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The polygenic risk score (PRS) is calculated as the weighted sum of an individual’s
genotypes and their estimated effect sizes, which is often used to estimate an individual’s
genetic susceptibility to complex traits and disorders. It is well known that some complex
human traits or disorders have sex differences in trait distributions, disease onset,
progression, and treatment response, although the underlying mechanisms causing
these sex differences remain largely unknown. PRSs for these traits are often based
on Genome-Wide Association Studies (GWAS) data with both male and female samples
included, ignoring sex differences. In this study, we present a benchmark study using both
simulations with various combinations of genetic correlation and sample size ratios
between sexes and real data to investigate whether combining sex-specific PRSs can
outperform sex-agnostic PRSs on traits showing sex differences. We consider two types
of PRS models in our study: single-population PRS models (PRScs, LDpred2) and
multiple-population PRS models (PRScsx). For each trait or disorder, the candidate
PRSs were calculated based on sex-specific GWAS data and sex-agnostic GWAS
data. The simulation results show that applying LDpred2 or PRScsx to sex-specific
GWAS data and then combining sex-specific PRSs leads to the highest prediction
accuracy when the genetic correlation between sexes is low and the sample sizes for
both sexes are balanced and large. Otherwise, the PRS generated by applying LDpred2 or
PRScs to sex-agnostic GWAS data is more appropriate. If the sample sizes between sexes
are not too small and very unbalanced, combining LDpred2-based sex-specific PRSs to
predict on the sex with a larger sample size and combining PRScsx-based sex-specific
PRSs to predict on the sex with a smaller size are the preferred strategies. For real data, we
considered 19 traits from Genetic Investigation of ANthropometric Traits (GIANT)
consortium studies and UK Biobank with both sex-specific GWAS data and sex-
agnostic GWAS data. We found that for waist-to-hip ratio (WHR) related traits,
accounting for sex differences and incorporating information from the opposite sex
could help improve PRS prediction accuracy. Taken together, our findings in this study
provide guidance on how to calculate the best PRS for sex-differentiated traits or
disorders, especially as the sample size of GWASs grows in the future.
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INTRODUCTION

Many traits or complex diseases result from the combined
influence of many genetic variants and other risk factors. The
polygenic risk score (PRS) is a measure of an individual’s genetic
susceptibility to a trait or complex disorder. It is calculated as the
weighted sum of an individual’s genotypes and their estimated
effect sizes. The PRS is developed to use genetic information to
predict complex disorders and can also be informative to assess
genetic overlap between traits (Choi et al., 2020). Because most
individual variants only have weak effects on disease risk (Lewis
and Vassos, 2020), the PRS is often calculated over a large number
of single nucleotide polymorphisms (SNPs) to improve
prediction accuracy. Ideally, the variability of phenotype
explained by the PRS in the testing samples should be close to
the heritability explained by the SNPs if the effect sizes of SNPs
are accurate. However, because of uncertainties in the effect size
estimation and inherent discrepancies between populations, the
predictive power of PRSs is often significantly lower than that of
SNP heritability (Choi et al., 2020). Aside from the simple PRS
predictionmethod [e.g., P + T (Euesden et al., 2015)], a number of
Bayesian methods have been developed to improve effect size
estimation via different prior distribution specifications, leading
to better prediction accuracy. In this article, we focus on three
such PRS models, including PRScs (Ge et al., 2019), LDpred2
(Priv é et al., 2021), and PRScsx (Ruan et al., 2021) that have been
shown to be among the best PRS methods (Ge et al., 2019; Privé
et al., 2021; Ruan et al., 2021). Two of these methods, PRScs and
LDpred2 (Ge et al., 2019; Priv é et al., 2021), are single-population
PRS methods, whereas PRScsx (Ruan et al., 2021) is a multiple-
population PRS method that was developed for cross-population
predictions. The PRScsx framework can also be used for cross-sex
predictions when females and males are considered separate
populations.

In the applications of the PRS to different traits and disorders,
the input is the summary statistics from genome-wide association
studies (GWAS), which often combines female and male samples
with the implicit assumption that the effect sizes are the same
between the two sexes. However, many investigations have
suggested sex differences in traits and in the risk of developing
complex disorders in recent years. For example, in the context of
Alzheimer’s disease, females acquire verbal memory impairments
later but exhibit decline faster than in males (Caldwell et al.,
2017). There are obvious differences between males and females
in anthropometric traits (Traglia et al., 2016). Another example
are the blood cell traits, which reveal well-known sex differences
when researchers explore the role of sex in genetic effects on these
traits (Khramtsova et al., 2018). It has been shown that PRSs for
around half of the blood cell traits result in different levels of
stratification between men and women (Xu et al., 2022).
Furthermore, when a sex-stratified GWAS meta-analysis for
lipid levels was performed to evaluate the underlying
biological pathways and mechanisms of blood lipid levels
(Kanoni et al., 2021), it was discovered that three to five
percent of autosomal lipid-associated loci had sex-biased
effects and that many of these sex-biased autosomal lipid loci
have pleiotropic associations with sex hormones (Kanoni et al.,

2021). Some of these sex differences are thought to be explained
by genotype-by-sex interactions (GxS). A biobank-scaled study of
about 530 phenotypes gave insights into both the scope and
mechanism of GxS, revealing tiny but broad sex differences in
genomic architecture across phenotypes (Bernabéu et al., 2021). It
also suggests that sex-agnostic studies may be overlooking trait-
associated loci and that utilizing sex-specific SNPs may enhance
prediction (Bernabéu et al., 2021).

To address sex-specific genetic effects, sex-specific PRSs have
been developed and evaluated (Roberts et al., 2019; Fan et al.,
2020; Flynn et al., 2020). However, there has not been a detailed
study on whether and how GWAS results for females and males
should be considered in producing PRSs to achieve better
prediction accuracy for both sexes. In this study, we perform
comprehensive simulations and real data analysis to assess the
performance of three GWAS-based PRS methods, namely PRScs,
PRScsx, and LDpred2, with different strategies to generate PRSs.
In simulations, the phenotypes were generated using UK Biobank
genotype data (Bycroft et al., 2018), and we considered both
balanced and unbalanced sample sizes of females and males. We
further compared the performance of these approaches under
various settings of genetic correlation and heritability. In real data
analysis, we evaluated these models using sex-specific and sex-
agnostic GWASs from the Genetic Investigation of
ANthropometric Traits (GIANT) collaboration (Randall et al.,
2013). We also generated sex-specific and sex-agnostic GWASs
from the UK Biobank (Bycroft et al., 2018) using BOLT-LMM
(Loh et al., 2015) to do further real data analysis. Our results shed
light on the utility of sex-specific PRSs, and we offer
recommendations for their use in a variety of contexts.

RESULTS

Overview of Polygenic Risk Score
Construction
The PRS methods considered in our work can be classified into
two categories: those designed for one population [PRScs (Ge
et al., 2019) and LDpred2 (Priv é et al., 2021)] and for multiple
populations [PRScsx (Ruan et al., 2021)]. One-population
methods only take one set of GWAS summary statistics as
input, whereas multiple-population models can use GWAS
summary statistics from several populations. In this study, we
treat males and females as separate populations and generate
three types of GWAS summary statistics: 1) female-specific
GWAS summary statistics based on female samples only; 2)
male-specific GWAS summary statistics based on male
samples only; and 3) sex-agnostic GWAS summary statistics
considering both female and male samples. Applying PRScs
and LDpred2 to the sex-agnostic GWAS summary statistics
generated sex-agnostic PRScs and sex-agnostic LDpred2
scores. Sex-specific PRScs and sex-specific LDpred2 were
produced when we applied PRScs and LDpred2 to respective
sex-specific GWAS summary statistics. Since PRScsx calculates
PRS for each population, when we input both female- and male-
specific GWAS summary statistics, we could obtain female- and
male-specific PRScsx simultaneously. Based on sex-specific PRSs,
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we can generate combined sex-specific PRSs (PRScs-mult,
LDpred2-mult, and PRScsx-mult). They represent the optimal
linear combination of sex-specific PRSs whose weights are
learned on the validation data set. Thus, in total, we have 11
different PRSs: female-specific PRScs (PRScs-f), male-specific
PRScs (PRScs-m), sex-agnostic PRScs (PRScs-all), combined
sex-specific PRScs (PRScs-mult), female-specific LDpred2
(LDpred2-f), male-specific LDpred2 (LDpred2-m), sex-agnostic
LDpred2 (LDpred2-all), combined sex-specific LDpred2
(LDpred2-mult), female-specific PRScsx (PRScsx-f), male-
specific PRScsx (PRScsx-m), and combined sex-specific PRScsx
(PRScsx-mult). The workflow for each PRS’s construction is
shown in Figure 1.

Simulation
We first conducted simulations to evaluate the prediction
performance of sex-agnostic PRSs, sex-specific PRSs, and
combined sex-specific PRSs derived from various PRS
methods. We simulated individual-level genotypes of the white
British population from the UK Biobank data for HapMap3
variants whose minor allele frequencies are larger than 1%
(1,195,561 SNPs). We chose 1 KG Phase 3 European samples
as our reference panel for all PRS methods. With balanced female
and male sample sizes, we considered three sample sizes (females/
males: 5,000/5,000; 25,000/25,000; 100,000/100,000) as the
training data set to construct sex-specific and sex-agnostic
GWAS summary statistics. We also conducted a simulation
with unbalanced heritability between sexes when the sample
sizes were 25,000 females and 25,000 males. In the unbalanced
sample size settings, we considered three scenarios: females/
males: 2,500/12,500, females/males: 10,000/50,000, and
females/males: 50,000/10,000. We simulated 5,000 females and
5,000 males to form the validation data set, and another 5,000
females and 5,000 males as the testing data set. There was no
overlap among the training, validation, and testing data sets.
Among all the SNPs, we randomly sampled ~0.1% HapMap3

variants (1,200 SNPs) as causal variants for each sex and assumed
that the causal variants were shared across sexes and their effect
sizes followed a bivariate normal distribution with genetic
correlation (rg) set to 1, 0.8, and 0.5, respectively. We also
considered the situation when only a subset of causal variants
was shared across sexes. We conducted a simulation with 80% of
causal variants shared across sexes and their effect sizes following
a bivariate normal distribution with genetic correlation (rg) set to
0.8 and 0.5. The squared correlation (R-squared) between
simulated traits and predicted traits was calculated to evaluate
the performance of the PRSs, and each simulation setting was
repeated ten times.

Balanced Sample Size
The simulated traits of both males and females were generated by
the sum of all causal markers, weighted by the true effect sizes
with the heritability of 0.3. We applied PRScs, PRScsx, and
LDpred2 to sex-specific GWAS summary statistics generated
from 5,000 female/male samples and sex-agnostic GWAS
summary statistics generated from 10,000 samples. Sex-
agnostic LDpred2 (LDpred2-all) showed the best prediction
performance for both sexes and in all genetic correlation
settings (Supplementary Figure S1). When the sample size
was increased to 25,000 females and 25,000 males, combined
sex-specific LDpred2 (LDpred2-mult) had a higher prediction
accuracy than the other PRSs when the genetic correlation
between the sexes was 0.5. However, when the genetic
correlation was 1 or 0.8, the sex-agnostic LDpred2 (LDpred2-
all) consistently outperformed the other PRSs (Supplementary
Figure S2; Table 1). When the sample size was increased to
100,000 females and 100,000 males, sex-agnostic PRScs (PRScs-
all) performed the best when the genetic correlation was 1,
especially better than sex-agnostic LDpred2 (LDpred2-all),
which may indicate that PRScs performs better than LDpred2
when the sample size is very large. However, when the genetic
correlation decreased to 0.5 and 0.8, combined sex-specific

FIGURE 1 | Overview of the 11 PRSs considered. The inputs are female-specific GWAS summary statistics, male-specific GWAS summary statistics, and sex-
agnostic GWAS summary statistics; PRS methods include PRScs, LDpred2, and PRScsx; validation samples are used to tune hyperparameters of PRSs and find the
optimal weights of sex-specific PRSs; testing samples are to assess prediction accuracy.
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PRScsx (PRScsx-mult) outperformed the other methods, and it
had a similar performance to the corresponding sex-specific
PRScsx (Supplementary Figure S3; Table 1). In this case,
combined sex-specific PRScsx (PRScsx-mult) started to
perform better than combined sex-specific LDpred2 (LDpred2-
mult) which may further indicate methods using continuous
shrinkage prior (PRScs, PRScsx) may have better prediction
performance than LDpred2 when the sample size is very large.
Furthermore, in all simulations, the combined sex-specific
PRScsx (PRScsx-mult) outperformed the combined sex-specific
PRScs (PRScs-mult) and the sex-specific PRScsx outperformed
the sex-specific PRScs, indicating that integrating GWAS
summary statistics from multiple populations could improve
PRS prediction. We also conducted a simulation when the
proportion of causal SNPs shared across sexes was 80%
(Supplementary Figure S4; Table 1). Combined sex-specific
LDpred2 (LDpred2-mult) performed the best when the genetic
correlation was 0.5 which presented a consistent finding when we
assumed that all the causal SNPs were shared between females
and males.

Bernabéu et al. (2021) has found that the estimated heritability
differs between sexes for the same trait, which suggests a difference
in the proportion of a trait’s variance accounted for by the
genotypes, and hence a possible sex difference in the trait’s
underlying genetic architecture. The differences in heritability
between the sexes are statistically significant for some traits, for
example, body mass–related traits (Bernabéu et al., 2021). Thus, we
also conducted simulations where the heritability differed between
sexes. We chose 25,000 females and 25,000 males to derive GWAS
summary statistics. The causal variants explained 10% of the
phenotypic variation in females, while in males, the causal
variants explained 50%. As shown in Supplementary Figure S5
and Table 1, when the genetic correlation was 0.5 and 0.8, sex-
agnostic LDpred2 (LDpred2-all) outperformed the female

predictions, which had a lower heritability, while for the male
predictions, the combined sex-specific LDpred2 (LDpred2-mult)
and male-specific LDpred2 (LDpred2-m) were comparable with
each other and performed better than the other PRSs. When the
genetic correlation was 1, sex-agnostic LDpred2 (LDpred2-all) and
combined sex-specific LDpred2 (LDpred2-mult) were comparable
and performed best on both females andmales. Compared with the
simulation results with the same heritability and the same sample
size between sexes, it is more difficult to utilize the information of
sex difference in PRS prediction for the sex with a lower
heritability.

Unbalanced Sample Sizes
There are situations when the sample sizes are unbalanced
between males and females. In the UK Biobank (UKB) data
set, for example, there are more females than males. For the
Million Veteran Program, males account for 92% of the study
subjects (Program et al., 2019). Therefore, we did simulations to
assess whether sex-specific PRSs or combined sex-specific PRSs
(LDpred2-mult, PRScs-mult, and PRScsx-mult) can improve
cross-sex polygenic prediction when the GWAS sample sizes are
unbalanced. We set the heritability of females and males in this
unbalanced sample size simulation to be 0.3. The ratio of female
sample sizes to male sample sizes was first set to 1:5. First, when
we generated 2,500 females and 12,500 males as the training
data, the sex-agnostic LDpred2 (LDpred2-all) improved
prediction accuracy over all the other PRSs on both sexes
and in all genetic correlation settings (Supplementary Figure
S6). When the training sample sizes were increased to 10,000
females and 50,000 males, in females, where the sample size was
smaller for deriving female-specific GWAS summary statistics,
combined sex-specific PRScsx (PRScsx-mult) had the best
performance when the genetic correlation was 0.5 and was
comparable with female-specific PRScsx (PRScsx-f). On the

TABLE 1 | The median and standard deviation of R-squared for each method in different simulation settings. We only show the outcomes of simulated settings that benefit
from sex-specific PRSs. Because the prediction performances on females and males are consistent when sample sizes and heritability are both balanced across sexes,
we only report the prediction accuracy on females in these cases. Bold and italics indicate the best results in each simulation setting, and the second-best results are
presented only in bold.

Sample Sizes (females/males) 25,000/25,000 100,000/100,000 10,000/50,000 25,000/25,000

Heritability (females/males) 0.3/0.3 0.1/0.5

Proportion of shared causal
SNPs

0.8 1 1 1 1

Genetic correlation 0.5 0.8 0.5 0.5 0.5

Testing samples Females Females Females Males Males

Combined sex LDpred2-mult 0.132 (0.030) 0.141 (0.004) 0.223 (0.011) 0.224 (0.013) 0.078 (0.005) 0.191 (0.010) 0.282 (0.008)
PRScs-mult 0.102 (0.010) 0.106 (0.007) 0.224 (0.014) 0.219 (0.012) 0.062 (0.008) 0.162 (0.008) 0.246 (0.010)
PRScsx-mult 0.121 (0.010) 0.128 (0.007) 0.235 (0.014) 0.239 (0.013) 0.094 (0.005) 0.172 (0.009) 0.256 (0.013)

Female-specific LDpred2-f 0.130 (0.010) 0.132 (0.005) 0.217 (0.011) 0.225 (0.013) 0.049 (0.007) 0.012 (0.003) 0.016 (0.004)
PRScs-f 0.094 (0.009) 0.099 (0.007) 0.219 (0.013) 0.217 (0.012) 0.031 (0.005) 0.007 (0.003) 0.010 (0.003)
PRScsx-f 0.121 (0.010) 0.128 (0.007) 0.234 (0.014) 0.238 (0.013) 0.091 (0.005) 0.058 (0.008) 0.085 (0.014)

Male-specific LDpred2-m 0.030 (0.010) 0.029 (0.007) 0.133 (0.010) 0.052 (0.008) 0.045 (0.005) 0.191 (0.010) 0.280 (0.008)
PRScs-m 0.025 (0.006) 0.026 (0.006) 0.130 (0.011) 0.050 (0.006) 0.040 (0.006) 0.162 (0.009) 0.244 (0.010)
PRScsx-m 0.049 (0.009) 0.052 (0.007) 0.168 (0.012) 0.071 (0.011) 0.052 (0.007) 0.171 (0.009) 0.256 (0.013)

Sex-agnostic LDpred2-all 2 0.116 (0.009) 0.122 (0.009) 0.197 (0.009) 0.172 (0.015) 0.073 (0.006) 0.187 (0.010) 0.234 (0.015)
PRScs-all 0.093 (0.010) 0.103 (0.009) 0.210 (0.014) 0.173 (0.011) 0.067 (0.010) 0.163 (0.007) 0.189 (0.013)
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other hand, for males, the combined sex-specific LDpred2
(LDpred2-mult) performed better when genetic correlation
was 0.5, and male-specific LDpred2 (LDpred2-m) and sex-
agnostic LDpred2 (LDpred2-all) were comparable with it.
When the genetic correlation was 1 or 0.8, sex-agnostic
LDpred2 (LDpred2-all) remained the best performer among
all the methods (Supplementary Figure S7; Table 1). We also
swapped the sample size magnitudes for males and females to
perform a simulation with 50,000 females and 10,000 males, and
the results in Supplementary Figure S8 shows consistent results
from the simulation with more males than females.

Applications to Summary Statistics From
Genetic Investigation of Anthropometric
Traits
We obtained sex-specific GWAS summary statistics and sex-
agnostic GWAS summary statistics for 12 traits (WHR,
WHRadjBMI, HIP, HIPadjBMI, WC, WCadjBMI,
BMI.SNPadjPA, BMI.SNPadjSMK, WHRadjBMI.SNPadjPA,
WHRadjBMI.SNPadjSMK, WCadjBMI.SNPadjPA, and
WCadjBMI.SNPadjSMK) from the GIANT study (Shungin
et al., 2015). For all these traits, there were more females than

FIGURE 2 | Comparisons of PRSs on WHR and WHRadjBMI, WHRadjBMI.SNPadjPA and WHRadjBMI.SNPadjSMK, and WCadjBMI.SNPadjPA and
WCadjBMI.SNPadjSMK (WHR: waist and hip ratio; WHRadjBMI: WHR adjusted by BMI; WHRadjBMI.SNPadjPA: with physical activity level as a covariate;
WHRadjBMI.SNPadjSMK: with smoking status as a covariate; WCadjBMI.SNPadjPA: with physical activity level as a covariate; WCadjBMI.SNPadjSMK: with smoking
status as a covariate). Female-Specific:Using female-specific GWAS summary statistics as input.Male-Specific: usingmale-specific GWAS summary statistics
as input. Sex-agnostic: using sex-agnostic GWAS summary statistics as input. Combined-sex: the combination of female-specific PRS and male-specific PRS.
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males. We applied LDSC (Bulik-Sullivan et al., 2015) to calculate
the genetic correlation between females and males and their
respective heritability, with the results summarized in
Supplementary Table S1.

We applied sex-agnostic PRSmethods, sex-specific PRSmethods,
and combined sex-specific PRS methods to the sex-specific GWAS
summary statistics and sex-agnostic GWAS summary statistics of
each trait. We first investigated the PRS performance of WHR,
WHRadjBMI, HIP, HIPadjBMI, WC, and WCadjBMI. Among
these six traits, WHR and WHRadjBMI showed the benefit of
sex-specific PRS and combined sex-specific PRS on both sexes
(Figure 2). For female predictions, combined sex-specific
LDpred2 (LDpred2-mult) had the best performance, which was

much better than female-specific LDpred2 (LDpred2-f), which
suggests the contribution of male-specific LDpred2. For male
predictions, combined sex-specific PRScsx (PRScsx-mult)
outperformed others, which suggests the ability of PRScsx to
borrow information from the sex with a larger sample size. As
shown in Supplementary Table S1, the genetic correlations ofWHR
andWHRadjBMI between females andmales were 0.708 (SE: 0.021)
and 0.664 (SE: 0.028), respectively, which are relatively low. These
results are consistent with simulations for the imbalanced sample
size setting that sex-specific or combined sex-specific methods could
improve the prediction accuracy when the genetic correlation is low.
However, for the other four traits, sex-agnostic LDpred2 (LDpred2-
all) outperformed other PRSs, except for HIPadjBMI and

FIGURE 3 | Flow charts that provide a synthesized guide for practitioners to choose among these methods. (A) When the sample sizes are balanced between
sexes. (B) When the sample sizes are unbalanced between sexes.

Frontiers in Genetics | www.frontiersin.org July 2022 | Volume 13 | Article 8929506

Zhang et al. Prediction Utilizing Sex-Specific PRSs

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


WCadjBMI where LDpred2-mult performed the best on females
(Supplementary Figures S9, S10).

We also obtained sex-specific GWAS summary statistics and sex-
agnostic GWAS summary statistics of BMI, WHRadjBMI, and
WCadjBMI after adding physical activity levels (BMI.SNPadjPA,
WHRadjBMI.SNPadjPA, and WCadjBMI.SNPadjPA) or smoking
status (BMI.SNPadjSMK, WHRadjBMI.SNPadjSMK, and
WCadjBMI.SNPadjSMK) as covariant. Sex-agnostic LDpred2
(LDpred2-all) still outperformed other methods when predicting
BMI for both females and males (Supplementary Figure S11). As
for WHRadjBMI.SNPadjPA and WHRadjBMI.SNPadjSMK,
combined sex-specific LDpred2 (LDpred2-mult) had the best
prediction accuracy on females, and both combined sex-specific
PRScs (PRScs-mult) and combined sex-specific PRScsx (PRScsx-
mult) had the best performance for males (Figure 2). As for
WCadjBMI.SNPadjPA and WCadjBMI.SNPadjSMK, when
predicting for females, combined sex-specific LDpred2 (LDpred2-
mult) outperformed others.When predicting for males, sex-agnostic
LDpred2 (LDpred2-all) offered the best results for
WCadjBMI.SNPadjPA and combined sex-specific PRScsx
outperformed others for WCadjBMI.SNPadjSMK (Figure 2).

Applications to Summary Statistics From
UK Biobank
Based on prior knowledge (Han et al., 2021), we studied seven
traits related to body fat mass/distribution using the UK Biobank
samples. We first selected about 100,000 females and 120,000
males of white British ancestry as our training data set to generate
sex-specific and sex-agnostic GWAS summary statistics using
BOLT-LMM (Loh et al., 2015). The remaining UK Biobank white
British samples were used to construct the validation and testing
data sets. There were about 80,000 samples for validation (female/
male: 39752/37122) and testing (female/male: 43644/36670),
respectively. We applied LDSC (Bulik-Sullivan et al., 2015) to
calculate the heritability and genetic correlation between females
and males. The results are summarized in Supplementary Table
S2. We can see that for all these traits, sex-agnostic LDpred2
(LDpred2-all) consistently outperformed the other PRS methods.
Even though combined sex-specific LDpred2 was comparable
with LDpred2-all in females, it underperformed when compared
to LDpred2-all on these traits (Supplementary Figures S12, S13).

MATERIALS AND METHODS

Study Population and Quality Control of
Genotype Data
The sex-specific and sex-agnostic GWAS summary statistics were
obtained from the Genetic Investigation of ANthropometric
Traits (GIANT) collaboration (Randall et al., 2013). GIANT is
an international project that uses meta-analysis of GWAS data
and other large-scale genetic data sets to uncover genetic loci that
control human body size and shape, such as height and obesity
measures. So far, the GIANT group has discovered common
genetic variations at hundreds of loci related to anthropometric
traits (Shungin et al., 2015).

We also used the UK Biobank data to generate sex-specific and
sex-agnostic GWAS summary statistics for several traits. The UK
Biobank (UKB) (Bycroft et al., 2018) is amajor prospective study that
was designed to serve as a resource for research into complex traits
and diseases in middle-aged adults. The study protocol, study design
information, and data access are all available online (UK Biobank
Analysis Team, 2011). Between 2006 and 2010, a total of 502,618
participants aged 40–69 years were recruited from 22 assessment
centers across the United Kingdom. In our simulations, we used the
imputed genotype data from UKB. We chose genetically unrelated
participants of white British ancestry for our study. Ancestry is
determined by a mix of self-reported ancestry and genetically
confirmed ancestry determined through principal component
analysis of the individuals’ genomes. Exclusion criteria included a
lack of genetic data (sufficient DNA could not be extracted from the
blood samples of ~3% of participants), discordance between reported
and genotype inferred sex, poor heterozygosity or missingness, sex
chromosome aneuploidy, withdrawal of informed consent, and
individuals with at least one relative. There were 380,978 samples
left. Then, we divided these samples into three data sets that did not
overlap with each other: training data, validation data, and testing
data. In real data analysis, we chose 223,790 (female/male: 121,808/
101,982) unrelated participants of white British ancestry who were in
the first 60 batches as the training data set and 80,314 individuals
(female/male: 43,644/36,670) from batches 61 to 85 were used as the
testing data set. The other 76,874 individuals (female/male: 39,752/
37,122) were treated as the validation data set. The exact sample sizes
were varied when analyzing each trait because we excluded the
missing values of that trait. We restricted the analysis to
autosomal variants with a genotype missing rate of less than 0.05,
an imputation quality score more than 0.3, a Hardy–Weinberg
equilibrium p-value greater than 1e-6, and a minor allele
frequency (MAF) greater than 0.05. We also eliminated all strand-
ambiguous SNPs. To obtain sex-specific GWAS and sex-agnostic
GWAS summary statistics, we used Bolt-LMM (Loh et al., 2015) on
the training data set to estimate the marginal effect sizes of genetic
variants. The sex-specific GWAS summary data were adjusted for
age, age2, and the first 20 principal components. And the sex-agnostic
GWAS summary data were correlated by sex, age, age2, age*sex,
age*sex2, and the first 20 principal components.

Polygenic Risk Score Models
LDpred2 is a new version of LDpred with a larger window size of
3 cM. It could better handle numerical errors when working with
exponentials. With an efficient parallel implementation in C++
and restrictions to HapMap3 variants, LDpred2 could run with a
larger hyper-parameter search space than LDpred but with a
shorter time. There are two extensions of LDpred2: 1) sparsity
option in LDpred2-grid which provides models that truly
encourage sparsity and 2) LDpred2-auto which automatically
estimates values for hyper-parameters p and heritability. We
tested a grid of hyper-parameters with p from a sequence of
17 values from 10e−5 to 1 on a log scale; h2 within {0.7,1,1.4}
times heritability estimates from LDSC and their sparsity option.

PRS-CS is also a Bayesian method that calculates the posterior
mean effect size of each variant based on GWAS summary statistics
and linkage disequilibrium (LD). It employs a continuous shrinkage
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prior to SNP effect sizes, with one hyper-parameter, the global
shrinkage parameter. This hyper-parameter represents the genetic
architecture’s overall sparsity. The 1 KG LD reference panel used in
this study was pre-calculated and built for HapMap3 variants with
MAF >0.01. Though PRScs could automatically estimate the
parameter, we use the version that tunes the parameter and the
global shrinkage parameter is range from 1e-8 to 1e-6, 1e-4, 1e-2, to 1.

PRS-CSx is an extension of PRS-CS which enables the
integration of GWAS summary statistics from multiple
populations to improve cross-population prediction performance.
We also use the version that tunes the parameter and the global
shrinkage parameter that ranges from 1e-8 to 1e-6, 1e-4, 1e-2, to 1.

Sex-specific Polygenic Risk Score and
Combined Sex-specific Polygenic Risk
Score
In all the PRS analyses, we applied PRS methods to sex-specific and
sex-agnostic GWAS summary statistics to estimate the effect sizes of
genetic variants. Then, the validation data set, with individual-level
genotypes and phenotypes, was used to tune hyperparameters for
different PRS methods. After we selected the best PRS for each
method using the validation data set, we used the testing data set to
evaluate their prediction accuracy and computed performance
metrics which is the square of correlation for quantity
phenotypes. For all the PRS methods, we used the 1000
Genomes Project (1 KG) Phase 3 super-population samples as
the LD reference panels (Auton et al., 2015).

The PRS models in this work can be broadly grouped into two
categories: the single population methods (LDpred2 and PRScs),
which train PRS using one set of GWAS summary statistics, and the
multi-population method (PRScsx), which uses GWAS summary
statistics from several populations. First, sex-agnostic (GWAS created
using both female and male samples) and sex-specific GWAS
summary statistics (GWAS generated using either female or male
sample) are derived from the training samples. We obtained female-
specific PRScs/LDpred2, male-specific PRScs/LDpred2, and sex-
agnostic PRScs/LDpred2 by applying PRScs and LDpred2 to these
three sets of GWAS summary statistics. The female-specific PRScsx
and male-specific PRScsx are generated by inputting both female-
specific and male-specific GWAS summary statistics to PRScsx. We
tuned sex-specific PRSs and sex-agnostic PRSs on the validation
samples whose sex was the same as that of the testing data set which
we were going to predict on. The combined sex-specific PRSs are
created by linearly combining sex-specific PRSs on the target
validation data set. The hyper-parameters and weights of each
sex-specific PRS are validated simultaneously.

DISCUSSION

In this article, we have presented a comprehensive study to
investigate what would be the most effective way to develop PRS
that can adequately address sex differences in genetic associations for
traits/disorders with demonstrated sex differences, such as different
heritability and/or low genetic correlation between sexes. We
considered sex-agnostic PRS, sex-specific PRS, and combined sex-

specific PRS that are built from PRScs, LDpred2, and PRScsx. We
have shown, via simulation studies, that when the sample sizes are
small, even though there is a relatively small genetic correlation
between sexes, the increase in sample size contributes more than sex
differences in PRS prediction. With an increase in sample size, the
combined sex-specific PRSs gradually improve their relative
performance and the majority part of the information for
combined sex-specific PRSs is from the corresponding sex-
specific PRSs. When the sample sizes are large enough, PRScs
and PRScsx provide better performance than LDpred2. Besides,
combined sex-specific PRScsx always performs better than
combined sex-specific PRScs, which indicates the benefits of
jointly modeling multiple GWAS summary statistics. When there
is a difference in heritability between the sexes, combined sex-
specific PRSs can be an option for the sex with higher
heritability. In unbalanced sample size simulations, we found that
female-specific PRScsx consistently outperformed other female-
specific PRSs in both sexes, where there were fewer females than
males. This could imply that sex-specific PRS of the smaller sample
size could benefit from information from the opposite sex with a
larger sample size by PRScsx. When the sample size is unbalanced
between sexes, the combined sex-specific PRScsx may be a good
candidate PRS to predict on the sex with smaller sample size and
combined sex-specific LDpred2may be a good candidate PRS on the
sex with larger sample size. However, in real data analysis, there are
limited sex-specific GWAS summary statistics, and sex-agnostic
LDpred2 gave the best prediction for most of the traits we
investigated, with the exception of traits related to WHR, where
we observed that combined sex-specific PRSs performed better than
the sex-agnostic PRSs.

However, our study only used autosomes to generate polygenic
risk scores, ignoring sex chromosomes, particularly the X
chromosome. The X-chromosome has two copies in females, but
only one in males. In females, one of the two copies may even be
silenced, a process known as X-chromosome inactivation (XCI)
(Gendrel and Heard, 2011), and the choice of the silent copy is
random or biased toward a specific copy (Wang et al., 2014). These
distinct characteristics limit the inclusion of X-chromosomes in
genome-wide association studies, also making it difficult to include
X-chromosomes in PRS estimates. However, increasingly extensive
analyses of X-chromosome–inclusive association studies have been
developing, indicating that X-chromosome–inclusive PRS may be
possible in the future (Chen et al., 2021).

In conclusion, although there are sex differences in the genetic
architecture for some traits, considering these differences, for
example, through building models from sex-specific GWAS
summary statistics, PRS prediction does not lead to improved
prediction accuracy in most traits in our analysis of real data for
the time being. Sex-agnostic PRSs remain the best option for most
cases. When the sample size is large and the genetic correlation is
relatively small between males and females, there may be some
benefit to considering sex-specific information for PRS. When
there is a big difference in heritability or the sample sizes of the
two sexes are very unbalanced, combined sex-specific PRSs are
worth considering. A guidance on how to select the optimal PRSs
based on simulation results is also shown on Figure 3. However, it
is possible that the small sample size limits the use of sex-specific
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or combined sex-specific PRSs. With larger GWAS sample sizes
and more sex-specific GWAS summary statistics becoming
available in future studies, PRSs built by considering sex
differences and borrowing information from the opposite sex
at the same time, known as combined sex-specific PRSs, may be
considered in addition to sex-agnostic PRS methods.
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