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Abstract: The autosomal dominant chondrodystrophies, the Stickler type 2 and Marshall syndromes,
are characterized by facial abnormalities, vision deficits, hearing loss, and articular joint issues
resulting from mutations in COL11A1. Zebrafish carry two copies of the Col11a1 gene, designated
Col11a1a and Col11a1b. Col11a1a is located on zebrafish chromosome 24 and Col11a1b is located on
zebrafish chromosome 2. Expression patterns are distinct for Col11a1a and Col11a1b and Col11a1a
is most similar to COL11A1 that is responsible for human autosomal chondrodystrophies and the
gene responsible for changes in the chondrodystrophic mouse model cho/cho. We investigated the
function of Col11a1a in craniofacial and axial skeletal development in zebrafish using a knockdown
approach. Knockdown revealed abnormalities in Meckel’s cartilage, the otoliths, and overall body
length. Similar phenotypes were observed using a CRISPR/Cas9 gene-editing approach, although the
CRISPR/Cas9 effect was more severe compared to the transient effect of the antisense morpholino
oligonucleotide treatment. The results of this study provide evidence that the zebrafish gene for
Col11a1a is required for normal development and has similar functions to the mammalian COL11A1
gene. Due to its transparency, external fertilization, the Col11a1a knockdown, and knockout zebrafish
model systems can, therefore, contribute to filling the gap in knowledge about early events during
vertebrate skeletal development that are not as tenable in mammalian model systems and help us
understand Col11a1-related early developmental events.

Keywords: collagen; Col11a1a; alternative splicing; minor fibrillar collagen; zebrafish; Stickler type 2
syndrome; Marshall syndrome; fibrochondrogenesis

1. Introduction

The molecular mechanisms directing developmental patterning and gene expression at early
stages in vertebrate development are conserved in many respects between zebrafish and humans, with
cartilage forming the majority of the vertebrate embryonic skeleton in early development, relying on
mesenchymal cell proliferation and condensation [1,2]. Chondroprogenitor proliferation and terminal
differentiation lead to the formation of precisely sized and shaped skeletal elements [3]. Cartilage
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defects during this process can lead to chondrodystrophies that may include abnormal bone formation,
joint dysfunction, and early-onset osteoarthritis [4].

In addition to skeletal symptoms, chondrodystrophies such as Stickler syndrome also includes
hearing loss, and the zebrafish model system may provide insight into the mechanism that links the
skeletal phenomena to hearing loss, resulting from mutations in the Col11a1 gene. The development of
the zebrafish ear is similar to other vertebrates [5,6] and zebrafish has served as a model system for the
study of ear development [6–8].

Cartilage-related defects associated with collagen type XI have been identified in several vertebrate
species including mice, humans, dogs, and zebrafish [9–13]. In mice, a Col11a1 mutation causing
a hereditary recessive chondrodysplasia (cho/cho) has provided key insight into the role of Col11a1
in the formation of cartilaginous structures. Cho/cho mice display severe hearing impairment
due to underdevelopment of the organ of Corti in the cochlea [14] and chondrodysplasia of the
limbs, palate, ribs, mandible, and trachea [15], all of which are present as transient or permanent
cartilaginous structures in the developing mouse embryo. Human mutations in COL11A1 result in
similar abnormalities that constitute the Marshall and Stickler syndromes. These syndromes are similar,
characterized by varying degrees of craniofacial abnormalities, such as cleft palate, myopia, retinal
detachment, deafness, dental anomalies, and early-onset arthritis [16–20].

Collagen is the most abundant protein in connective tissue and plays an integral part in most
vertebrate tissues [21]. Disturbances in cartilage collagen composition and distribution during
development results in alterations in the skeletal structure that contribute to an increased risk of
disease [22]. Specifically, disruption in the expression of collagen type II and XI negatively impacts the
organization and complexity needed for proper functioning mature cartilage [23].

Collagen type XI belongs to the fibrillar class of collagens [24] and polymerizes with collagen type
II and IX to produce heterotypic collagen fibrils [25] found in fetal and adult cartilage [26]. Col11a1 gene
expression is reported widely beyond cartilage, to include the nucleus pulposus of the intervertebral
disc, the developing notochord, the vitreous humour of the mammalian eye, skeletal muscle, brain
tissue, tendons, heart valves, skin, the tectorial membrane of the inner ear, intestinal epithelia and
smooth muscle of the intestine, the calvaria, and endochondral bones [26–28].

In our previous study, we identified zebrafish orthologues of the minor fibrillar collagen genes
and analyzed the exons included within the specific splice forms. We characterized the temporal and
spatial expression patterns of the Col11a1a splice-forms in the developing zebrafish embryo and found
these splice forms to be prevalent in the ear, notochord, and Meckel’s cartilage.

In this study, we designed antisense morpholino oligonucleotides (AMOs) that effectively block
translational initiation as well as intron/exon splicing of exon 6a within the alternatively spliced
variable region. The results that we present here from this knockdown technique using AMOs
further substantiate the identification of the homologous zebrafish genes as orthologues of COL11A1.
The result of the exclusion of exon 6a also resulted in malformations in the otoliths in the ear, of the
notochord, and of Meckel’s cartilage. Finally, results of the AMO knockdowns were compared to
CRISPR/Cas9-mediated gene editing of Col11a1a to confirm our findings.

These investigations of zebrafish orthologues of COL11A1 increase our understanding of the
function of Col11a1 and help to establish zebrafish as a biological model for the study of collagen type
XI in vertebrate development and disease.

2. Materials and Methods

2.1. Fish Maintenance, Care, and Staging

Ab/Ab Danio rerio embryos were obtained from Zebrafish International Resource Center (ZIRC)
(Eugene, OR, USA). Juvenile and adult zebrafish were housed in an Aquatic Habitat (Apopka, FL,
USA) system with regulated temperature and light cycle. Fertilized eggs were maintained in a smaller
tank with a temperature of 28.5 ◦C, 20 to 25 embryos per 100 mL. Zebrafish were euthanized with
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300 mg/mL ethyl 3-aminobenzoate methane sulfonate salt (MS-222) (Sigma Aldrich, St. Louis, MO,
USA), by treating for 5–10 min until the opercular movement stopped, as approved by the Boise State
University Institutional Animal Care and Use Committee (AC18-014 and AC18-015). Embryos were
staged before euthanization or experimentation to determine age in hours or days post-fertilization
(hpf and dpf) at 28.5 ◦C using a Zeiss Stemi 2000-C dissecting microscope (Carl Zeiss MicroImaging,
Inc., Thornwood, NY, USA).

2.2. PCR

Zebrafish RNA was isolated at specific developmental stages (4 h, 10 h, 24 h, 48 h, 72 h, 3.5 d,
4.5 d, and 6.5 d) and used to generate cDNAs using Retroscript (Ambion, Austin, TX, USA). cDNA
was used as a template in PCR reactions with primers flanking the variable region of the Col11a1a
chain. Ten picomoles of each primer and 2 µL of cDNA were added to 22 µL of PCR master mix
generated by adding water to Ready-To-Go PCR Beads (Amersham Biosciences, Piscataway, NJ, USA).
The final reaction (25 µL) contained 1.5 U Taq DNA Polymerase, 10 mM Tris-HCl, pH 9.0 at room
temperature, 50 mM KCl, 1.5 mM MgCl2, 200 µM of each dNTP as well as bovine serum albumin
(BSA). Each reaction was then incubated as follows: 95 ◦C for 5 min, (95 ◦C for 1 min, 55.5 ◦C for
1 min, 72 ◦C for 1 min) × 30 cycles, and 72 ◦C for 10 min. PCR products were separated by size by
electrophoresis on a 2% agarose gel (Nusieve 3:1) in Tris Acetate EDTA (TAE) buffer and stained with
ethidium bromide. Bands were visualized using a Kodak ID Image Station (Eastman Kodak Company,
Rochester, NY, USA) trans-illuminator.

2.3. Cloning and Riboprobe Synthesis

Excised PCR products were purified using the Ultrafree-DA Centrifugal purification system
(Millipore/Amicon, Bellerica, MA, USA) and sequenced by the Idaho State University Molecular
Research Core Facility (Pocatello, ID, USA). Purified products were ligated into the PCRII vector
(Invitrogen, Carlsbad, CA, USA) overnight at 14 ◦C. The ligation product was transformed into
chemically competent TOP10 Escherichia coli cells (Invitrogen, Carlsbad, CA, USA). Sequence analysis
was performed by the Idaho State University Molecular Research Core Facility (Pocatello, ID, USA).

Five micrograms of riboprobe-containing plasmids were linearized using 5U Hind III with 10×
BSA in 20 µL total volume. Plasmid digest fragments were subsequently purified by phenol/chloroform
extraction. One-tenth volume of 8 M LiCl was added to each reaction followed by the addition of
2.5 volumes of 100% ethanol. One microgram of linearized/purified plasmid was used as a template to
synthesize antisense, digoxigenin-labeled probe using DIG RNA Labeling (Roche Applied Science,
Indianapolis, IN, USA). A control probe was synthesized using pSPT18-neo empty plasmid. Riboprobe
synthesis products were purified using P-30 Bio Spin columns (BioRad Laboratories, Hercules, CA,
USA). Probe reactions were then diluted to a working concentration with hybridization buffer for in
situ hybridization assays.

2.4. In Situ Hybridization

Zebrafish embryos were fixed in 4% paraformaldehyde in phosphate buffer (PBS) containing
8% sucrose and 0.3 µM CaCl2. Embryos were dehydrated, rehydrated, washed and hybridized as
previously described [29]. Embryos were washed and fixed in 2% formalin in PBST overnight at 4 ◦C,
and stored in 75% glycerol at 4 ◦C.

2.5. Antisense Morpholino Oligonucleotide Injection

Antisense morpholino oligonucleotides (AMOs) were designed to knockdown the protein
expression of Col11a1a, Col11a1b, or alter specific isoforms of Col11a1a (Gene Tools, LLC Philomath,
OR). AMOs directed to the translational start site in exon 1 of Col11a1a (chr24) consisted of the sequence
5′-GGGACCACCTTGGCCTCTCCATGGT-3′, and Col11a1b (chr2) exon 1 consisted of the sequence
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5′-ACCACCTTTCCTTATCCTTATCCAT-3′ to block initiation of protein synthesis. AMOs used to
block the inclusion of specific exons within the variable region were as follows:

exon 6A 5′-GTTGTGTACTGCACATAGGGAGAGG-3′;
exon 6B 5′-GTTTCACTCTCTGGAAAAAGGTTAT-3′;
exon 8 5′-CATGGCCTTATTACACCCAAAGCAA-3′.
A control AMO 5-CCTCTTACCTCAGTTACAATTTATA-3′ directed to the gene encoding β-globin

of a human patient with thalassemia was used as a negative control, as this sequence should not
be present in the experimental samples (Gene Tools #18633993). AMOs were injected into the yolk
of one- to two-cell embryos using an Eppendorf Femtotip II microinjection needle and an injection
pressure of 3.5 psi for 0.1 s with a compensation pressure of 0.22 psi (Eppendorf, Hamburg, Germany).
The effectiveness of splice blocking AMOs was confirmed by RT-PCR (see Supplementary Materials).
The skeletal effects of the Col11a1 AMOs were detected by analysis of morphants directly or by using
Alcian blue staining of the injected zebrafish at specific time points and compared to time-matched
untreated zebrafish and those treated with the control AMO.

2.6. CRISPR/Cas9 Gene Editing

A CRISPR/Cas9 gene-editing approach was used to introduce a premature stop codon in Col11a1a.
Target sequences were designed as described by Gagnon and colleagues [30]. The target sequences
were identified through the CHOPCHOP webtool (https://chopchop.rc.fas.harvard.edu/). The six
best targets were selected and were used to create six different guide sequences shown in Table 1.
Guide sequence e201 resulted in a premature stop codon within exon 2 and was used for Col11a1a
CRISPR/Cas9 mutant generation.

Table 1. CRISPR/Cas9 gene editing.

Name Target Guide Sequence 1 Forward Primer Reverse Primer

E101 Exon 1
ATTTAGGTGACACTATA

GGCCAAGGTGGTCCCCAATG
GTTTTAGAGCTAGAAATAGCAAG

GGCACTTTTGGGATTGTAGAAG CATCTCCTCTTAGAAAGCCCCT

E201 Exon 2
ATTTAGGTGACACTATA

AAGAGCATCACAGCCAGACG
GTTTTAGAGCTAGAAATAGCAAG

CTGCTGACATTTTGCATGTCTT CATTTAAACGCAGCTGAACGTA

E301 Exon 3
ATTTAGGTGACACTATA

AGGCGTCCAGCAGCTGGGCG
GTTTTAGAGCTAGAAATAGCAAG

GTAAGAAGAAGCTGACCAAGCC CCCGTTTATTTCTACCTCATGC

E401 Exon 4
ATTTAGGTGACACTATA

TGGCACCAGGATCCTGGATG
GTTTTAGAGCTAGAAATAGCAAG

GTAAGAAGAAGCTGACCAAGCC CCCGTTTATTTCTACCTCATGC

E501 Exon 5
ATTTAGGTGACACTATA

GCCTGCAGTGTGTCCTTGTG
GTTTTAGAGCTAGAAATAGCAAG

GCTCTGTTTTTGGTCTCCTCAG AGACGTCCAGAAGCGTTTAGTC

E2701 Exon 27
ATTTAGGTGACACTATA

GGTGTCCGTGGTCTAAAGGG
GTTTTAGAGCTAGAAATAGCAAG

TTCACTGTTGTCATTTTCAGGG ACGTGTGACGATTTCTCCATTA

1 Bold nucleotides indicate the coding sequence with the guide sequences.

2.7. Statistical Analysis

One-way ANOVA was used with randomized blocking. p-values of <0.05 were considered
statistically significant. Measurements were analyzed using SAS/STAT software, v. 9.1 (SAS System,
Cambridge, MA, USA: Cytel Software Corporation, 2007).

3. Results

The Danio rerio Col11a1a gene is located on chromosome 24 (chr24) and the Col11a1b gene is located
on chromosome 2 (chr2). Exon 1 of both Col11a1a and Col11a1b encodes the translational start site and
the signal peptide, as is true for the other minor fibrillar collagen genes. Exons 2 through 5 of Col11a1a
and Col11a1b encode the relatively large amino propeptide (Npp), which is also conserved for α1(XI),
α2(XI), α1(V) and α3(V) alpha chains. Sequence comparison demonstrated the high degree of sequence
conservation between humans and zebrafish, as shown in Figure 1. The degree of identity was used to
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identify the homologs of human genes within the zebrafish model system. Figure 1 demonstrates that
the percent amino acid sequence identity varies among specific regions of the corresponding protein
and that the most closely related zebrafish gene is that located on zebrafish chromosome 24, Col11a1a.J. Dev. Biol. 2020, 8, x FOR PEER REVIEW 5 of 16 
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Figure 1. Amino acid sequence identity between Homo sapien and Danio rerio genes. Amino propeptide
(npp), variable region (VR), minor helix (mh), amino telopeptide (ntp), major triple helix (MTH),
carboxyl telopeptide (ctp), and carboxyl propeptide (cpp). Percentages shown indicate identity between
human COL11A1 and the zebrafish gene. Homology is observed within the npp, mh and ntp, MTH,
and the ctp and cpp domains, while the degree of identity is very low for the VR. Amino acid sequence
identity for other minor fibrillar collagens is shown in comparison to human COL11A1. The D. rerio
chromosome 2 Col11a1 locus identity corresponds to Col11a1b.

Within the npp of the amino-terminal domain, the position of four cysteines is strictly conserved,
as are stretches of amino acids predicted to adopt β-strand secondary structure. Originally predicted
to adopt an Ig domain fold by analysis of primary sequence [31], it has been further demonstrated
that this domain is a homolog of the amino-terminal domain of thrombospondin 1 and 2 and the
LNS family, so named for laminin, neurexin, and sex-hormone binding protein [32–35]. The predicted
amino propeptide domain of Col11a1a and Col11a1b of zebrafish also shares sequence homology
with the N-terminal domains of FACIT collagens types IX, XII, XIV, and XIX [36–41] as well as
collagens type XXVIIa and XXVIIb. Divalent cation binding sites and sites of interactions with sulfated
glycosaminoglycans are present in many of the LNS domains and appear to be conserved within the
zebrafish genes.

In addition to the highly conserved Npp domain, within the Col11a1a and Col11a1b amino-terminal
domains in zebrafish there are predicted amino acid sequences that are poorly conserved among
paralogues α1(XI), α2(XI), α1(V), and α3(V) chains, and also poorly conserved among the orthologues
of any one of the minor fibrillar collagens compared across species. This region is referred to as the
variable region (VR) [41–44]. In zebrafish Col11a1a but not Col11a1b, the α1(XI) mRNA exists as a set
of splice forms arising by the mechanism of alternative splicing [45,46]. Alternative splicing in the
analogous region has also been reported for the orthologues in other vertebrate species for Col11a1 as
well as for genes encoding the α2(XI) chain. Interestingly, no alternative splicing has been reported
for the alpha chains of the type V collagens. However, zebrafish may represent an exception to this
rule [29,47].

We have analyzed the zebrafish intron–exon structure of the Col11a1a gene, comparing it to other
vertebrates, and have found that a similar genomic structure exists. The Col11a1a on chromosome 24
gene comprises 130 kbp of genomic DNA, compared to 150 kbp in humans, with 67 exons compared
to 68 exons in humans. The protein length is predicted to be slightly longer than in humans—1866
amino acids compared to 1852 amino acids. The amino acid sequence identity between zebrafish and
humans, estimated by global alignment was found to be 76%, with regions of higher sequence identity
in the carboxyl telopeptide and carboxyl propeptide (80%), the major triple helix (87%), and the minor
helix and amino telopeptide region (81%) identity. Amino acid sequence identity for specific regions is
shown in comparison to human COL11A1 in Figure 1.
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Col11a1a (chr24) was expressed during development, as shown in Figure 2. Col11a1a (chr 24)
mRNA was not detectable at 4 hpf, but it was apparent at 10 hpf, during the segmentation phase of
development. Expression levels were consistent through 72 hpf (Figure 2A,B). Col11a1b (chr2) mRNA
expression was detectable at 4 hpf through the 72 hpf time point (Figure 2A). GAPDH is shown as an
internal control housekeeping gene for each time point (Figure 2C).J. Dev. Biol. 2020, 8, x FOR PEER REVIEW 6 of 16 
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Figure 2. RT-PCR indicates that Col11a1a (chr24) is expressed between 10 and 72 hpf and Col11a1b
(chr2) is expressed at 4 hpf through 72 hpf. (A) Using primers to amplify a 470 bp fragment, Col11a1b
(chr2) mRNA was detected in embryos and larval fish. Time post-fertilization is indicated at the bottom
of gels as 4, 10, 24, 48, and 72 hpf. (B) Col11a1a (chr24) was detected at 10 hpf through 72 hpf. (C)
GAPDH was included as housekeeping gene control.

Exons 6a through 8 of the variable region of Col11a1a were analyzed to evaluate the intron–exon
boundaries across the variable region. To determine the pattern of alternative splicing that took place
within this region of the zebrafish mRNA, RT-PCR was carried out using primers that would distinguish
between the different possible splicing outcomes. Results indicated changes due to alternative splicing
of the Col11a1a mRNA between 10 hpf and 6.5 dpf, as shown in Figure 3.

Alternative splicing of the Col11a1a (chr 24) mRNA in zebrafish generated similar splice variants
to those previously been described for humans, rats, mice, and chicken with a few notable exceptions.
The splice variant that includes exon 6a, 7, and 8 but excludes exons 6b (α16a-7-8(XI)) was observed
in zebrafish at the earliest time points. Additionally, splice variants α17(XI), α16a-7(XI), and α17-8(XI)
were also confirmed in zebrafish. Interestingly, the splice variant α16a-6b(XI), was observed in zebrafish
at 3.5, 4.5 and 6.5 days post-fertilization (dpf). This is noteworthy because exon 7 was thought
to be constitutively expressed in all vertebrates, and exons 6a and 6b were previously thought to
be either included or excluded in a mutually exclusive manner based on data from other species.
This observation warrants further investigation, not only in the zebrafish system but also in humans
and other vertebrate organisms. The most predominant form observed was α16a-7-8(XI), which is also
the predominant form found in mesenchymal stem cells in other vertebrates previously shown by our
laboratory [48].

The spatial expression of Col11a1a and Col11a1b was determined by in situ hybridization, as shown
in Figure 4. Using probes directed to exons 6a-7-8-9 for Col11a1a (chr 24) and exons 6-7-8-9 for
Col11a1b (chr2), expression was detected in early zebrafish embryos. Spatial expression varied with the
developmental stage. At 10 hpf, Col11a1a (chr24) expression was present along the dorsal midline.
At 24 hpf, expression was most pronounced in the notochord and in the hindbrain. At 60–72 hpf,
expression was detected in the craniofacial structures. The overall expression pattern for Col11a1a
(chr24) was similar to that determined for Col11a2 (chr19), as both were expressed in notochord and
developing cranial cartilages [29].
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(A) PCR primers hybridizing to sequences within exons 5 and 7 were used to investigate the inclusion
and exclusion of exons 6a and 6b overtime during development. Expression was detected as early
as 10 hpf and continued throughout development to the last time point queried in this study, which
was 6.5 dpf. (B) PCR primers hybridizing to sequences within exon 7 and 9 were used to investigate
the inclusion and exclusion of exon 8 overtime during development. Exon 8 was included in the
most predominant form of Col11a1a at all time points investigated. However, exon 8 was skipped
in some forms of Col11a1a, joining exon 7 directly to exon 9, as shown by the PCR band migrating
below 200 kilobases. (C) PCR primers hybridizing to sequences within exons 5 and 9 were used to
investigate the complexity of splice form expression across the variable region of Col11a1a in zebrafish.
The predominant splice form included exons 6a and 8, in agreement with observations shown in panels
A and B. Alternative patterns of expression were observed to exclude exons 6a and 6b but include exon
8 at 24 hpf. Additionally, exclusion of exons 6a, 6b, and 8 resulted in the expression of the splice form
comprising exons 5-7-9 migrating at approximately 300 kilobases at 48 hpf. (D) GAPDH was included
as housekeeping gene control to confirm RNA content in samples representing distinct time points in
development. The identity of the PCR product was verified by DNA sequencing.

Col11a1b (chr2) was observed in the somites at 20–24 hpf, similar to Col5a1 [29]. Col11a1b (chr2)
was detected within the craniofacial region at 60–72 hpf (Figure 4), similar to Col11a1a.

An AMO-mediated knockdown strategy was used to investigate the role of Col11a1a and Col11a1b
in early development. Microinjection of 2 nL of a 0.5 mM AMO targeting the translational start site
of Col11a1a (Col11a1a-MOe1) was lethal in 57% of treated embryos compared to 26% lethality for
treatment with the AMO targeting the translational start site of Col11a1b (Col11a1b-MOe1) (Table 2).
The knockdown of specific variants to explore the contribution of the variable region to survival was
performed under the same conditions. AMOs targeting splice sites of exon 6a or exon 8 are shown in
the Supplementary Materials.
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(2.67 ± 0.16 mm; p < 0.0001). Although AMOs directed toward splice sites of exons 6a and 8 did not 
alter viability, as shown in Table 2, they did have a significant effect on development and body plan. 
Morphants treated with the AMO preventing the inclusion of exon 6a (Col11a1a-MOe6a) showed a 
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± 0.18 mm; p = 0.0123). 

Figure 4. In situ hybridization of Col11a1a (chr 24) and Col11a1b (chr 2). Wild-type embryos were
treated with pSPT-18 control riboprobe (A–C), Col11a1b (chr2) ex6-7-8-9 riboprobe (D–F), and Col11a1a
(chr24) ex6a-7-8-9 (G–I). Embryos were observed at 10 hpf (A,D,G), 20–24 hpf (B,E,H), and 60–72
hpf (C,F,I). Expression was limited to the embryonic midline (m) at 10 hpf. At 20–24 hpf, expression
was most pronounced in the notochord (n) for Col11a1a (chr24) and in the somites (s) for Col11a1b
(chr2). At 60–72 hpf, developing craniofacial structures showed high levels of expression in addition to
the notochord observed at 24 hpf seen for Col11a1a (chr24). Col11a1b (chr2) was also apparent in the
craniofacial (cf) structures at 60–72 hpf in addition to the somites. Scale bars = 250 µm.

Table 2. Summary of lethal effect on reduced levels of Col11a1b and Col11a1a variants.

AMO N Lethality

Col11a1b-MOe1 54 14 (26%)
Col11a1a-MOe1 87 50 (57%)

Col11a1a-MOe6a 80 24 (30%)
Col11a1a-MOe8 56 19 (34%)

Std. AMO control 32 11 (34%)

Comparing the efficiency of splice-modifying AMOs indicated that the exon 6a AMO was more
effective than the exon 8 AMO. Therefore, we focused primarily on the splice-altering effect of skipping
exon 6a, including the AMO targeting exon 8 for comparison. Lethality levels were similar to standard
morpholino control, indicating that alternative isoforms may be able to compensate for each other in
the case of Col11a1a. The AMO targeting exon 6b, Col11a1a-MOe6b, did not affect mRNA splicing.

Notochord deformities and a shortened overall body length were observed in morphants
(Tables 3 and 4). Approximately 74% of Col11a1a-MOe1 morphants exhibited a severely curved
notochord. A significantly shorter body length was observed in the remaining morphants when
compared to the standard AMO control (2.81± 0.12 mm vs. 3.02± 0.17 mm; p = 0.0031). Col11a1b-MOe1
morphants exhibited a similar trend, with 75% having a severely curved notochord and the remaining
showing a significantly shortened body length than the standard AMO control (2.67 ± 0.16 mm;
p < 0.0001). Although AMOs directed toward splice sites of exons 6a and 8 did not alter viability,
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as shown in Table 2, they did have a significant effect on development and body plan. Morphants
treated with the AMO preventing the inclusion of exon 6a (Col11a1a-MOe6a) showed a 93% prevalence
of notochord deformity as well as a significantly shortened body length in measurable morphants
(2.85 ± 0.12 mm; p = 0.0284). By contrast, Col11a1a-MOe8 morphants showed the lowest prevalence of
notochord deformities but still demonstrated a shortened body length (2.85 ± 0.18 mm; p = 0.0123).

Table 3. Col11a1 knockdown results in a decrease in body length.

AMO Length (mm) % Decrease

Col11a1b-MOe1 2.67 ± 0.16 −13.1%
Col11a1a-MOe1 2.81 ± 0.12 −7.5%

Col11a1a-MOe6a 2.85 ± 0.12 −6.0%
Col11a1a-MOe8 2.85 ± 0.18 −6.0%

Std. AMO control 3.02 ± 0.17 0

No effect was observed for Col11a1a-MOe6b.

Table 4. Summary of defects observed under reduced levels of Col11a1a and Col11a1b.

AMO n Missing or Extra Otoliths Pericardial Edema Curved Notochord Smaller Meckel’s Cartilage

Col11a1b-MOe1 40 40 (100%) 39 (98%) 30 (75%) 40 (100%)
Col11a1a-MOe1 34 18 (53%) 28 (82%) 25 (74%) 33 (97%)
Col11a1a-MOe6a 44 30 (68%) 42 (95%) 41 (93%) 44 (100%)
Col11a1a-MOe8 18 0 0 1 18 (100%)

Std. AMO
control 32 0 0 0 0

No effect was observed for Col11a1a-MOe6b.

Additionally, missing or extra otoliths, pericardial edema, and smaller Meckel’s cartilage were
observed in the Col11a1a and Col11a1b knockdown morphants (Table 4). To illustrate the change in
body length and curvature observed due to treatment with AMOs that block protein translation by
targeting the translational start site that exists with exon 1 for Col11a1a, representative examples are
shown in Figure 5.
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embryos treated with the transcriptional start site-specific AMO for Col11a1a resulted in increased 
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with the AMO that blocks protein translation by targeting the translational start site existing with 
exon 1 for Col11a1b resulted in the defects illustrated in Figure 6. 

Figure 5. Body length and curvature changes due to Col11a1a-MOe1 AMO knockdown. (A) Control
AMO injection observed at 72 hpf. (B) Col11a1a-MOe1 AMO injection observed at 72 hpf. Zebrafish
embryos treated with the transcriptional start site-specific AMO for Col11a1a resulted in increased
curvature and decreased body length. Additionally, heart edema was observed, as shown in B. Scale
bar = 500 µm.

A similar phenotype was observed using the Col11a1b-MOe1, as shown in Figure 6. Treatment
with the AMO that blocks protein translation by targeting the translational start site existing with exon
1 for Col11a1b resulted in the defects illustrated in Figure 6.
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Figure 6. Cardiac, body length, and curvature changes due to Col11a1b-MOe1 AMO knockdown.
(A) Control AMO injection, observed at 72 hpf. (B) Col11a1b-MOe1 AMO injection, observed at 72
hpf. Body length shortening, the curvature of the primary axis, and edema of the heart are apparent in
zebrafish embryos treated with the transcriptional start site-specific AMO for Col11a1b. Otoliths are
affected as indicated by arrows within the insets. Two arrows in A (inset) indicate the position of two
otoliths in control zebrafish embryos. One arrow in B (inset) indicates the presence of only one otolith.
Pericardial edema is indicated by the red arrow in B. Scale bar = 200 µm. Scale bars in inset represent
50 µm.

We investigated Col11a1a in more detail, focusing on the effect of splice-modifying AMOs.
A reduction in Alcian blue staining was observed in the cartilage of Col11a1a-MOe1, Col11a1a-MOe6a,
and Col11a1a-MOe8 morphants (Figure 7). A reduction in the size of Meckel’s cartilage was observed.
Otolith defects were observed that included a reduction in size, extra or missing otoliths.

The knockdown of genes using AMOs has certain limitations, including the duration of the AMO
knockdown and the specific timing during development. Because of these limitations, we could
not fully appreciate the role of specific splice forms during development. To complement the AMO
approach and to increase the time frame of our investigations, we developed a model system based on
CRISPR/Cas9 technology. A CRISPR/Cas9 knockout was performed, resulting in a similar phenotype
to that observed by AMOs.

Homozygous knockout embryos displayed severe phenotypes such as that shown in Figure 8
and demonstrated a more severe lethality, as shown in Table 5. Heterozygous knockouts that resulted
from crossing homozygous knockouts with a wild-type fish resulted in a lower level of lethality
and a phenotype that was more similar to the AMO morphants. Representative homozygous and
heterozygous offspring are shown in Figure 8.

Table 5. Summary of lethality in CRISPR/Cas9 homozygous and heterozygous mutants.

CRISPR/Cas9 N Lethality

Col11a1a −/− 303 299 (98%)
Col11a1a +/− 299 152 (50%)

Wild-type control 311 25 (8%)
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Figure 7. Alcian blue staining of craniofacial cartilage in 72 hpf zebrafish morphants of Col11a1a.
A range of severity was observed among embryos of Col11a1a morphants. (A) Antisense morpholino
oligonucleotide targeting the translational start site of Col11a1a-MOe1 morphants demonstrate reduced
Alcian blue staining, disorganized cartilage, and shortened jaw. (B) Col11a1a-MOe6a morphants
demonstrate reduced Alcian blue staining, shortened Meckel’s cartilage, and an absence of otoliths. (C)
Col11a1a-MOe6b show relatively little effect and are similar to the control zebrafish. (D) Col11a1a-MOe8
show reduced Alcian blue staining. (E) Standard AMO control. Abbreviations palatoquadrate (pq);
Meckel’s cartilage (m); ethmoid plate (ep); otolith (o). Scale bars = 200 µm.
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cho/cho mice as well as the structure commonly affected by a mutation in the human COL11A1 gene. 
These affected structures include a small jaw, changes to the ears that lead to hearing loss, and cleft 
palate [51]. In the cho/cho mouse, a model for chondrodysplasia, the result of a mutation in Col11a1 is 
dwarfism, with both chondrogenesis and endochondral ossification affected [52]. These data 
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Figure 8. CRISPR/Cas9-mediated homozygous and heterozygous knockout of Col11a1a shows a similar
but more severe outcome compared to AMO knockdown. (A) Wild-type 72 hpf embryo compared to
(C) homozygous Col11a1a −/− knockout embryo at 72 hpf showing the severe effect of the complete
absence of Col11a1a in early embryogenesis. Homozygous offspring were raised to adulthood and
bred to wild type to generate heterozygous Col11a1 −/+ offspring. (B) Wild-type 72 hpf embryo. (D)
Heterozygous Col11a1a −/+ embryo at 72 hpf. Scale bar = 200 µm.

4. Discussion

Mutations in the COL11A1 gene have been identified as a cause for a range of human developmental
defects resulting in facial abnormalities, eye defects, hearing loss, and articular joint defects. Zebrafish
have been well established as a model for studying mammalian developmental processes and disorders
resulting from genetic defects. Two chromosomal locations were investigated for Col11a1a and Col11a1b
in zebrafish. Gene expression was detected throughout development. Alternative splicing was
observed in the zebrafish gene Col11a1a but not Col11a1b. Knockdown of zebrafish gene expression and
splice forms resulted in varying degrees abnormalities in the Meckel’s cartilage, otoliths, notochord,
and heart. Additionally, shortening of total body length and embryonic lethality was observed. These
data provide evidence that the zebrafish genes for Col11a1a and Col11a1b are essential for normal
development and that Col11a1a has similar characteristics as the human COL11A1 gene.

The development of every organ system depends on a properly organized extracellular
matrix. Extracellular matrix (ECM) assembly involves the dynamic interaction around structural
macromolecules as well as between cells and ECM molecules. Biosynthetic or structural deficiencies
of the components of the ECM are associated with a wide spectrum of birth defects that predispose
individuals to symptoms ranging in severity from mild osteoarthritis to lethal chondrodysplasia with
associated eye involvement and hearing loss [49,50], designated Stickler syndrome type 2 (OMIM
#604841) or Marshall syndrome (OMIM #154780) [17].

Cloning of the zebrafish orthologues Col11a1a and Col11a1b with subsequent analysis of the
various splice forms presented here form the basis on which further studies of vertebrate type XI
collagen function can be performed. This work also confirms the value of the zebrafish as a model for
the study of the role of type XI collagen during vertebrate development.

In our studies, riboprobes localized to the structures that were affected during AMO-mediated
knockdown. The zebrafish craniofacial structures are analogous to those that are affected in the
cho/cho mice as well as the structure commonly affected by a mutation in the human COL11A1 gene.
These affected structures include a small jaw, changes to the ears that lead to hearing loss, and cleft
palate [51]. In the cho/cho mouse, a model for chondrodysplasia, the result of a mutation in Col11a1 is
dwarfism, with both chondrogenesis and endochondral ossification affected [52]. These data provide
encouraging evidence that the functions of zebrafish Col11a1a and human COL11A1 are conserved.
If the zebrafish mutant generated in this study is an accurate model, mutants may also display cleft
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palate, smaller rib cage, and signs of osteoarthritis. Vison impairment and hearing loss would also be
expected. Additionally, disturbed endochondral bone formation would possibly occur. Studies are
now underway to investigate ear development and hearing, eye development and vision, and jaw
formation with subsequent mineralization in our mutant zebrafish.

CRISPR/Cas9 gene editing was used to create a model system that expressed a lower level of
Col11a1a. CRISPR/Cas9 has advantages over AMO knockdown because, unlike the transient effect of
AMOs, the CRISPR/Cas9-mediated change is stable. Further, while AMOs are ideal for observing the
effects very early in development, CRISPR/Cas9 may be useful for looking at the effect of genes that
are expressed at later times in development.

Expression of the Col11a1a within the developing otic vesicle suggests that the zebrafish model
will provide a means by which to study the further molecular and cellular basis of the hearing loss
characteristic of the Marshall and Stickler syndromes.

The structural role of collagens in the formation of the ECM is well established. However, many
ECM proteins also function as signaling molecules, directing the behavior of cells [53]. Interestingly,
the craniofacial structures commonly affected by mutations in Col11a1a are derived from neural crest
cells, including Meckel’s cartilage, the otic vesicle, and otoliths [7]. Perhaps a lack of proper neural
crest migration or differentiation, in addition to structural abnormalities, may be responsible for the
phenotypes that characterize aberrant Col11a1a expression [54,55]. The ECM may serve as a scaffold
on which neural crest cells migrate [56], and may facilitate the onset of migration of cells of neural
crest origin during emigration [57]. ECM molecules may also influence cells by inhibiting or deflecting
migrating neural crest cells, thus establishing a specific developmental pattern within the developing
embryo [58]. Complex patterns of alternative splicing and splice form expression may be the key to
unlocking the roles played by type XI collagen, minor fibrillar collagens, and other ECM proteins.

Supplementary Materials: The following are available online at http://www.mdpi.com/2221-3759/8/3/16/s1,
Supplemental Figure S1. Col11a1a-MOe6a and Col11a1a-MOe8 alter splicing pattern at 48 hpf but recover by 72
hpf. Treatment with AMOs was performed at the one- to two-cell stage and splicing was monitored at 48 and 72
hpf. Lane 1: size markers; Lane 2: PCR product amplified using primers for exon 5 and 9 of Col11a1a (chr 24)
from 48 hpf embryos after treatment with the control AMO showing that the most prevalent splice form consists
of 6a-7-8-9 at 48 hpf. Lane 3: PCR products of amplification after treatment with Col11a1a-MOe6a, showing a
decrease in the most prominent splice form and the appearance of new splice forms that exclude exon 6a. Lane 4:
PCR products of amplification after treatment with Col11a1a-MOe8, showing appearance of new splice forms that
exclude exon 8. Lanes 5, 6, and 7: control and treatment at the 72 hpf time point demonstrate the transient effect
of AMO treatment, showing that the splice patterns of the treated samples match the control. Size markers are
indicated in basepairs on the left, while identity of the PCR bands is indicated on the right, referring to exons
included as a result of alternative splicing. The identity of PCR products was confirmed by DNA sequencing.
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(kbp), chondrodystrophic (cho), hours post-fertilization (hpf), days post-fertilization (dpf), chromosome (chr),
pounds per square inch (psi), digoxigenin (dig), reverse transcriptase-polymerase chain reaction (RT-PCR),
extracellular matrix (ECM), Online Mendelian Inheritance in Man (OMIM), and clustered regularly interspaced
short palindromic repeats (CRISPR).
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