and behavioral control occur within the first 18 months of 
life (Turnquist & Wells, 1993; Wells & Turnquist, 2001).

Aims

If trabecular bone markers of behavior, neuromaturation, and life 
history variables such as the onset of independent locomotion 
can be established, reconstructions of the biology and behavior of 
fossil animals could be substantially improved. Our aim is to first 
document how trabecular structure of the calcaneus of Japanese 
macaques varies with age and body mass. We then test whether 
landmark events in the development of locomotion (independent 
locomotion, achievement of adult-like locomotor repertoires) in ma-
caques coincide with clear signals in the trabecular structure. We 
do this by analyzing whole-bone averages of standard trabecular 
properties (Table 1) as well as regional variation in the distribution 
of these properties throughout the calcaneus. Additionally, we aim 
to broaden the analysis of bone structure beyond pure locomotor 
mechanics by proposing a new way to incorporate the interactions 
between behavior and neuromuscular development, body size, and 
life history.

1.4  |  Predictions

If the development of trabecular structure is largely or partially 
mediated through mechanics (Carter & Beaupré,  2001; Huiskes 
et al., 2000) rather than genetic programming (Lovejoy et al., 2003), 
one would predict that the minimal locomotor-related loading during 
the first month might lead to either bone resorption or no change in 
bone volume (BV) relative to total volume (TV), while increases in 
loading after the onset of locomotion should result in bone forma-
tion (Frost, 2003; Pivonka et al., 2018). New mechanical stimulation 
after the onset of locomotion combined with increases in body size 
are predicted to initiate reorganization of the trabecular architecture 
throughout the calcaneus. Redundant trabeculae are expected to be 
removed, while trabeculae oriented in directions involved in the dis-
tribution of loads associated with locomotion are preserved or en-
larged, resulting in a reorganization of the primary direction of bone 
stiffness, and increases in bone volume fraction and average tra-
becular thickness (Tb.Th). After the onset of locomotion, trabeculae 

are expected to increase in regional variation in the amount of bone, 
bone stiffness, and average orientation of trabeculae. The highest 
bone volume fraction (BV/TV) is expected to be found where loads 
are applied to the calcaneus, including under joint surfaces (poste-
rior talar facet and calcaneocuboid joint) and the attachment sites of 
the Achilles tendon and the plantar ligaments (Giddings et al., 2000; 
Saers et al., 2020).

We predict the following events to invoke the following associ-
ated morphological signals:

1.	 Onset of locomotion: Whole-bone average BV/TV is expected 
to decrease before the onset of locomotion and increase af-
terward. As such, the slope of the relationship between BV/
TV and age will shift from negative to positive, trabeculae 
will become thicker, and primary stiffness will align within the 
direction of joint loading (Barak et al.,  2011; Ryan et al.,  2017; 
Saers et al.,  2020).

2.	 Appearance of adult-like locomotor repertoire: After locomotion 
has matured the only remaining effects on trabecular structure 
should be allometry as body size continues to increase. The slope 
of the relationship between BV/TV and age should become more 
shallow and follow allometric scaling with still increasing body size 
(Doube et al., 2011; Mulder et al., 2020; Ryan & Shaw, 2013; Saers 
et al., 2019). Based on our review of the ontogeny of joint mobility, 
postural, and locomotor behaviors above, we predict this change 
to a shallower slope after 18 months (Turnquist & Wells, 1993; 
Wells & Turnquist, 2001).

3.	 Neuromuscular maturation of gait: age-related variation in load-
ing patterns is generated by neural circuits that develop in parallel 
to increases in physical size and weight of a growing organism. As 
such, trabecular properties should be predicted by an interaction 
between body mass and neuromaturation. Here we use the esti-
mates of the percentage of adult brain size for age as a proxy for 
neuromuscular maturation.

2  |  MATERIAL S AND METHODS

2.1  |  Sample

We used high-resolution micro computed tomography (μCT) scan-
ning to image the calcaneus from the skeletal remains of 34 ju-
venile male Japanese macaques (Macaca fuscata fuscata) from a 

TA B L E  1  Definitions of trabecular bone properties

Measurement Abv. Description

Bone volume fraction BV/TV Ratio of bone volume to total volume of interest

Trabecular thickness Tb.Th (mm) Average trabecular strut thickness

Trabecular separation Tb.Sp (mm) Average distance between struts

Primary Young’s modulus E (MPa) The tensile stiffness of a solid material in the direction in which 
it is stiffest measured in a sphere
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colony housed in a large open-air enclosure at the Primate Research 
Institute, University of Kyoto (PRI) (Torigoe, 1984). The enclosure 
was designed to mimic the natural environment of Japanese ma-
caques and contains plentiful trees and climbing installations. 
Individuals are of known age and body weight at death, but the 
cause of death was not recorded. Specimens were μCT scanned at 
the PRI with a SkyScan1275 μCT scanner at 95 kV and 95 μA for 
2400 projections with an exposure of 0.216 s. CT scans were saved 
as 16 bit tiff stacks with isotropic voxel dimensions between 16 and 
22 μm depending on bone size. We tested for potential effects of 
variation in voxel dimensions by artificially reducing the voxel size 
from 16 to 22 μm in Amira 6.7.0 (Thermo Fisher Scientific) using 
the resample module with a Lanczos filter. Least-squares linear re-
gression analysis was run for each variable to test for significant 
influences of voxel size on trabecular properties. Downsampling 
individuals from 16 to 22  μm yielded identical results, indicating 
the voxel size differences do not affect the results. We calculated 
percentage of adult body mass for age in Macaca fuscata based on 
data from Hamada  (1994) and percentage brain volume for age 
by combining data from two studies (DeSilva & Lesnik, 2008; Van 
Minh & Hamada, 2017) and dividing by the average adult brain vol-
ume (105.6  cm3, DeSilva & Lesnik, 2008). When then fit the fol-
lowing curve to predict percentage of adult brain volume for age in 
months: 0.7417 × age0.0681.

2.2  |  Calculation of whole bone average 
trabecular properties

The 3D structure of trabecular bone was quantified using stand-
ard trabecular properties (Table  1) using ORS Dragonfly (Object 
Research Systems [ORS] Inc., www.theob​jects.com/drago​nfly). Tiff 
stacks were segmented into cortical and trabecular bone using the 
method described in Kohler et al.  (2007), following recommenda-
tions by (Bouxsein et al.,  2010). We calculated the average bone 
volume fraction (BV/TV), Tb.Th, and trabecular separation (Tb.Sp).

2.3  |  Three-dimensional mapping of 
trabecular structure

Segmented scans were categorized into three regions (cortex, tra-
beculae, and internal region of the bone) using Medtool 4.0 (www.
dr-pahr.at, Figure  1). Morphometric maps of BV/TV and primary 
Young’s modulus were generated following Gross et al.  (2014). A 
3D tetrahedral mesh was created of the internal region of the bone 
using CGAL (http://www. cgal.org). A mesh size of 0.6 mm was used. 
A 3.5 mm background grid was applied in three dimensions to the 
trabecular, and BV/TV and Young’s modulus were quantified at each 
node of the background grid using a 7 mm sampling sphere. The val-
ues from each sampling sphere were interpolated and applied to ele-
ments of the 3D tetrahedral mesh to generate morphometric maps. 
Changes in the orientation of average primary Young’s Modulus 
were investigated using a spherical volume of interest with a diam-
eter of 50% of the maximum posterior talar facet length (Figure 8).

2.4  |  Statistical analysis

Linear regressions and interactions between trabecular properties, 
age, and body weight were performed in R version 4.0.2 (R Core 
Team,  2021). Alpha level was set to 0.05 for all statistical tests. 
When comparing various regression models, the model with the 
lowest Akaike Information Criterion (AIC; Akaike,  1974) and high-
est R2 was chosen as indicating the highest model quality. Adding 
additional variables to a regression always increases the fit (R2) due 
to spurious correlations, this process is called overfitting and causes 
the model to learn too much from the data, resulting in poor predic-
tive power for non-measured samples. AIC measures the degree to 
which a model is overfit with lower values indicating a greater model 
quality (Akaike,  1974; McElreath,  2015). In addition to regular lin-
ear regression, we run piecewise regressions using the ‘segmented’ 
R package (Muggeo,  2008). Piecewise regression is a useful tech-
nique for finding significant changes in slope in the relation between 

F I G U R E  1  Medtool workflow example showing a sagittal slice through a calcaneus

http://www.theobjects.com/dragonfly
http://www.dr-pahr.at
http://www.dr-pahr.at
http://www
http://cgal.org
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a dependent and independent variable. The technique uses dummy 
variables and an interaction term to split a linear regression into mul-
tiple segments. The least-squares method is applied separately to 
each segment, by which the two regression lines are made to fit the 
dataset as closely as possible while minimizing the sum of squares 
of the differences between observed and predicted values of the 

dependent variable. We compared models with 0, 1, or 2 segments 
and chose the model with the highest R2 and lowest AIC as the high-
est quality model.

3  |  RESULTS

3.1  |  Bone properties with age

Mean trabecular properties calculated in the whole calcaneus are 
plotted against age in Figure 2 and trends during the first 8 month of 
life in Figure 3. At birth, BV/TV is relatively high followed by a sharp 
decline in BV/TV during the first month. BV/TV gradually begins to 
increase between the first and second months for roughly 2 years 
after which BV/TV flattens out. Tb.Th and Tb.Sp increase gradually 
with age from birth to 7 years of age (the maximum age of juveniles 
in the sample). The drop in BV/TV is correlated with an increased 
average distance between trabeculae (Tb.Sp) while mean trabecu-
lar thickness remains constant. After the first month of life, when 
macaques start to locomote somewhat regularly, BV/TV rises in 
concert with Tb.Th and keeping a relatively constant Tb.Sp. Indeed, 
change in BV/TV is very strongly correlated to Tb.Th (linear regres-
sion R2 = 0.77, p < 0.001, AIC = −102.5). Adding an interaction be-
tween Tb.Th and Tb.Sp increases R2 to 0.81 and has a slightly lower 
AIC of −105.7, indicating a higher model quality. These data suggest 
that much of the variation in BV/TV can be explained by an interac-
tion between average trabecular thickness and average distance be-
tween trabeculae. Figure 3 also shows that a reduction in BV/TV in 
the first month is driven by a reduction in bone volume (BV) and not 
by an increase in TV. The trend in Tb.Th/Tb.Sp shows a clear reduc-
tion in average Tb.Th relative to Tb.Sp. At birth the average Tb.Sp is 
roughly double that of the average Tb.Th. After 1 month, the average 

F I G U R E  2  Whole bone trabecular properties plotted against age 
in months. n = 34. BV/TV, bone volume fraction; Tb.Th, trabecular 
thickness; Tb.Sp, trabecular separation

F I G U R E  3  Whole bone trabecular properties plotted against age during the first 8 months of life. n = 34. BV/TV, bone volume fraction; 
Tb.Th, trabecular thickness; Tb.Sp, trabecular separation
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Tb.Sp is around four times higher than the average Tb.Th while Tb.Th 
remains unchanged.

We performed piecewise regressions and used maximum likeli-
hood to identify significant breaks in the relationship between age 
and trabecular properties (Figure  4, Table  2). For BV/TV, a piece-
wise regression model with two break points has a higher quality 
(adj. R2 = 0.85, AIC = −115.0) compared to a regular linear regres-
sion model (R2 = 0.61, AIC = −84.4). Break points were identified 
at 0.8 months with a standard error of 1.0, and one at 16.2 months 
with a standard error of 1.9. For Tb.Th, a model with a single break 
has the highest quality (adj. R2 = 0.88, lowest AIC = −107.2), and fits 
better than the standard regression model (R2 = 0.85, AIC = −102.1). 
Here the breakpoint is identified at 16.9  months with a standard 
error of 5.9 months. This break point overlaps with the second break 
point identified for BV/TV. For Tb.Sp, a piecewise regression model 
with one break point has is the highest quality model (R2  =  0.48, 
AIC = −20.0) The breakpoint occurs at 1.1 months with a standard 
error of 0.7 months and overlaps with the first break point identified 

for BV/TV. Overall, all the analyses reported here find significant 
breaks in the relationships between trabecular bone properties and 
age around two age points. The first break point (0.8–1.1 months) 
coincides with the period of locomotor onset in Japanese macaques 
which occurs on average around the end of the first months of life. 
The second break point, around 16–17 months, corresponds to the 
end of the period of the greatest changes in locomotor anatomy and 
behavioral control (12–18 months of life, Turnquist & Wells, 1993, 
Wells & Turnquist,  2001) and the eruption of the first permanent 
molars (Smith et al., 1994).

3.2  |  Bone properties with body weight

The relationship between age and body weight at death is plotted in 
Figure 5. Log–log plots of trabecular properties against body weight 
at death are shown in Figure 6. Regression coefficients for a linear 
model with body weight as a predictor and trabecular properties 

F I G U R E  4  Trabecular properties against age in months. Piecewise regression line segments are plotted as solid lines. The vertical dashed 
lines represent the maximum likelihood estimate of the break points, and the dotted vertical lines represent the standard error of the 
estimate. n = 34. BV/TV, bone volume fraction; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation

TA B L E  2  Piecewise regression model selection

Dependent variable Number of breaks Break points (age in months ± SE) Adj. R2 AIC p

BV/TV 0 0.61 -84.4 <0.001

1 19.6 ± 3.9 0.77 −102.4 <0.001

2 0.8 ± 1.0, 16.2 ± 1.9 0.85 −115.0 <0.001

Tb.Th 0 0.85 −102.1 <0.001

1 16.8 ± 5.9 0.88 −107.2 <0.001

2 No additional breaks could be estimated

Tb.Sp 0 0.36 −13.9 0.002

1 1.1 ± 0.7 0.48 −20.0 0.031

2 1.1 ± 0.8, 60.0 ± 26.0 0.48 −18.5 0.028

Note: Independent variable is age, dependent variable are trabecular properties, n = 34. 0 breaks = standard linear regression, 1 break = piecewise 
regression with one inflection point, 2 breaks = piecewise regression with two inflection points. Highest quality models in bold.
Abbreviations: AIC, Akaike Information Criterion; BV/TV, bone volume fraction; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation; SE, 
standard error.
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as dependent variables are provided in Table 3. Significant positive 
relationships were found between body weight and BV/TV, Tb.Sp, 
and Tb.Th. For Tb.Th and Tb.Sp the predicted isometric scaling coef-
ficient is 1/3 as body mass scales volumetrically (to the third power) 
and trabecular thickness scales by length (to the first power). As BV/
TV is a ratio it should scale with a slope of 0 under isometry. BV/TV 

and Tb.Th scale with positive allometry (Table 2) while Tb.Sp scales 
isometrically.

Regression parameters for models where trabecular properties 
are predicted by the interaction between body weight and locomo-
tor onset are given in Table 4. Individuals younger than 1 month are 
partially dependent on their mothers for locomotion and therefore 
coded as pre-locomotor onset, and those older than 1 month were 
coded as post-locomotor onset (Torigoe, 1984). The linear models 
with an interaction between body mass and locomotor onset given 
in Table 4 have higher R2 and lower AIC for BV/TV, Tb.Th, and Tb.Sp 
compared to the univariate linear models. This indicates that the 
interaction models have a greater fit to the data while at the same 
time not being overfit compared to the univariate models. BV/TV 
scales with a negative slope before locomotor onset and with a 
positive slope afterward. Tb.Sp scales with a positive slope before 
and after locomotor onset but the slope is significantly shallower 
afterward.

3.3  |  Morphometric maps

Figure  7 shows the heterogeneous distribution of BV/TV and pri-
mary Young’s modulus throughout sagittal cross sections of a subset 
of specimens. When BV/TV is scaled between the sample minimum 
of 0.14 and maximum of 0.70, trabecular structure appears relatively 
homogeneous at birth and becomes more varied regionally with age. 
When the colormaps are scaled to the minimum and maximum values 
for each individual, regional variation is evident at all stages. BV/TV is 

F I G U R E  5  Body weight at death plotted against age with a 
closeup detailing the first 8months. n = 34

F I G U R E  6  Natural log of body weight at death plotted against the natural log of trabecular properties. n = 34. BV/TV, bone volume 
fraction; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation

TA B L E  3  Regression coefficients of the natural logarithm (ln) of trabecular properties as dependent variable and ln body mass as the 
predictor, n = 34

Dependent 
variable Intercept Slope Slope SE df p R2 AIC Allometry

Ln BV/TV −1.008 0.215 0.025 32 <0.001 0.69 −32.92 Positive

Ln Tb.Th −1.746 0.457 0.025 32 <0.001 0.91 −33.71 Positive

Ln Tb.Sp −0.777 0.300 0.049 32 <0.001 0.54 11.37 Isometric

Abbreviations: AIC, Akaike Information Criterion; BV/TV, bone volume/total volume; SE, standard error; Tb.Th, average trabecular thickness (mm); 
Tb.Sp, average distance between trabeculae (mm).
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greatest directly underneath the joint surfaces, particularly of the pos-
terior talar facet. Trabecular structure becomes more heterogeneous 
with advancing size and age. With a sampling sphere size of 7 mm, and 
a length of 16 mm in the smallest specimen, some of the homogeneity 

of the smallest individuals may be due to the lower number of sampling 
spheres - interpolated onto a larger number of elements.

The primary Young’s modulus represents the direction of maxi-
mum bone stiffness taken at points uniformly distributed throughout 

TA B L E  4  Comparison of various regression models for each trabecular property, the best fit (highest R2) and highest model quality 
(lowest AIC) are in bold

Dependent Independent Adj. R2 AIC p

BV/TV BM 0.76 −103.6 <0.001

BM * onset 0.75 −101.2 <0.001

BM * percent adult brain size 0.81 −112.5 <0.001

BM * percent adult brain size * onset 0.87 −122.4 <0.001

Tb.Th BM 0.93 −119.7 <0.001

BM * onset 0.92 −117.8 <0.001

BM * percent adult brain size 0.93 −120.4 <0.001

BM * percent adult brain size * onset 0.92 −114.3 <0.001

Tb.Sp BM 0.42 −17.5 <0.001

BM × onset 0.53 −24.6 <0.001

BM * percent adult brain size 0.52 −24.4 <0.001

BM * percent adult brain size * onset 0.48 −17.7 <0.001

Note: N = 34. Onset = older than 2 months, independent if older than 2 months.
Abbreviations: AIC, Akaike Information Criterion; BM, body mass at death (kg); BV/TV, bone volume/total volume; Tb.Th, average trabecular 
thickness (mm); Tb.Sp, average distance between trabeculae (mm).

F I G U R E  7  BV/TV scaled between the sample minimum of 0.14 and maximum of 0.70 (left). BV/TV scaled to the minimum and maximum 
of each individual calcaneus (center left). Vectors show primary direction and magnitude of Young’s modulus (MPa) for each individual 
(center right). Slice through μCT scan (right). Bones are not to scale; all slices are mid-sagittal, n = 34. n = 34. μCT, micro-computed 
tomography; BV/TV, bone volume fraction; Tb.Th, trabecular thickness; Tb.Sp, trabecular separation
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the calcaneus (Figures 7 and 8). At birth, primary Young’s modulus 
is in the direction in which the bone is growing, orthogonal to the 
edge of the ossification center (Figure 8, bottom left). However, the 
primary direction of bone stiffness differs in individuals past the 
first month of age, when the macaques start to locomote regularly 
(Figure 8, top left). Measured from 12 o’ clock counterclockwise in 
a sagittal slice through the calcaneus underneath the posterior talar 
facet, the direction of the primary Young’s modulus changes from 
15–35° to 100–110° in all individuals aged greater than 1.8 months 
of age (Figure 8, right).

3.4  |  Bones and brains

Figure 9 shows the close overlap between attainment of adult brain 
size and adult-like BV/TV. While macaques reach their maximum 
adult body size between 10 and 12 years of age (Hamada, 1994), 
95% of maximum brain size is reached at 2 years of age and 100% 
at 5 years. BV/TV continues to increase slightly after the age when 
adult brain size has been obtained and body weight continues to 
increase. We can explain the patterns in Figure 9 with the follow-
ing model: while the brain is still growing, increases in neuromus-
cular control and locomotor experience make loading environment 
of the calcaneus, and by proxy trabecular structure, increasingly 
like that of adults. When the brain has reached its full size, neuro-
muscular control of locomotion, and locomotor loading conditions 
also approach the adult-like pattern. This model suggests that the 
steep early age-related variation in BV/TV found in the macaque 
calcaneus may be related to increasing neuromuscular control of 
gait with a slight positive allometry after gait has matured but 
when body mass continues to increase. We test this model using 
percent adult brain size as a proxy for neuromuscular control. 
In Table  4 we compare various types of models to assess which 
model predicts trabecular properties best (lowest AIC, highest R2). 
Variation in BV/TV is best explained by a three-way interaction 

between body mass, percentage of adult brain size, and locomotor 
onset. Trabecular thickness and separation are also explained by a 
two-way interaction between body mass and locomotor onset but 
differences between interaction models are limited as AIC and R2 
vary little between them.

4  |  DISCUSSION

We made the following predictions:

1.	 Onset of locomotion: we predicted that the slope of BV/TV 
with age in our sample should shift from negative to positive, 
that trabeculae would become thicker on average, and that 
Young’s modulus should change direction from orthogonal to 
the ossification center to joint surfaces. All these predictions 
are supported.

2.	 Appearance of adult-like locomotor repertoire: the greatest 
changes in locomotor anatomy and repertoire occur in the first 
12–18  months of life. We predicted that the slope of the rela-
tionship between age and BV/TV would become shallower after 
18 months of age and largely follow allometric scaling with still 
increasing body size. This prediction is supported.

3.	 Neuromuscular maturation of gait: We predicted that trabecular 
properties at different ages should be predictable by an interac-
tion between body mass and percent adult brain size. This predic-
tion is supported in BV/TV after adding in an extra interaction term 
for locomotor onset. The prediction is not supported for average tra-
becular thickness or separation.

The developmental trajectories of trabecular properties in 
the calcaneus of Japanese macaques resemble those of other 
mammals (Colombo et al., 2019; Ragni, 2020; Tsegai et al., 2018; 
Wolschrijn & Weijs,  2004) including humans (Gosman,  2007; 
Raichlen et al.,  2015; Ryan et al.,  2017; Ryan & Krovitz,  2006; 

F I G U R E  8  Sagittal slices through the calcaneus with black lines representing the direction in which Young’s modulus is greatest. On the 
right, the angle of the primary Young’s modulus is plotted against age (months) with the dotted line representing the timing of locomotor 
onset (~1 month). n = 8
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Saers et al.,  2020), indicating a generally shared mechanism of 
growth (Carter & Beaupré,  2001). The distribution of BV/TV is 
substantially more homogenous in younger individuals and be-
comes increasingly heterogeneous with age, like results reported 
by Tsegai et al.  (2018) for the chimpanzee postcranium. The de-
velopment of trabecular structure of the calcaneus of Japanese 
macaques follows the same patterns as the human calcaneus, but 
with differences in the timing of stages (Saers et al., 2020), as well 
as other postcranial elements (Acquaah et al.,  2015; Gosman & 
Ketcham, 2009; Raichlen et al., 2015; Ryan & Krovitz, 2006; Saers 
et al., 2020). In both species, bone is overproduced during early 
development with high BV/TV and struts largely oriented perpen-
dicular to the ossification center in the calcaneus, or the growth 
plate in long bones. In both species, BV/TV reduces after birth 
and begins to increase again at the same time when individuals 
typically begin independent locomotion. At the same time the 
primary Young’s modulus shifts in direction from orthogonal to 

the ossification center to orthogonal to the joint surfaces. This 
reorientation in the direction in which the bone is loaded helps 
to more efficiently distribute the loads placed upon the calcaneus 
during locomotion (Maquer et al., 2015; Roux, 1881; Wolff, 1867; 
Zysset,  2003). Contrary to our findings, Tsegai et al.  (2018) did 
not find the initial overproduction of trabecular bone, followed by 
a drop in BV/TV. However, their sample included two individuals 
between 0 and 5 months of age and it is unclear if they were new-
borns or already locomoting five-month-olds.

Previous work in the human calcaneus found that Tb.Th was 
largely predictable by increasing body mass throughout ontogeny 
(Saers et al., 2020), and our results are consistent with this observa-
tion. However, we do report for the first time a clear breakpoint in 
this trend where the slope between body mass and Tb.Th becomes 
shallower around 17 months of age. This age corresponds to the end 
of the period of the greatest development in locomotor anatomy 
and neuromuscular control (the first 18 months of life, Turnquist & 

F I G U R E  9  Summary of the paper findings. (Top) Proposed model underlying developmental variation in trabecular structure: Interactions 
between increasing body mass and increasing neuromuscular control and locomotor experience alter the locomotor loading conditions 
of the calcaneus, to which the trabecular structure dynamically adapts. (Middle) Three distinct phases of locomotor development can be 
identified based on changes in the slope of BV/TV with age. (Bottom left) BV/TV plotted against age in months. The black dots represent 
measured BV/TV, gray dots are predicted BV/TV based on the three-way interaction between locomotor onset, percent adult brain size, and 
body mass. This close correspondence supports the model proposed at the top of the figure. (Bottom right) Material stiffness direction and 
magnitude strikingly differ between the state at birth and after locomotor onset. Presumably, this variation in material stiffness is the result 
of locomotor loading transmitted through the posterior talar facet of the calcaneus. BV/TV, bone volume fraction
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Wells, 1993; Wells & Turnquist, 2001), and the eruption of the first 
permanent molars (18 months, Smith et al., 1994).

The relationship between Tb.Sp and age in the macaque cal-
caneus resembles that reported for the human calcaneus (Saers 
et al., 2020), humerus, and femur (Ryan et al., 2017). The average 
distance between trabeculae increases rapidly after birth (and the 
start of ossification). After this initial increase Tb.Sp continues to 
increase slowly with increasing age and body size. However, there 
is substantial individual variation in Tb.Sp of which roughly half can 
be explained by allometry (R2  =  0.54). The large amount of varia-
tion in Tb.Sp relative to Tb.Th and BV/TV areh consistent with re-
sults reported throughout the postcranium of humans (Gosman 
& Ketcham,  2009; Raichlen et al.,  2015; Ryan et al.,  2017; Saers 
et al., 2020), apes (Ragni, 2020), and ungulates (Gorissen et al., 2016).

4.1  |  The link between bones and brains

Locomotor patterns are transformed from an immature state to in-
creasingly adult-like patterns during development. Changes in load-
ing patterns with advancing age are generated by neural circuits 
that develop in parallel to increases in physical size and weight of 
a growing organism. Our results lend strong, but indirect support, 
for a model where trabecular structure is the product of age-related 
variation in loading conditions (Figure 9). These changes in loading 
conditions are a product of the development of gait which, in turn, 
is the product of neural maturation with age and experience. If this 
link is demonstrated experimentally, and in other species, trabecular 
structure could be used as a proxy not only for just development of 
locomotion but also neural maturation in fossil species. This brain–
bone connection would then serve as a powerful life history marker 
in fossil species.

4.2  |  Developmental trajectories of trabecular 
structure as a life history marker

We used piecewise regression analysis to locate potential inflection 
points in the relationship between age and trabecular properties. All 
identified inflection points occur around two age points: one around 
1 month of age (BV/TV, Tb.Sp), and the second around 17 months 
(BV/TV, Tb.Th). The first inflection point coincides with the period 
of locomotor onset in Japanese macaques which occurs on average 
around the end of the first months of life. The second inflection point 
corresponds to the end of the period of the greatest changes in lo-
comotor anatomy and behavioral control in macaques (18 months of 
life; Turnquist & Wells, 1993; Wells & Turnquist, 2001) and the erup-
tion of the first permanent molars (18 months, Smith et al., 1994). 
While some aspects of human bone morphology are genetically 
determined, others are environmentally induced. For example, the 
human lateral patellar lip is present already at birth (Lovejoy, 2007; 
Scheuer & Black, 2004), whereas the human bicondylar angle devel-
ops postnatally in response to mechanical loading associated with 

bipedal locomotion (Tardieu, 1999, 2010; Tardieu & Trinkaus, 1994). 
In terms of trabecular bone, Barak et al. (2011) showed experimen-
tally that differences in peak loading angle as well as magnitude alter 
trabecular bone orientation and BV/TV in sheep. Our ontogenetic 
data also suggest that age-related variation in trabecular structure 
corresponds to variation in loading conditions during landmark 
events in the maturation of gait (onset of locomotion, achievement 
of adult-like gait). As such, our results suggest that trabecular struc-
ture can potentially be used to infer the timing of locomotor onset 
and the achievement of adult-like locomotor repertoires. The advent 
of independent locomotion coincides with important aspects of 
mammalian brain size and neuromuscular development (Anderson 
et al., 2013; Campos et al., 2000; Garwicz et al., 2009). Patterns of 
locomotor development may therefore provide unique insights into 
the evolution of locomotor mode, how locomotion develops, neuro-
maturation, and the onset of independent locomotion in fossil spe-
cies (Figure 9).

5  |  Limitat ions

The data presented here correspond to a model where brain matura-
tion increases neuromuscular control of gait, which, in turn, affects 
the mechanics of gait, which then shape loading patterns of the foot 
to which trabeculae dynamically adapt. However, our study is cross-
sectional with a skeletal sample of individuals of whom we do not 
know the individual behavior during life. As such we cannot quantify 
the changes in mechanical loading over time directly. This study de-
sign cannot be used as evidence of a causal mechanism. Confirming 
our proposed model will require controlled experiments resulting in 
longitudinal data, ideally in several species.

The percentage of adult brain size is a very rough proxy for 
neural development and numerous changes in brain composition 
and wiring occur after adult brain size has been reached (Lebel & 
Beaulieu,  2011). However adult brain size in humans (calculated 
from Cofran & Desilva, 2015) is perfectly correlated (R2 = 0.99) with 
experimentally derived measures of neuromaturation (Vaughan & 
Langerak, 2003). This simple measure of percentage adult brain size 
is all that is available in paleontological contexts, and it is, therefore, 
encouraging that we can report such tight correlations.

6  |  CONCLUSIONS

The developmental trajectories of trabecular properties in the 
calcaneus of Japanese macaques are similar to other species, in-
dicating a broadly shared mechanism of growth. Trabeculae are 
overproduced at birth, followed by refinement leading to adapta-
tion to local conditions and resulting in a species and joint-specific 
heterogeneous state. The end of the first month of life, when the 
macaques begin to regularly locomote, coincides with striking 
changes in trabecular structure. This includes a sharp increase in 
BV/TV and a reorientation of the primary Young’s modulus from 
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orthogonal to the edge of the ossification center to the direction 
of joint surfaces. The results indicate that age-related variation in 
trabecular structure closely corresponds to the onset of independ-
ent locomotion and the achievement of an adult-like locomotor 
repertoire in Japanese macaques. Locomotor onset coincides with 
important aspects of mammalian brain size and neuromuscular 
development and provides a proxy for the degree of precociality 
of a species. Such bony markers of locomotor development could 
therefore be compared with other developmental milestones that 
track the overall pace of life history in fossil species. If the model 
presented in this paper holds up under longitudinal experimental 
conditions, trabecular structure can be used both to reconstruct 
locomotor ontogeny, neuromuscular maturation, and life history 
in fossil species.
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