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Objective: TNF-α is an essential pro-inflammatory cytokine in the tumor
microenvironment of gastric cancer (GC), possessing a key biological and clinical
impact. Here, we conducted an integrative analysis of the role of TNFα-derived genes
in GC prognosis and precision medicine.

Methods: We pooled transcriptome and clinical features of GC patients from TCGA and
GSE15459 projects. TNFα signaling was quantified through the ssGSEA algorithm, and
TNFα-derived genes were screened with WGCNA. Thereafter, a LASSO model was
established. The somatic mutation was analyzed across GC specimens. Immune cell
infiltrations were inferred through ESTIMATE and ssGSEA algorithms, followed by
measuring the immune checkpoint expression. AKR1B1, CPVL, and CTSL
expressions were measured in gastric mucosal cells GES-1 and GC cells (HGC-27,
MKN-28, and AGS) through RT-qPCR and Western blotting.

Results: A TNFα-derived gene signature (containing AKR1B1, CPVL, and CTSL) was
developed for GC. A high-risk score indicated more undesirable OS, DFS, DSS, and PFS
outcomes. Time-independent ROC curves and multivariate cox regression models
confirmed that the signature reliably and independently predicted GC prognosis.
Additionally, risk scores displayed significant correlations to more severe histological
grades and pathological stages. A low-risk score was characterized by increased
somatic mutation, while a high-risk score was characterized by immune and stromal
activation, enhanced immune cell infiltrations, and increased expression of immune
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checkpoint molecules. Experimental results confirmed the significant upregulation of
AKR1B1, CPVL, and CTSL in GC cells.

Conclusion: Collectively, stratification based on the TNFα-derived gene signature might
enable GC patients to predict prognosis, benefit from immunotherapy, and assist in
formulating novel therapeutic regimens.

Keywords: gastric cancer, TNFα, model, prognosis, tumor immune microenvironment, treatment sensitivity

INTRODUCTION

Gastric cancer (GC) ranks the fifth most frequently diagnosed
cancer and is the third major cause of cancer deaths across the
globe (Kim et al., 2021; Saeed et al., 2021; Zhang et al., 2021).
In accordance with the latest global cancer statistics, there
were over one million newly diagnosed cases and
approximately 7,83,000 death cases of GC in 2018 (Bray
et al., 2018). Despite the declined morbidity and mortality
within the past years, GC remains a severe global health issue.
Treatment regimens have been challenged due to the
complexity and controversy of GC progression (Wang
et al., 2021). Currently, surgical, chemo-, radio- and
targeted therapies have become the major therapeutic
approaches (Yu et al., 2021). The AJCC staging system and
histological classifications represent the most important tools
for stratifying, classifying, and treating GC patients (Wu et al.,
2021). Extensive heterogeneity has been found in GC,
indicating that it is of importance for novel stratifications
and identification of other important factors to stratify
patients more precisely for better guiding clinical therapy
and improving clinical outcomes (Qiu et al., 2020).

Growing pieces of evidence demonstrate the important
implications of tumor necrosis factor-alpha (TNF-α) in
gastric carcinogenesis, which is an essential
proinflammatory cytokine in the tumor microenvironment
of GC and the main cytokine of cancer pain (Ishimoto
et al., 2017; Baj et al., 2020; Zhuang et al., 2020). For
instance, GC cell-derived TNF-α triggers the IL-33
expression in cancer-associated fibroblasts through the
TNFR2-NF-κB-IRF-1 axis (Chen et al., 2020; Zhou et al.,
2020). The TNF-α and NF-κB signaling pathways are
mutually positive feedback regulations. TNF-α activates the
NF-κB pathway, which is significantly related to cancer pain.
Meanwhile, this activated signaling pathway can promote the
transcription and synthesis of TNF-α, which in turn leads to
more serious cancer pain (Yang et al., 2020). Tumor-associated
macrophages induce the PD-L1 expression in GC cells partly
via TNF-ɑ signaling (Ju et al., 2020). Elevated intratumoral
mast cell fosters immunosuppression and GC progression via
the TNF-α-PD-L1 pathway (Lv et al., 2019). Hence, it is of
great significance to uncover the biological and clinical impact
of TNF-α-derived signatures in GC. Based on mRNA
expression profiles derived from TCGA, this study
developed a TNFα-derived gene signature for predicting the
prognosis and immunotherapeutic responses, as well as
assisting in formulating novel therapeutic regimens.

MATERIALS AND METHODS

Patient Cohort and Data Acquisition
RNA sequencing data (in fragments per kilobase per million
(FPKM)) of TCGA-STAD (stomach adenocarcinoma) cohort
were curated from the Genomic Data Commons (GDC) data
portal (https://portal.gdc.cancer.gov/). Thereafter, the FPKM
format was converted to the transcripts per kilobase million
(TPM) format for further analysis. Clinical features of GC
patients were also harvested from TCGA project. The
GSE15459 dataset was downloaded from the Gene Expression
Omnibus (GEO) repository (https://www.ncbi.nlm.nih.gov/
gds/), which was used as the external validation set.

Collection of Gene Sets of Tumor Necrosis
Factor-α Signaling
The gene sets of TNFα-signaling were curated from theMolecular
Signatures Database (MSigDB; http://www.broadinstitute.org/
msigdb) (Liberzon et al., 2015). Single-sample gene set
enrichment analyses (ssGSEA) derived from the gene set
variation analysis (GSVA) package were presented for
quantifying the activities of TNFα signaling across GC
specimens (Hänzelmann et al., 2013). The ssGSEA ranked the
mRNA expression in each specimen and used empirical
cumulative distribution function of genes in the signature and
the remaining genes to produce an enrichment score. The
ssGSEA score was normalized through the Z-score.

Weighted Gene Co-Expression Network
Analysis
TheWGCNA package was adopted for performing co-expression
analysis (Langfelder and Horvath, 2008). The expression profiling
of the first 5,000 genes according to SD was included for the
WGCNA. The soft-thresholding power ß was set as 3 with the
pickSoftThreshold function. Additionally, the scale-free R2 = 0.85
calculated with the softConnectivity function was set as the soft-
thresholding parameter for ensuring a scale-free topology
network and producing a TOM matrix. Thereafter, co-
expression modules were clustered. Pearson correlation
analysis was carried out between the co-expression modules
and TNFα score. Moreover, the correlations between module
membership and gene significance were plotted. Genes in the co-
expression module that presented the strongest correlation
strength with the TNFα score were deemed as TNFα-
derived genes.
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Establishment of the Tumor Necrosis
Factor-α–Derived Genomic Model
Univariate cox regression analysis was conducted for screening
prognostic TNFα-derived gene signatures (p < 0.05). Thereafter,
this study input the aforementioned genes into the Least Absolute
Shrinkage and SelectionOperator (LASSO) analyses with the glmnet
package (Engebretsen and Bohlin, 2019). Characteristic genes were
screened in accordance with the optimal λ value. The TNFα-derived
risk score was determined following the formula: risk score =∑ X i *
coef i, in which coef i was the coefficient, and X i was the mRNA
expression of each characteristic gene. GC patients were randomly
separated into training and testing sets with a 1:1 ratio. With the
median value of the risk score, patients were divided into high- and
low-risk groups in each dataset. Kaplan–Meier curves of overall
survival (OS), disease-free survival (DFS), disease-specific survival
(DSS), and progression-free survival (PFS) were conducted between
high- and low-risk groups. Survival differences were estimated with
log-rank tests. Time-independent receiver operating characteristic
(ROC) curves were presented for evaluation of the efficacy of the risk
score in predicting GC OS outcomes. Uni- and multivariate cox
regression models were constructed for screening independent
prognostic factors of GC.

Development of a Nomogram
The TNFα-derived gene signature and clinicopathological
characteristics (age, T stage, N stage, M stage, and pathological
stage) were input into the nomogram model in TCGA-STAD
dataset. Calibration curves, ROC curves at 5-, 6- and 7-year
survival, and decision curve analyses (DCA) were presented for
evaluating whether this nomogram was useful as an ideal model.

Functional Enrichment Analyses
GSEA was presented for comparing activated hallmark gene sets
between high- and low-risk groups in TCGA-STAD cohort
(Subramanian et al., 2005). For each analysis, 1,000 gene set
permutations were carried out. The hallmark gene sets curated
from the MSigDB project were utilized as the reference set.
Additionally, the ssGSEA score of hallmark gene sets was
calculated across GC tissues.

Estimation of TME-Infiltrating Immune Cells
Estimation of STromal and Immune cells in MAlignant Tumor
tissues using Expression data (ESTIMATE) algorithm (Yoshihara
et al., 2013) was utilized for evaluations of immune and stromal
scores in accordance with mRNA expression signatures. Immune
and stromal scores represented the tumor immune and stromal
infiltrations within a bulk tumor. Thereafter, the ESTIMATE
score was defined by combining immune and stromal scores
within tumor tissues. Through ssGSEA, the abundance of
immune cells was scored within tumor tissues in accordance
with mRNA expression profiles.

Prediction of Immunotherapy and
Chemotherapy Responses
The T-cell dysfunction and exclusion (TIDE) algorithm (http://tide.
dfci.harvard.edu/) was calculated for predicting the clinical responses

to immune checkpoint inhibitors (Jiang et al., 2018). The
immunophenoscore (IPS) was determined for the prediction of
the responses to CTLA-4 or PD-1 inhibitors in accordance with
themarker genes ofMHC-relevant signatures, checkpointmolecules,
immunomodulators, effector cells, and suppressor cells
(Charoentong et al., 2017). All steps within the cancer immunity
cycle that reflected the anticancer immune response were quantified
through the ssGSEA algorithm (Chen andMellman, 2013). The half-
maximal inhibitory concentration (IC50) values of chemotherapeutic
agents from the Cancer Genome Project (Geeleher et al., 2014b) were
estimated utilizing the pRRophetic package (Geeleher et al., 2014a).

Somatic Mutation Analyses
Somatic mutation profiling (mutation annotation format (MAF)
files) of TCGA-STAD was analyzed with MuTect2 and visualized
with the maftools package (Mayakonda et al., 2018). The tumor
mutational burden (TMB) was determined through non-
synonymous somatic mutations utilizing 38 Mb as the estimate
of the exome size (Chalmers et al., 2017).

Cell Culture
Human gastric mucosal cells GES-1 and human GC cells HGC-
27, MKN-28, and AGS were purchased from the Chinese
Academy of Sciences. All cells were maintained in Dulbecco’s
modified Eagle’s medium (DMEM; Hyclone, United States)
containing 10% fetal bovine serum (Gibco, United States),
100 U/ml penicillin sodium, and 100 μg/ml streptomycin
(Hyclone, United States ). The cell culture flask was placed in
a 5% CO2 incubator at 37°C.

Western Blotting
Cells were washed twice lasting 2 min through PBS and resuspended
by using radioimmunoprecipitation assay buffer at 4°C. The protein
content was evaluated utilizing a BCA kit (Beyotime, China), in
accordance with the manufacturer’s protocols. Then, 200 µl protein
lysates were separated via 10% SDS-PAGE and transferred onto the
polyvinylidene difluoride (PVDF) membrane. Thereafter, the
membrane was incubated with TBST (TBS with 1% Tween 20)
containing 5% BSA lasting 1 h at room temperature and
subsequently incubated with primary antibodies targeting
AKR1B1 (1/1000; ab192865; Abcam, United States), CPVL (1/
1000; ab180147; Abcam, United States), CTSL (1/1000; ab200738;
Abcam, United States), and GAPDH (1/10000; ab8245; Abcam,
United States) overnight at 4°C. The membrane was washed by
TBST lasting 5min at room temperature, followed by incubation
with horseradish peroxidase-conjugated goat anti-rabbit secondary
antibodies (1/2000; ab7090; Abcam, United States) at 37°C lasting
1 h. Through an electrochemiluminescence detection kit (Bio-Rad,
United States), the protein bands were developed, and the protein
expression was tested with an X-ray film. The bands were quantified
by ImageJ software.

Reverse Transcription and Quantitative
Real-Time PCR
Total RNA was extracted from cells utilizing RNeasy kits
(Beyotime, China) and reverse transcribed with one-step RT-
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PCR kits (Beyotime, China) at 37°C lasting 30 min, in accordance
with the manufacturer’s protocols. qPCR was conducted utilizing
SYBR Green RT-PCR kits (Takara, China). The thermocycling
conditions were as follows: 95°C lasting 5 min; 40 cycles of 95°C
lasting 40 s, 60°C lasting 30 s, and 72°C lasting 30 s. The following
primers were used for PCR: AKR1B1: 5′-TTTTCCCATTGGATG
AGTCGG-3′ (forward), 5′-CCTGGAGATGGTTGAAGTTGG-
3′ (reverse); CPVL: 5′-TGGAAGGTGATTGTTTCGCTG-3′
(forward), 5′-GTCTCCCTTAGGTGGCATGGA-3′ (reverse);
CTSL: 5′- CTTTTGCCTGGGAATTGCCTC -3′ (forward), 5′-
CATCGCCTTCCACTTGGTC-3′ (reverse); and GAPDH: 5′-
GGAGCGAGATCCCTCCAAAAT-3′ (forward), 5′-GGCTGT
TGTCATACTTCTCATGG-3′ (reverse). The fold change in
mRNA expressions was determined with the 2−ΔΔCq method.

Statistical Analyses
All analyses were executed through R (version 4.0.1) and
GraphPad Prism (version 8.0.1) software. With Student’s or
Wilcoxon test, comparisons between groups were conducted.
Pearson’s or Spearman’s correlation test was utilized to
evaluate the associations between variables. p < 0.05 was
indicative of statistical significance.

RESULTS

Quantification of the Tumor Necrosis
Factor-α Score as a Prognostic Indicator
and Identification of Tumor Necrosis
Factor-α–Derived Genes
Through the ssGSEA method derived from the GSVA package,
we quantified the activities of TNFα signaling across GC tissues.
In accordance with the median value of z-scores of TNFα
signaling, we separated GC patients into high and low z-score
groups. Kaplan–Meier curves demonstrated that GC patients
with high z-scores displayed more undesirable OS outcomes
than those with low z-scores (Figure 1A). This indicated that
TNFα signaling might be linked to GC prognosis, which was
consistent with previous research (Ju et al., 2020). This study
employed the WGCNA approach to further identify TNFα
signaling-derived genes in GC. First, the top 5,000 genes
according to SD were included for co-expression analyses. The
genes with similar expression patterns would be clustered into
one module. Hierarchical clustering analyses indicated that there
was no outlier among GC samples (Figure 1B). For constructing
an appropriate scale-free topological overlap matrix, we
calculated the scale independence and mean connectivity
under diverse soft thresholds. Consequently, when soft
thresholding was set as 3, the scale-free R2 was 0.853,
indicating the constructed co-expression network met the
scale-free topology criterion (Figure 1C). Thereafter, GC
samples were clustered into 16 co-expression modules
(Figure 1D). To determine the correlation between co-
expression modules and the TNFα score as a phenotype, we
carried out a Pearson correlation analysis. Our results uncovered
that the “tan” module displayed the strongest correlation to the

TNFα score (R = 0.51 and p < 0.0001; Figure 1E). Moreover, we
compared the gene significance of each module with the TNFα
score. In particular, we noted that the “tan”module presented the
highest gene significance with the TNFα score (Figure 1F),
indicating that the genes in the “tan” module were
prominently associated with TNFα signaling. Herein, the 80
genes in the “tan” module were considered TNFα-derived
genes, which are listed in Supplementary Table S1.

Construction of a Tumor Necrosis
Factor-α-Derived Gene Signature for
Prediction of Gastric Cancer Prognosis
To determine prognosis-related TNFα-derived genes, we
conducted univariate cox regression analyses. Our results
showed that 15 TNFα-derived genes displayed significant
associations with GC prognosis (p < 0.05; Table 1). The
aforementioned genes were input into LASSO analyses. With
the optimal λ (0.0494), three genes (AKR1B1, CPVL, and CTSL)
were retained following LASSO regularization (Figures 2A,B).
Figure 2C showed the prognostic significance of AKR1B1, CPVL,
and CTSL in GC. The risk score of each GC specimen was
quantified utilizing the established formula: risk score =
0.00453439137355748 * AKR1B1 expression
+0.0023541802071365 * CPVL expression
+0.00307599022458496 * CTSL expression. With the increase
in the risk score, the expressions of AKR1B1, CPVL, and CTSL
were gradually increased in all GC patients (Figure 2D). In
accordance with the median value of the risk score, GC
patients were separated into high- and low-risk groups
(Figure 2E). We noted there were more patients with the dead
and recurred or progressed status in the high-risk group (Figures
2F,G). Thereafter, GC patients were randomly separated into two
parts (1:1) for training and testing sets. Table 2 summarized the
clinical characteristics of GC patients from training, testing, and
entire sets. Our data demonstrated that high-risk patients
presented more undesirable OS than low-risk patients in
training (Figure 2H), testing (Figure 2I), and entire sets
(Figure 2J). ROCs at 5-, 6- and 7-year survival confirmed that
the TNFα-derived risk score was accurately and sensitively
predictive of GC prognosis in training (Figure 2K), testing
(Figure 2L), and entire sets (Figure 2M).

Clinical Implication and External Validation
of the Tumor Necrosis Factor-α–Derived
Gene Signature in Gastric Cancer
Time-independent ROCs revealed that the TNFα-derived risk
score displayed a prominent advantage in predicting GC
prognosis (Figure 3A). Univariate cox regression analyses
showed that the TNFα-derived risk score was indicative of an
undesirable prognosis of GC (Figure 3B). Furthermore,
multivariate cox regression analyses uncovered that the TNFα-
derived risk score acted as an independent risk factor of GC
outcomes (Figure 3C). Compared with G1/2, a higher risk score
was detected in G3/4 patients (Figure 3D). Additionally, we
noted that compared with stage I, there was a prominently
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increased risk score in stages II, III, and IV (Figure 3E). In
comparison to the T1 stage, a significantly higher risk score was
investigated in T2, T3, and T4 stages (Figure 3F). Also, N1 and
N3 patients presented an increased risk score compared to those
with N0 (Figure 3G). The aforementioned findings demonstrated
that the TNFα-derived risk score was in relation to GC
progression. Further survival analyses suggested that high-risk
patients indicated poorer DFS (Figure 3H), DSS (Figure 3I), and
PFS (Figure 3J) than low-risk patients. The clinical applicability
of this model was further validated in the GSE15459 dataset.

Consistently, the high-risk score predicted poorer OS than the
low-risk score (Figure 3K). Additionally, ROCs at 3-, 4- and 5-
year survival demonstrated that this model enabled the prediction
of GC prognosis accurately and sensitively (Figure 3L).

Establishing a Nomogram of Gastric Cancer
Patients
A prognostic nomogram was established by integrating the
TNFα-derived gene signature, age, T stage, N stage, M stage,

TABLE 1 | Univariate Cox regression models identify prognostic TNFα-derived genes.

Gene p-value HR AUC (3-year) AUC (4-year) AUC (5-year) AUC (6-year) AUC (7-year)

GPNMB 7.85E-05 1 + 1.81E-03 0.53 0.57 0.62 0.60 0.46
AKR1B1 2.14E-04 1 + 8.04E-03 0.58 0.60 0.56 0.57 0.57
CPVL 1.97E-03 1 + 5.41E-03 0.53 0.54 0.52 0.52 0.44
NPC2 3.39E-03 1 + 3.88E-03 0.54 0.56 0.50 0.61 0.55
CSF1R 3.81E-03 1 + 4.24E-03 0.52 0.56 0.58 0.59 0.45
MS4A6A 5.62E-03 1 + 7.67E-03 0.52 0.55 0.59 0.59 0.51
LHFPL2 1.39E-02 1 + 5.98E-03 0.53 0.55 0.60 0.53 0.46
CD163 1.53E-02 1 + 4.49E-03 0.51 0.54 0.58 0.58 0.41
SRGN 1.79E-02 1 + 8.23E-04 0.52 0.53 0.54 0.57 0.49
FCGR2A 1.86E-02 1 + 4.87E-03 0.55 0.57 0.64 0.61 0.47
ADAM28 2.05E-02 1 + 2.74E-03 0.49 0.52 0.51 0.55 0.49
CTSL 2.27E-02 1 + 3.79E-03 0.55 0.54 0.58 0.46 0.46
STAB1 3.29E-02 1 + 3.29E-03 0.55 0.57 0.57 0.56 0.57
CD14 3.56E-02 1 + 2.91E-03 0.52 0.53 0.54 0.58 0.43
TPP1 4.07E-02 1 + 1.47E-03 0.56 0.53 0.54 0.51 0.44

FIGURE 1 |Quantification of the TNFα score as a prognostic indicator and identification of TNFα-derived genes. (A)Kaplan–Meier curves of OS for GC patients with
high and low z-score of TNFα signaling. (B)Hierarchical clustering for detection of outlier samples. (C)Determination of scale independence andmean connectivity under
diverse soft thresholds. The redline corresponded to 0.853. Soft-thresholding power was set as 3 after considering both scale independence andmean connectivity. (D)
Hierarchical cluster analyses for detecting co-expression modules assigned by distinct colors. (E) Heatmap displaying the Pearson correlation of co-expression
modules with the TNFα score. (F) Gene significance across co-expression modules.
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FIGURE 2 | Construction of a TNFα-derived gene signature for prediction of GC prognosis. (A) LASSO coefficient profiling of prognostic TNFα-derived genes. The
redline indicated the value determined by three-fold cross-verification. (B) Tuning parameter selection for the LASSO model. The partial likelihood of deviance was
depicted against log (λ), in which λwas the tuning parameter. A partial likelihood deviance value was displayed, and error bars represented SE. A dotted vertical line was
drawn at the optimal value throughminimum and 1-SE criteria. (C)Univariate cox regression analyses of the associations of GC prognosis and characteristic TNFα-
derived genes. (D)Heatmap visualizing the expressions of characteristic TNFα-derived genes in high- and low-risk groups. (E)Distribution of the TNFα-derived risk score
across GC patients. The vertical dotted line represented the grouping cutoff. (F) Distribution of the survival status (alive and dead) among GC patients. (G) Distribution of
the recurred and progressed status among GC patients. (H–J) Kaplan–Meier curves of OS outcomes for high- and low-risk GC patients in the (H) training set, (I) testing
set, and (J) entire set. (K–M) ROC curves at 5-year, 6-year, and 7-year survival based on TNFα-derived risk scores in (K) training, (L) testing, and (M) entire sets.
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and pathological stage, which might be predictive of BC patients’
survival outcomes through a quantitative scoring method
(Figure 4A). In accordance with the nomogram, each patient
would obtain a total point from each prognostic indicator.
Calibration curves demonstrated that the predictive accuracy
of this nomogram was similar to the actual OS outcomes
(Figure 4B). With the median value of the nomogram score,
GC patients were clustered into high- and low-risk groups. It was
found that high-risk patients were indicative of more undesirable
OS outcomes than low-risk patients (Figure 4C). ROCs at 5-, 6-,
and 7-year OS demonstrated that this nomogram displayed
excellent efficacy in the prediction of OS outcomes
(Figure 4D). Additionally, decision curve analyses
demonstrated that the nomogram had a remarkable advantage
of the TNFα-derived gene signature alone and displayed a high
potential for clinical utility (Figure 4E).

Signal Pathways Involved in the Tumor
Necrosis Factor-α–Derived Gene Signature
It was found that the epithelial-mesenchymal transition, UV
response up, and Notch signaling presented enhanced
activities in high-risk specimens, in accordance with GSEA
results (Figure 5A). Meanwhile, protein secretion, G2M
checkpoint, and mitotic spindle exhibited reduced activities
in low-risk specimens. Moreover, we quantified the activities

of ssGSEA gene sets in each GC specimen (Figure 5B).
Compared with the low-risk group, graft rejection,
angiogenesis, apical junction, complement, epithelial-
mesenchymal transition, IL6-JAK-STAT3 signaling,
inflammatory response, interferon-gamma response, and
KRAS signaling showed remarkedly enhanced activities in
the high-risk group (Figures 5C,D). Oppositely, late
estrogen response, glycolysis, heme metabolism, MYC
targets V2, p53 pathway, protein secretion, unfolded protein
response, and UV response up had prominently reduced
activities in the high-risk group.

Heterogeneity in Drug Responses and
Somatic Mutations Between High- and
Low-Risk Groups
Furthermore, analyses were presented for investigation of the
difference in responses to small molecular agents between
groups. Our study noted that CHIR.99021 and CI.1040
displayed higher IC50 values in high- than low-risk patients
(Figure 6A). Additionally, high-risk patients showed reduced
IC50 values of pazopanib, VX.702, PF.562271, FTI.277,
TW.37, bosutinib, AZD8055, docetaxel, AZD6482,
rapamycin, and DMOG in comparison to low-risk patients.
The aforementioned data suggested that low-risk patients
presented higher sensitivity to CHIR.99021 and CI.1040,
while high-risk patients displayed enhanced responses to
pazopanib, VX.702, PF.562271, FTI.277, TW.37, bosutinib,
AZD8055, docetaxel, AZD6482, rapamycin, and DMOG.
We also compared the differences in somatic mutations
between high- and low-risk groups. The first ten mutated
genes included TTN, TP53, MUC16, LRP1B, SYNE1,
CSMD3, ARID1A, FLG, PCLO, and FAT4. Higher
mutational frequencies of the aforementioned genes were
observed in low- than high-risk groups (Figure 6B). Both
in high- and low-risk groups, missense mutation was the most
frequent mutational type (Figures 6C–E). In particular, there
was a significant difference in TTN mutation between groups
(Figure 6F).

Heterogeneity in Immune Cell Infiltrations
Between High- and Low-Risk Groups
Through the ESTIMATE algorithm, we estimated the
infiltration levels of immune and stromal cells. As a result,
the high-risk score was in relation to increased immune and
stromal scores, as well as the ESTIMATE score (Figures
7A–C). The abundance levels of immune cells were
quantified within GC tissues by the ssGSEA method. There
were enhanced abundance levels of activated B cells, activated
CD4 T cells, activated CD8 T cells, activated dendritic cells,
central memory CD4 T cells, central memory CD8 T cells,
effector memory CD4 T cells, effector memory CD8 T cells,
eosinophils, gamma delta T cells, immature B cells, immature
dendritic cells, macrophages, mast cells, MDSCs, memory
B cells, natural killer T cells, neutrophils, plasmacytoid
dendritic cells, regulatory T cells, T follicular helper cells,

TABLE 2 | Clinical characteristics of GC patients from training, testing, and
entire sets.

Variable Entire set (n = 353) Training
set (n = 176)

Testing
set (n = 177)

Age 65.51 ± 10.62 65.17 ± 10.18 65.85 ± 11.07
Status
Alive 207 (58.64) 106 (60.23) 101 (57.06)
Dead 146 (41.36) 70 (39.77) 76 (42.94)

Sex
Male 228 (64.59) 112 (63.64) 116 (65.54)
Female 125 (35.41) 64 (36.36) 61 (34.46)

T stage
T1 18 (5.1) 8 (4.55) 10 (5.65)
T2 74 (20.96) 37 (21.02) 37 (20.9)
T3 163 (46.18) 86 (48.86) 77 (43.5)
T4 94 (26.63) 43 (24.43) 51 (28.81)
Unknown 4 (1.13) 2 (1.14) 2 (1.13)

N stage
N0 103 (29.18) 55 (31.25) 48 (27.12)
N1 96 (27.2) 51 (28.98) 45 (25.42)
N2 73 (20.68) 32 (18.18) 41 (23.16)
N3 71 (20.11) 30 (17.05) 41 (23.16)
Unknown 10 (2.83) 8 (4.55) 2 (1.13)

M stage
M0 314 (88.95) 154 (87.5) 160 (90.4)
M1 23 (6.52) 13 (7.39) 10 (5.65)
Unknown 16 (4.53) 9 (5.11) 7 (3.95)

Pathological stage
Stage I 48 (13.6) 23 (13.07) 25 (14.12)
Stage II 109 (30.88) 62 (35.23) 47 (26.55)
Stage III 146 (41.36) 65 (36.93) 81 (45.76)
Stage IV 35 (9.92) 17 (9.66) 18 (10.17)
Unknown 15 (4.25) 9 (5.11) 6 (3.39)
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FIGURE 3 | Clinical implication of the TNFα-derived gene signature in GC. (A) Time-independent ROC curves of the TNFα-derived risk score and conventional
clinicopathological characteristics. (B) Univariate Cox regression analyses for the associations of the TNFα-derived risk score and conventional clinicopathological
characteristics with GC prognosis. (C) Multivariate Cox regression analyses for evaluations of the predictive independency of the aforementioned factors in GC
prognosis. (D–G) Distribution of the TNFα-derived risk score in distinct clinicopathological characteristics, containing the (D) histological grade, (E) pathological
stage, (F) T stage, and (G)N stage. *p < 0.05; **p < 0.01; ***p < 0.001. (H–J)Kaplan–Meier curves of (H)DFS, (I)DSS, and (J) PFS for high- and low-risk GC patients. (K)
Kaplan–Meier curves of OS for high- and low-risk GC patients in the GSE15459 dataset. (L) ROCs at 3-, 4-, and 5-year survival in the GSE15459 dataset.
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type 1 helper cells, and type 2 helper cells in high- compared
with low-risk specimens (Figures 7D–F).

Association of the Tumor Necrosis
Factor-α–Derived Gene Signature With
Immune Response
Further analyses uncovered that immune checkpoint molecules
containing HAVCR2, CD209, LAG3, SIRPA, TNFRSF4, CD274,
CD28, CD27, CD96, TIGIT, and ICOS displayed enhanced
expressions in high- compared with low-risk groups
(Figure 8A). Additionally, the TNFα-derived risk score was
positively associated with most immune checkpoint molecules
(Figure 8B). We calculated the TMB score across GC tissues, with
a median value of 2.1/MB (Figure 8C). A higher TMB score was
investigated in low- than high-risk patients (Figure 8D).
Moreover, we noted that high-risk patients presented elevated
TIDE scores (Figure 8E). Nevertheless, no prominent difference

in the IPS score was noted between groups (Figure 8F). The
activities of all steps within the cancer immunity cycle were
estimated in GC tissues (Figures 8G,H). In particular, there
were reduced activities of the release of cancer cell antigens
and enhanced activities of cancer antigen presentation in high-
than low-risk groups (Figure 8I). The aforementioned data were
indicative that the TNFα-derived genomic model might be
applied as a predictor of immune responses in GC.

Experimental Verification of the Tumor
Necrosis Factor-α-Derived Gene Signature
We noted that AKR1B1, CPVL, and CTSL within the TNFα-
derived gene signature presented remarkably increased
expressions in GC than in normal tissues (Figures 9A–C).
Their expressions were further verified in human gastric
mucosal cells GES-1 and human GC cells HGC-27, MKN-28,
and AGS. Our data confirmed the significant upregulation of

FIGURE 4 | Development of a prognostic nomogram for GC patients. (A) Nomogrammodel integrating the TNFα-derived gene signature, age, T stage, N stage, M
stage, and pathological stage for prediction of GC patients’ 5-, 6-, and 7-year OS probabilities. (B) Calibration curves for this nomogram-predicted and observed OS
outcomes. The 45-degree line meant the ideal prediction. (C) Kaplan–Meier curves of OS for high- and low-risk GC patients. (D) ROC curves for the nomogram in the
prediction of 5-, 6-, and 7-year OS probabilities. (E) Decision curve analysis curves of the nomogram for OS outcomes.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 8825199

Wang et al. TNFα-Derived Gene Signature in GC

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


AKR1B1, CPVL, and CTSL in HGC-27, MKN-28, and AGS cells
than GES-1 cells (Figures 9D–J).

DISCUSSION

Through ssGSEA, we quantified the activities of hallmark gene
sets in GC. Among them, TNFα signaling acted as a prognostic
indicator of GC. Thereafter, TNFα-derived genes were identified
with the WGCNA algorithm. With the LASSO algorithm, a
TNFα-derived gene signature composed of AKR1B1, CPVL,
and CTSL was developed for GC. Survival analyses uncovered
that this signature might enable the estimation of patients’ OS,
DSS, DFS, and PFS outcomes. Time-independent ROC curves
and multivariate Cox regression models confirmed the reliability
and independence of the TNFα-derived gene signature in

predicting GC outcomes. Additionally, this signature was in
relation to more severe histological grades and pathological
stages of GC patients, indicating that it contributed to GC
progression. Meta-analyses have demonstrated the associations
of TNFα alterations with GC risks (Wang et al., 2016).

We noted the prominent activities of stromal activation-relevant
signaling like epithelial-mesenchymal transition (EMT) (Zhu et al.,
2019), angiogenesis, immune activation-relevant pathways such as
graft rejection, complement, IL6-JAK-STAT3 signaling, and
inflammatory response, as well as carcinogenic pathways such as
Notch signaling and KRAS signaling in high-risk GC patients.
Experimental evidence suggests that TNF-α triggers invasion and
metastases of GC through downregulation of pentraxin 3 (Cui et al.,
2020). TNF-α induces EMT in GC cells via activating IL-6/STAT3
signaling (Chen et al., 2017). More frequent somatic mutations were
investigated in low-risk patients, and enhanced immune cell

FIGURE 5 | Signal pathways involved in the TNFα-derived gene signature. (A) GSEA for the differential hallmark gene sets between high- and low-risk GC
specimens. (B) Heatmap showing the interactions between hallmark gene sets across GC specimens. (C) Heatmap showing the activities of hallmark gene sets in two
groups. (D) Comparison of the activities of hallmark gene sets between groups. *p < 0.05; **p < 0.01; ***p < 0.001.
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FIGURE6 | TNFα-derived genomicmodel-relevant drug responses and somatic mutations. (A)Comparing drug responses between high- and low-risk groups. (B)
Distribution of the first ten mutated genes in high- and low-risk patients. (C,D) Landscape of somatic mutations in high- and low-risk patients. (E) Oncoplots for the first
ten frequently mutated genes in two groups. (F) Forest plots showing the differences in mutated genes between groups.
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FIGURE 7 | Heterogeneity in immune cell infiltrations between high- and low-risk subgroups. (A–C) Comparison of immune and stromal scores, as well as
ESTIMATE scores, between groups. (D) Distribution of abundance levels of immune cells across GC tissues. (E) Heatmap visualizing the interactions of diverse immune
cells across GC tissues. (F) Comparison of abundance levels of immune subpopulations between groups. *p < 0.05; ***p < 0.001.
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infiltrations and immune checkpoint expressions were detected in
high-risk patients. Enhanced mast cells trigger immunosuppression
in GC via TNF-α-PD-L1 signaling (Lv et al., 2019). Tumor-
associated macrophages facilitate the PD-L1 expression in GC via
IL-6 and TNF-α signals (Ju et al., 2020). Cancer pain is one of the
clinical symptoms with a high incidence in cancer patients. As
estimated, patients withmoderate and severe cancer pain account for
75%~90% (Scarborough and Smith, 2018). Animal pain experiments
have confirmed that TNF-α is positively correlated with animal pain
performance (Yang et al., 2020). Evidence has also shown that TNF-
α is the key link that causes cancer pain in cancer patients (Ling et al.,

2020). TNF-α can activate NF-kB, NGF, and other signaling
pathways, and at the same time, it also plays a positive feedback
effect on its production (Yoneda et al., 2021).Moreover, the activated
signaling pathways can cause the sensitization of downstream nerve
cells and cause pain. Therefore, the application of bioinformatics to
help achieve accurate prediction, prevention, and reduction of the
symptoms of cancer pain in patients with gastric cancer might be an
effective approach for future enhancing scientists to explore the
precision nursing of cancer symptoms.

Our experimental results confirmed the significant
upregulation of AKR1B1, CPVL, and CTSL in human GC cells

FIGURE 8 | Association of the TNFα-derived gene signature with immune response in GC. (A) Comparing the expressions of immune checkpoint molecules
between groups. (B) Associations of immune checkpoints with the TNFα-derived risk score across GC specimens. (C) Distribution of TMB scores among GC tissues.
(D) Comparison of the TMB score between subgroups. **p < 0.01. (E) Comparison of the TIDE score between two groups. (F) Distribution of IPS scores in two
subgroups. (G) Heatmap depicting the activities of the cancer immunity cycle across GC specimens. (H) Associations of all steps within the cancer immunity cycle
across GC specimens. (I) Differences in the activities of the cancer immunity cycle between high- and low-risk groups. *p < 0.05; ***p < 0.001.
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HGC-27, MKN-28, and AGS compared with human gastric
mucosal cells GES-1. Previously, AKR1B1 expression has been
remarkably upregulated in GC than in nontumor tissues (Li et al.,
2020). Additionally, it displays remarkable associations with
survival outcomes and immune cell infiltration in GC (Zhou
et al., 2021). CPVL upregulation has been proposed in GC over
non-cancerous specimens (Ran et al., 2015). CTSL triggers
angiogenesis through modulating the CDP/Cux/VEGF-D
pathway in GC (Pan et al., 2020). These findings suggested the
critical functions of AKR1B1, CPVL, and CTSL in gastric
carcinogenesis.

A few limitations should be pointed out in our study. All data
utilized in our study were curated from public cohorts. Although
GC patients were randomly assigned to training and testing sets,
the internal verification method was of only limited value. In-
depth external verification was of importance for confirming and
expanding our discovery as an approach for the development of a
clinically worthy prognostic model. Moreover, our evaluation of
the associations of the TNFα-derived gene signature with GC
patients’ clinicopathological features was not exhaustive. In

accordance with the limitations, currently, the TNFα-derived
gene signature we established is of only limited clinical utility
and required extensive verification.

CONCLUSION

Collectively, our research uncovered the implication of the TNFα-
derived gene signature in predicting prognosis, immune escape, and
genomic mutations in GC, which might display regimens for
enhancing the immunotherapeutic responses. This signature as a
reliable prognostic and immunotherapeutic predictor might guide
clinical nursing management and personalized medicine.
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