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Abstract
Objective
To describe the WFS1 c.1672C>T; p.R558C missense variant, found in 1.34% of Ashkenazi
Jews, that has a relatively mild phenotype and to use computational normal mode analysis
(NMA) to explain the genotype-phenotype relationship.

Methods
The clinical, laboratory, and genetic features of 8 homozygotes were collected. A model of the
wolframin protein was constructed, and NMA was used to simulate the effect of the variant on
protein thermodynamics.

Results
Mean age at Wolfram syndrome (WS) diagnosis among homozygotes was 30 years; diabetes
(7/8) was diagnosed at mean age 19 years (15–21 years), and bilateral optic atrophy (withMRI
evidence of optic/chiasm atrophy) (6/8) at mean age 29 years (15–48 years). The oldest
patient (62 years) also had gait difficulties, memory problems, parietal and cerebellar atrophy,
and white matter hyperintense lesions. All retained functional vision with independent am-
bulation and self-care; none had diabetes insipidus or hearing loss. The p.R558C variant caused
less impairment of protein entropy than WFS1 variants associated with a more severe
phenotype.

Conclusions
The p.R558C variant causes amilder, late-onset phenotype ofWS.We report a structural model
of wolframin protein based on empirical functional studies and use NMA modeling to show a
genotype-phenotype correlation across all homozygotes. Clinicians should be alert to this
condition in patients with juvenile diabetes and patients of any age with a combination of
diabetes and optic atrophy. Computational NMA has potential benefit for prediction of the
genotype-phenotype relationship.
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Wolfram syndrome (WS) (OMIM 222300) is a rare
inherited autosomal recessive neurodegenerative disease.1 It
is characterized clinically by diabetes mellitus, bilateral optic
atrophy, and deafness.1,2 Diabetes insipidus and anterior
pituitary hypofunction have been described as well.3 Neu-
rologic complications, including bladder dysfunction, cere-
bellar ataxia, cognitive impairment, and psychiatric
disturbances, tend to present later as the disease
progresses.4,5 Classic brain MRI shows marked brainstem,
cerebellum, and optic atrophy.6 Individuals with WS have a
median lifespan of 30 years.7,8

WS is caused by a mutation in the WFS1 gene located on
chromosome 4p16.1, consisting of 8 exons. WFS1 encodes
the 890-amino-acid-long wolframin protein that is thought
to serve as a novel endoplasmic reticulum (ER) calcium
channel or regulator of channel activity.9,10 The genotype-
phenotype correlation is complex. Biallelic pathogenic
missense variants are less frequent and are associated with a
significantly later age at diagnosis of both diabetes mellitus
and optic atrophy than biallelic missense variants involving
at least one truncating mutation.11,12 Significant pheno-
typic differences have been reported among the different
missense variants.9,13 The WFS1 c.1672C>T, p.R558C
variant is reported in 1.34% of Ashkenazi Jews (see Web
Resources: omim.org; ncbi.nih.gov/clinvar/variation/
198835/; gnomad.broadinstitute.org/variant/4-6303194-
C-T?dataset=gnomad_r2_1). It was recently found to be
associated with a milder phenotype.14

The aim of this study was to describe the unique late-onset
phenotype caused by the p.R558C pathogenic variant and to use
computational normal mode analysis (NMA) to simulate the
effect of the missense mutation on the stability of the protein and
predict the genotype-phenotype relationship.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
The study was approved by the Rabin Medical Center In-
stitutional Review Board (Helsinki Committee 0187-19-RMC).

Study Design and Data Collection
A retrospective case series design was used. All patients enrolled in
the study were homozygotes for the WFS1 variant NM_
006005.3:c.1672C>T (p.Arg558Cys). Data were collected on
family history, demographics, medical history, and medications.
All patients underwent a neurologic/neuro-ophthalmologic eval-
uation including visual acuity, visual fields, color vision test, and
dilated fundus examination, and brain MRI.

Genetic Analysis
Genetic analysis included whole-exome sequencing (patients
5 and 6), WFS1 gene sequencing (patients 1, 3, and 4), and
targeted mutation analysis (patients 2, 7, and 8).

Data on the prevalence of the variant in the local population
were retrieved from the local database of 636 exome trios.

Wolframin Structure Prediction and NMS
As the structure of wolframin is not available, we used the
I-TASSER hierarchical protocol for automated protein structure
prediction.15 We identified a cytosolic, transmembrane, and lu-
minal domain, as previously published.16,17 The cytosolic domain
(residues 1–310) and the luminal domain (residues 655–890)
were modeled using the I-TASSER online server,15 and the
transmembrane domain (residues 300–670) was modeled using
the GPCR-I-TASSER online server.18 The resulting domains with
overlapping residues were stitched together using the PyMol
Molecular Graphics System, version 1.8 (Schrödinger, LLC,
Cambridge,MA). To select the best fittingmodel, transmembrane
structures with helices in opposite directions were chosen, and the
minimal root mean square deviation between stitched structures
was set at less than 2Å.Weeliminated all structureswith coinciding
residues in the z-plane for cytosolic and luminal residues with the
transmembrane domain. The remaining 5 structures were com-
bined to form a homotetramer model using the HSYMDOCK
server.19 This produced 500 different structures that were screened
for those most closely representing the properties of known cal-
cium channels according to previous publications20,21: pore di-
ameter 4–6.3 Å, smaller cytosolic than luminal pore size, and
formation of a channel by the transmembrane domains with a
maximal number of residues less than 20 Å between any 2 facing
subunits. These criteria were maximized to yield the modeled
structure. Each in silico missense variant was created by muta-
genesis plug-in using the PyMol system.

We compared the energetic effect of the p.Arg558Cys variant on
wolframin and searched the literature for other cases of WS due
to homozygous missense variants.9,13,22–25 The cases were di-
vided into 2 groups according to the reported phenotype: clas-
sical phenotype and/or presentation of symptoms at a younger
age (group 1) and milder disease affecting fewer organ systems
and/or presenting at an older age (group 2). Elastic network
contact model (ENCoM) coarse-grained NMA was used to
evaluate the effect of the missense variants on the stability of the
protein. This method is based on the ENCoM entropic con-
siderations C package,26 available at the ENCoM development
website (github.com/NRGlab/ENCoM), compiled on a
Ubuntu platform (Canonical Group, London, UK). Using
Matlab software (MathWorks, Natick, MA), for each variant, we
subtracted the WT complex entropy from the missense variant

Glossary
ER = endoplasmic reticulum; NMA = normal mode analysis; WS = Wolfram syndrome.
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entropy and normalized the difference (ΔG) to the maximum
absolute values. Cluster analysis was performed using MATLAB
software, as described previously.26

We defined an interval I2[mean(DG)- 0.5*std(DG),
mean(DG)+ 0.5*std(DG)] for each entropic DG profile.
I.S1 was defined as the absolute mean of DG values be-
longing outside the interval; I.S2 was defined as the abso-
lute mean of DG values belonging inside the interval; and
I.S3 was defined as the ratio of std (ΔG)/mean (ΔG). The
entropic profile of each variant compared with the WT
contained information on total relative protein stability
(mean ΔG) and range of fluctuations of the energetic
profile (std ΔG). In addition, we determined the most
pronounced perturbation of ΔG representing direct effects
close to the location of the mutation (S1) and distant effects

on ΔG by the mutation (S2). S3 represented the combined
stability and fluctuability of the variant protein compared
with the WT.

Data Availability
Anonymized data can be made available to qualified investi-
gators on request to the corresponding author.

Results
Demographic and Clinical Features
The study group consisted of 8 patients, 6 women and 2
men, of mean age 37 years (range 17–62 years) (table 1).
They included 8 homozygotes from 7 unrelated families (2
were sisters) of Ashkenazi Jewish origin.

Table 1 Characteristics of 8 Patients With WFS1 Variant c.1672C>Ta

Patient
Age/
sex

Age
at
Dx

DM
(age
at
onset)

OA
(age
at
onset) VA VF

Color
vision

Cataract
(age at
onset)

Neurologic
symptoms
(age at
examination)

Brain MRI
(age at
imaging)

Other
medical
conditions

DM in
family
members

1 42/F 33 Yes
(21)

Yes
(33)

R
6/8
L 6/
8.5

Bilateral
mild central
scotoma

R 2.5/
12
L 0/12

None (42) Optic chiasm
and optic
nerve atrophy
(42)

No

2 62/
M

32 Yes
(18)

Yes
(30)

R
6/
60
L 6/
30

Concentric
visual field
constriction

0/12 Neurogenic
bladder, mild
cognitive
impairment,
and gait
instability (60)

Optic chiasm,
optic nerve
atrophy,
cerebellar and
cerebral
atrophy, and
T2
hyperintense
changes (60)

No

3 41/F 31 Yes
(18)

Yes
(33)

R
6/
100
L 6/
40

Generalized
decreased
sensitivity

0/12 None (41) Optic chiasm
atrophy (31)

Adult
onset (F)

4 17/F 17 Yes
(15)

Yes
(15)

R
6/
10
L 6/
12

0/12 None (17) Optic nerve
atrophy (16)

Osteoid
osteoma

GDM +
adult-
onset (M)

5 30/F 30 Yes
(20)

No None (30) Normal (30) N/A

6 22/F 22 No Yes
(16)

R
6/
12
L 6/
12

0/12 None (22) Optic nerve
atrophy (25)

GDM (M)

7 27/F 27 Yes
(21)

No None (27) Not done Irregular
menses

GDM (M)

8 53/
M

53 Yes
(20)

Yes
(48)

R
6/8
L 6/
10

Concentric
visual field
constriction

0/12 Yes (25) None (53) Optic chiasm
and optic
nerve atrophy
(53)

Seminoma GDM (2
sisters) +
adult
onset (F)

Abbreviations: DM = diabetes mellitus; Dx = diagnosis; GDM = gestational diabetes; MCI = mild cognitive impairment; OA = optic atrophy; VA = visual acuity;
VF = visual fields.
None of the patients had diabetes insipidus or deafness.
a All patients were homozygotes for c.1672C>T.
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Mean age at genetic diagnosis of WS was 30.6 years (17–53
years). Insulin-dependent nonautoimmune diabetes mellitus
was the first clinical feature in 7 patients (87.5%). Diabetes
was diagnosed in 7/8 homozygotes at mean age 19 years
(range 15–21 years). Progressive bilateral optic atrophy was
diagnosed in 6 patients at mean age 29 years (range 15–48
years), and cataract was diagnosed in 1 patient at age 25 years.
All patients with optic atrophy had decreased visual acuity and
reduced color vision. None of the patients in the cohort had
sensorineural hearing loss or diabetes insipidus.

Other than optic atrophy, neurologic examination was normal in
9/10 patients. Patient 2, a 62-year-old man, had gait instability
and complained of memory loss that had started at age 59 years.

Montreal Cognitive Assessment score indicated mild cognitive
impairment mainly involving short-term memory.

Intrafamilial phenotypic heterogeneity was observed. Of the 2
sisters homozygous for the c.1672C>T variant, one (patient 6)
had optic atrophy and no evidence of diabetes, and the other
(patient 7) had diabetes and no evidence of optic atrophy.

The patients reported late-onset and/or gestational diabetes
in 5 first-degree relatives of whom 4 were obligate carriers.

Neuroradiologic Features
Brain MRI studies were conducted in 7/8 patients (table 1).
Six (75% of the cohort) showed evidence of optic nerve and/

Figure 1 Homotetrameric Model of the Wolframin Protein

Cytoplasmatic (A) and lateral view (B). Known variants are indicated by red dots in each of the 4 subunits, and the unique variant reported here (c.1672C>T;
p.R558C) is depicted in blue (no. 8). The known variants (red) are labeled in one of the subunits and are numbered from 1 to 7 for identification purposes
according to table 2. Each subunit is color coded (blue, green, yellow, and magenta). The differences between the entropic profile based on normal mode
analysis for the c.1672C>T; p.R558C variant to the entropic profile of the WT are shown for comparison (C). The y-scale is enlarged in the inlay for better
visualization. Clear energy differences from WT are shown. The same color code as in schemes A and B is used to represent the subunit.
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or optic chiasm atrophy. All also had clinical evidence of optic
atrophy. In the oldest patient in the cohort (patient 2, age 62
years), brain MRI also revealed cerebellar and cerebral atro-
phy mainly of the parietal lobes as well as T2-weighted signal
intensity changes in the periventricular white matter and
centrum semiovale areas.

Prevalence
The c.1672C>T variant was found in a monoallelic phase in
13 of 636 (2.5%) exomes evaluated at the Genetic Institute of
Rabin Medical Center. All carriers were of Ashkenazi Jewish
origin. The prevalence of the variant among all Ashkenazi
Jewish patients in our database was 13/350 (3.7%).

Construction of Wolframin
Functional Structure
The spatial structure of the wolframin protein is unknown.
Based on the assumption that wolframin behaves like a cal-
cium channel protein,9,10 we constructed a homotetrameric
model of theWT protein as described inMethods (figure 1, A
and B and supplementary PDB, links.lww.com/NXG/A401).

Energetic Profile of c.1672C>T (p.R558C) Variant
by NMA
Our literature search yielded 8 homozygous missense WFS1
pathogenic variants (table 2) located in the cytosolic domain
[c.472G>A (Glu158Lys)9], transmembrane domain [c.1672C>T

(Arg558Cys), c.1752T>G (Tyr528Asp)25 and c.1885C>T
(Arg629Trp)13], or luminal domain [c.2654C>T (Ser885Leu),23

c.2411T>C (Leu804Pro),24 c.2104G>A (Gly702Ser),22 and
c.1991T>C (Leu664Arg)9] (figure 1). Using in silicomutagenesis,
we studied the effect of each of these variants on protein ther-
modynamics using NMA and correlated the results to the clinical
phenotype. The entropic difference (ΔG) between theWTWFS1
complex and the missense variant described here (c.1672C>T;
p.R558C) is shown in figure 1C.

To investigate the protein’s energetic profile for each of the
variant structures, we performed NMA and calculated the
putative entropic changes (DG) by subtracting the WT en-
tropic profile as described before.26 The mean DG for each
variant indicated the total energetic stability of the structure
compared with theWT, whereas the SD indicated the range of
fluctuations of the energetic profile. Of interest, analysis of the
thermodynamic profile of 2 variants [c.1672C>T (Arg558-
Cys) and c.1752T>G (Tyr528Asp)] located in the trans-
membrane domain and associated with a milder clinical
phenotype (table 2) resulted in negative values of mean
DG. This implied that the protein was energetically more
stable than the WT. To compare the thermodynamic
profiles of the variants (represented by red dots in figure 1,
A and B), we combined the entropic profile scores (S1, S2,
S3) of each variant. We found a clear separation of variants
with a mild phenotype [c.472G>A (Glu158Lys), c.1672C>T

Table 2 Cases of Wolfram Syndrome due to Homozygous Missense Variants Reported in the Literature WFS1 Variant

DM (age
at onset)

OA (age
at onset)

Deafness
(age at
onset)

DI (age
at
onset)

Neurologic
symptoms (age at
onset)

Neurogenic
bladder (age at
onset)

Location of
mutation

Group by
severitya

1 c.1885C>T
(Arg629Trp)
13

Age not
reported

Age not
reported

Age not
reported

Age not
reported

Age not reported Age not reported Transmembrane 1

2 c.1991T>C
(Leu664Arg)9

3 12 17 Luminal 1

3 c.2104G>A
(Gly702Ser)
22

10 27 Luminal 1

4 c.2411T>C
(Leu804Pro)
24

5 9 Luminal 1

5 c.2654C>T
(Ser885Leu)
23

5 9 12 Luminal 1

6 c.472G>A
(Glu158Lys)9

27 19 39 Cytosol 2

7 c.1752T>G
(Tyr528Asp)
25

9 24 24 25 Transmembrane 2

8 c.1672C>T
(Arg558Cys)

18 29 Transmembrane 2

Abbreviations: DI = diabetes insipidus; DM = diabetes mellitus, OA = optic atrophy.
a Group 1—classical phenotype and/or presentation of symptoms at a younger age; group 2—milder disease affecting fewer organ systems and/or pre-
senting at an older age.
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(Arg558Cys), and c.1752T>G (Tyr528Asp)] and variants
with a severe phenotype. The resulting characterization of all
variants showed monotonically decreasing dependence of the
combined scores as a function of phenotype and residue
number (figure 2A). The segregation of the variants according
to the thermodynamic scores is shown in the clustergram
(figure 2B), with those associated with a mild phenotype
clustered together, separate from those associated with a se-
vere phenotype (table 2).

Discussion
We describe a unique relatively mild phenotype of WS in Ash-
kenazi Jews caused by the common c.1672C>T founder patho-
genic variant. We constructed a structural model of wolframin
based on empirical functional studies and used protein thermo-
dynamics modeling with NMA to study the effect of the mutation
on protein stability and predict variant-associated disease severity.

Our data provide evidence of the pathogenicity of this variant,
designated “conflicting interpretations of pathogenicity” by Clin-
Var with referral to 6 submissions 4 were defined as pathogenic/
likely pathogenic and 2 as of uncertain significance. The reported
frequency in Ashkenazi Jews is 1.72% in GnomAD genomes and
1.33% inGnomADexomes (seeWebResources: omim.org; ncbi.
nih.gov/clinvar/variation/198835/; gnomad.broadinstitute.org/
variant/4-6303194-C-T?dataset=gnomad_ r2_1). The variant is
rare in other ethnic groups, with an allele frequency of 0.000246
among Europeans. It has been reported a few times in the
past.14,27–29 One homozygous patient had only juvenile diabetes
and none of the other features typical of WS syndrome,27 and
another was diagnosed with diabetes mellitus at age 33 years and
with optic atrophy at age 53 years.29 Bansal et al.14 reported on 8
homozygotes in a cohort of 475 individuals diagnosed with type 1

diabetes at a relatively late age (mean 17.8 ± 8.3 years) with low
penetrance of optic atrophy. This variant was also observed in
compound heterozygous combination with other variants in
several individuals with WS.28

Most homozygotes in our cohort presented with slowly pro-
gressive bilateral optic atrophy. Thus, although they retained
functional vision enabling independent ambulation and self-care,
the penetrance of optic atrophy was high, in contrast to the
report of Bansal et al.14 In one of our patients, neurologic
complications of WS developed at the age of 59 years suggesting
that other features of WS might also evolve at a later age.

Diabetes mellitus was the first and the most common pre-
sentation in our cohort, although mean age at its diagnosis was
higher than expected in WS. There have been reports of
dominant inheritance of WS.30 Although none of the hetero-
zygote family members of our cohort reported features of WS,
5 of them had adult-onset or gestational diabetes. This is in line
with a previous study by Bansal et al.,27 in which analysis of
sequence and genotype data in 2 case-controlled cohorts of
Ashkenazi ancestry, demonstrated an association of this variant
with an increased risk of type 2 diabetes in heterozygotes (odds
ratio 1.81, p = 0.004). Single genemutations that affect beta-cell
function account for 1–2% of all cases of diabetes. However,
phenotypic heterogeneity and lack of family history of diabetes
mellitus can limit the diagnosis of monogenic forms of diabetes.
Identification of WS in individuals diagnosed with diabetes in
childhood or adolescence is important because the manage-
ment and prognosis of WS differs from type 1 diabetes.31

Suspicions should also be raised in the presence of a finding of
islet-cell autoantibodies that are positive in 10–20% of patients
with WS.32 Early diagnosis of WS may improve an individual’s
prognosis, potential treatment or referral to clinical trials, and

Figure 2 Thermodynamic Profiles of the Variants

Combined normalized scores describing the entropy (S1*S2 *S3) per variant. The differences in entropy scores are displayed for comparisons (A). Results of
cluster analysis using a hierarchical clustering heatmap of the change in the normalized scores (S1, S2, and S3) for all variants (B). The vertical axis displays the
individual variants analyzed (right). Color scale represents normalized z-scores.
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detection of WS-related complications, and hasten genetic
counseling of family members.

Previous empirical studies implied that WFS1 functions as a
Ca2+ ion channel.20,21 We present a structural model based on
empirical and functional studies of WFS1. Following the selec-
tion of one of the homotetrameric structures best representing
known Ca2+- channel properties, NMA modeling provided ex-
cellent genotype-phenotype correlation across all homozygous
variants. The agreement of the modeled thermodynamic fluc-
tuations with the clinical consequences of the variants suggests
that our structural model is close to the still unresolved structure
of WFS1. Moreover, NMA and thermodynamic fluctuations
correlate with functional data and are strong indicators of
phenotype-genotype correlations.26 The computational analysis
of the thermodynamic profile of the variants revealed a location-
based separation. Variants located in the transmembrane domain
seemed to be energetically more stable than the WT except
those situated in the ion channel pore possibly explaining the
severe phenotype seen in the c.1885C variant. This finding
supports previous published evidence of more pronounced
functional effects of mutations located outside the trans-
membrane domain.16 In addition, a clear entropy-based dis-
tinction was seen between variants associated with a milder
phenotype, which were clustered together and separated from
variants with a more severe phenotype.

We have shown the unique thermodynamic profile caused by the
p.R558C variant. As ER stress has been suggested to be involved
in the pathogenesis of WS,33 it seems reasonable to assume that
among homozygous for this variant, regulation of the unfolded
protein response pathway, and consequently on ER stress, is
mildly disturbed. However, further studies are needed to cor-
relate between the various thermodynamic profiles, their effect
on the pathogenic mechanisms leading toWS, and their effect of
the on the extent of ER stress. This might also help design a
mutation-based therapeutic strategy for patients with WS.

Carrier screening is recommended for many recessive diseases,
particularly in Ashkenazi Jews.34 The p.R558C WS variant has
an estimated carrier frequency of 1/36 in this population. Al-
though homozygotes have a milder form of WS, it is still as-
sociated with significant morbidity. Therefore, adding this
variant to carrier screening panels might be considered.

In conclusion, WFS1 p.R558C is a very common pathogenic
variant among Ashkenazi Jews. It is associated with a milder
phenotype but high morbidity. Protein modeling and ther-
modynamic NMA suggest a structural mechanism that may
explain the milder phenotype. Our findings provide proof of
concept for the use of mutated protein structural modeling and
energetic analysis to predict phenotype severity in yet un-
discovered pathogenic variants of WS. Clinicians should be
alert to this variant among young Ashkenazi Jewish patients
with early-onset diabetes, even if positive for autoimmune an-
tibodies, and in adults with diabetes mellitus and optic atrophy.
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