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INTRODUCTION 
 

Renal cell carcinoma (RCC) is a common malignant 

tumor of the urinary system, the incidence of which has 

been increasing. It is estimated that there will be 73,750 

new cases of RCC in 2020 and 14,830 patients will die 

of the disease [1]. Clear cell renal cell carcinoma 

(ccRCC) is the most common pathological type of 

RCC, accounting for 80%-90% of cases [1, 2]. The 

clinical symptoms of early RCC are not obvious, and 

distant metastasis has occurred in 20% -30% of cases by 

the time of diagnosis. RCC is not sensitive to 

conventional radiotherapy or chemotherapy, which are 

effective in less than 20% of cases. Consequently, the 

prognosis of RCC with metastasis is poor, with a 

median survival time of only about 10 months [3].  

Therapy targeting vascular endothelial growth factor 

and the rapamycin target protein pathway is effective, 

but drug resistance is nearly inevitable [4]. Recently, 

there has been significant progress in treating metastatic 

RCC with immunotherapy. In contrast to nonspecific 

immunotherapies with IL-2 or IL-6, immune checkpoint 

blockade (ICB) therapy has shown substantial efficacy 

against advanced RCC since being approved as a 

second-line treatment in 2015. ICB therapy based on 

programmed death 1 (PD1)/programmed death ligand 

(PDL1) and cytotoxic T lymphocyte associated antigen 

(CTLA4) has shown significant survival benefits in 

many cases of advanced RCC [5–8]. However, only 

about 20% of patients benefit from the therapy [9], and 

it is necessary to screen patients using predictive 

biomarkers to determine the potential efficacy of ICB 
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ABSTRACT 
 

As one of the 10 most common cancers in men, the incidence of renal cell carcinoma (RCC) has been increasing 
in recent years. Clear cell renal cell carcinoma (ccRCC) is the most common pathological type of RCC, counting 
for 80%-90% of cases. Immunotherapy is becoming increasingly important in the treatment of advanced RCC. 
Tumor mutation burden (TMB) is a potent marker for predicting the response to immune checkpoint blockade 
(ICB) treatment. Here, we analyzed somatic mutation data for ccRCC from The Cancer Genome Atlas datasets. 
We found that the frequently mutated gene SYNE1 is associated with higher TMBs and with a poor clinical 
prognosis. To further investigate the relationship between SYNE1 mutation and the immune system, we used 
Gene Set Enrichment Analysis and the CIBERSORT algorithm. They showed that SYNE1 mutations correlate with 
immune system pathways and immune cell tumor infiltration. We also found that SYNE1 mutation correlated 
with a better response to ICB therapy. Thus, mutation of SYNE1 correlates with a higher TMB and a poorer 
outcome in ccRCC, but may mediate better responses to ICB therapy. 
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therapy. In that regard, it is has been shown that tumor 

mutation burden (TMB) is associated with the response 

to immunotherapy [10], and that accumulation of 

somatic mutations correlates with neoantigen 

expression [11]. Thus, TMB [12], PDL1 [13], and 

tumor-infiltrating lymphocytes (TILs) [14] have been 

identified as biomarkers in various solid tumors. 

 

The frequently mutated gene, SYNE1, encodes a series of 

spectrin structural proteins, which play key roles in 

cytoskeletal, nuclear and vesicular anchoring [15], and its 

mutation is associated with a form of cerebellar ataxia 

[16]. In addition, recent evidence suggests changes in 

SYNE1 expression levels, somatic mutations, and single 

nucleotide polymorphisms are related to the occurrence 

and development of lung cancer [17], oral cancer [18], 

hepatocellular carcinoma [19], and gastric cancer [20]. In 

the present study, we analyzed datasets of somatic 

mutations from The Cancer Genome Atlas (TCGA) in 

ccRCC patients. In the present study, we assessed the 

relation between SYNE1 and TMB and prognosis. We 

also compared immune cell infiltration between those 

with SYNE1 mutation type (mt) and those with wild type 

(wt), and evaluated the utility of SYNE1 mutation as a 

ICB biomarker using the tumor immune dysfunction and 

exclusion (TIDE) algorithm [21]. Our results suggest 

SYNE1 may be useful for predicting the efficacy ICB 

therapy. 

 

RESULTS 
 

Somatic mutations, TMB and clinical outcomes in 

ccRCC patients  
 

We analyzed the somatic mutations in ccRCC patients 

from TCGA cohort and identified 30 frequently mutated 

genes (Figure 1A). The genes and percentages of 

patients carrying the mutations are as follows: VHL 

(26%), PBRM1 (18%), TTN (15%), SETD2 (8%), 

MTOR (7%), BAP1 (6%), MUC16 (6%), DNAH9 

(5%), LRP2 (4%), SPEN (4%), HMCN1 (4%), CSMD3 

(3%), KMT2C (3%), ANK3 (3%), DNAH2 (3%), 

DST(3%), FBN2 (3%), RYR3 (3%), MARCA4 (3%), 

AKAP9 (3%), ATM (3%), BRCA2 (3%), ERBB4 (3%), 

FLG (3%), KDM5C (3%), MACF1 (3%), PCLO (3%), 

ROS1 (3%), SYNE1 (3%), USH2A (3%). We also 

evaluated the correlation between TMB and clinical 

outcomes using data collected from Cbioportal datasets. 

The TMB scores across all samples ranged from 0 to 

16.05157. After constructing an X-tile plot of TMB and 

overall survival (OS), a TMB score cutoff of 1.7 was 

used to divide patients into TMB-low and TMB-high 

subsets. In contrast to findings from earlier studies of 

other cancers [22, 23], ccRCC patients in TMB-high had 

poorer clinical outcomes, irrespective of their disease-

free survival (DFS) (p=0.00017) or OS (p=0.00032) 

status. At the same time, a higher TMB indicated a 

higher tumor grade (p<0.0001), higher risk of necrosis 

(p=0.038), and higher T staging (p=0.002) (Figure 1B). 

 

TMB and survival prognosis based on SYNE1 

mutation and enrichment pathway analysis of 

SYNE1 mutation 
 

We detected the SYNE1 mutation in a Venn diagram at 

the intersection of the top 30 somatic mutations, survival-

related mutations, and TMB-related mutations in ccRCC 

(Figure 2A). Patients with SYNE1 mutation (mt) had 

poorer survival outcomes, irrespective of DFS (p<0.0001) 

or OS (p=0.0017) status (Figure 2B). In addition, a higher 

TMB correlated with SYNE1 mutation (p<0.0001) 

(Figure 2C). This is consistent with our previous analysis 

of TMB and clinical outcomes. COX survival analysis 

revealed that SYNE1 mutation was a risk factor affecting 

prognosis (HR=0.978; 95% CI, 1.156-6.114; P=0.021). In 

a multivariate analysis, however, SYNE1 mutation did not 

remain a significant factor affecting prognosis (Table 1), 

suggesting SYNE1 mutation may not be an independent 

risk factor affecting prognosis in ccRCC patients. GSEA 

results revealed that pathways including GO T cell 

activation, GO cytokine secretion, GO cell-cell signaling, 

Reactome neutrophil degranulation, Reactome TCR 

signaling, and Reactome downstream signaling events of 

B cell receptor are involved (Figure 2D). 

 

Tumor-infiltrating immune cells associated with 

SYNE1 mutation in ccRCC 

 

To further compare the differential profiles of immune 

fractions between SYNE1 mt and wt groups, we used 

the CIBERSORT algorithm to evaluate the association 

between SYNE1 mutation and tumor-infiltrating 

immune cells. Twenty-two immune cell types in each 

ccRCC sample are shown in the boxplot in Figure 3A. 

We found that numbers of CD8 T cells (p=0.015), 

monocytes (p=0.046), resting dendritic cells (p=0.031), 

and eosinophils (p=0.024) were lower in the SYNE1 mt 

group than in the wt group (Figure 3B). Using a 

correlation matrix, we found that numbers of CD8 T 

cells correlated positively with follicular helper T (TH) 

cells, regulatory T cells (Tregs) and M1 macrophages, 

while they correlated negatively with CD4 T cells, 

resting memory T cells, and M0 macrophages (Figure 

3C). The heatmap shows that immune cell fractions 

were lower in the mt group than wt group (Figure 3D). 

 

Predicting of ICB response based on SYNE1 

mutation and biomarker evaluation 
 

To evaluate the ability of SYNE1 mutation to served as a 

biomarker predictive of the clinical response to ICB 

therapy, we analyzed datasets from patients with stage 4 
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ccRCC using the TIDE algorithm. The results showed that 

the mt group was associated with lower TIDE scores, 

indicating a stronger response to ICB therapy (Figure 4A). 

To evaluate its utility as a biomarker, we compared 

SYNE1 mutation to other existing biomarkers. Bar plots 

showed that SYNE1 has good prediction accuracy  

(Figure 4B). Lastly, our results suggest that SYEN1 

mutation may be an independent risk factor associated 

with prognosis for ICB therapy (Figure 4C). 

DISCUSSION 
 

In recent years immunotherapy used to treat ccRCC 

patients has changed from traditional nonspecific 

therapy to specific immunotherapy based on ICB.  

This greatly improved the efficacy of treatment for 

advanced RCC. Unfortunately, most RCC patients do 

not exhibit an immune response with ICB; only a small 

percentage of patients obtain a benefit. Consequently, it 

 

 
 

Figure 1. Somatic mutation, TMB and clinical outcomes in ccRCC patients. (A) Oncoplot for frequently mutated genes in ccRCC 
samples from TCGA cohort. Genes are listed by mutation frequency. The bottom panel shows the different mutation types. (B) TMB and 
clinical outcomes in ccRCC patients. X-tile plot of TMB and OS. A TMB score cutoff of 1.7 was used to divided patients into TMB-low and TMB-
high subsets.  
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is necessary to identify patients who are more likely to 

respond to ICB therapy before administering the drug. 

 

In the present study, we analyzed TCGA datasets of 

somatic mutations in ccRCC patients. We found that 

SYNE1 was frequently mutated in TCGA cohorts. In 

contrast to outcomes in patients with other tumors, 

where higher TMBs correlated with more favorable 

clinical prognoses, SYNE1 mutation was reportedly 

associated with higher TMB and poorer clinical 

prognoses [24]. Our findings are consistent with that 

earlier observation. GSEA enrichment analysis showed 

that SYNE1 mutation correlates negatively with T cell 

activation and cytokine secretion, and correlates 

positively with neutrophil degranulation and T cell 

receptor (TCR) signaling. The role of neutrophils in 

cancer is complex. On the one hand, they can kill tumor 

cells, but on the other hand, neutrophil degranulation 

can promote tumor cell immune escape and metastasis 

[25]. Activation of TCR signaling is closely related to T 

cell activity, leading to creation of new epitopes. It is 

reported, however, that only 0.3%-1.3% of tumor gene 

mutations induce T cell responses via TCR signaling 

[26]. Firstly, the rate of nonsynonymous mutations  

and frameshifts occur in protein-coding sequences is 

low. Secondly, proteasome cleavage of mutation-

containing protein can destroy TCR-recognized peptide 

epitopes [27].  

 

Samples with SYNE1 mutations were correlated with 

signaling pathways involved in immune responses and 

alterations in the profiles of infiltrating immune cells. 

For example, CD8 T cell and monocyte fractions were 

significantly lower in the mt than wt group. Moreover, 

recent studies have shown that lower CD8 T cell and 

monocyte infiltration is closely related to a poor 

prognosis [28, 29]. Using a correlation matrix, we could 

see CD8 T cells correlated positively with TH cells and 

Tregs. There are two parts to the T cell activation signal 

pathway. The first entails activation TCR signaling; the 

second involves the assistance of molecules such as 

CD8 and CD4, which are expressed in TH cells  

and Tregs [30]. This may explain the results of  

our GSEA enrichment pathways analysis, which 

 

 
 

Figure 2. TMB and survival prognosis based on SYNE1 mutation and enrichment pathway analysis. (A) Venn diagram of 
frequently mutated genes showing TMB correlated and survival correlated mutated genes. (B) SYNE1 mutation and survival prognosis. (C) 
SYNE1 mutation is related to a higher TMB. (D) GSEA enrichment based on SYNE1 mutation: wt, wild type; mt, mutant type. 
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Table 1. Univariate and multivariate overall survival analysis of ccRCC patients by the COX proportional hazards model. 

Factors 
Univariate  Multivariate 

HR(95%CI) p value  HR(95%CI) p value 

Grade(G1$2,G3$4) -0.839 (0.268-0.698) 0.001    

Stage(stage1$2,stage3$4) -1.435 (0.150-0.378) 0.000  -1.478 (0.144-0.362) 0.000 

TMB(high,low) 0.673 (1.401-2.743) 0.000    

SYNE1(mt,wt) 0.978 (1.156-6.114) 0.021    

Gender(male,female) 0.343 (0.918-2.161) 0.117    

Age(<70y,>70y) 1.015 (1.774-4.292) 0.000  1.087 (1.902-4.621) 0.000 

 

indicated that SYNE1 mutations correlate positively 

with TCR signaling but correlate negatively with T cell 

activation. 

 

We evaluated the ability of SYNE1 mutation to serve as 

a biomarker. Interestingly, although we found that the 

mt group showed higher TMBs and poorer prognoses, it 

also correlated with a better response to ICB therapy. 

And compared with existing biomarkers, SYNE1 

mutation exhibited good prediction ability. These 

findings suggest SYNE1 mutations may play a role in 

ICB therapy in ccRCC. 
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Figure 3. Tumor-infiltrating immune cells associated with SYNE1 mutation in ccRCC. (A) Bar chart of infiltration of 22 immune cells. 
(B) Boxplot showing differentially infiltrating immune cells based on SYNE1 mutation. Red color represents the mt group and blue represents 
the wt group. (C) Correlation matrix of immune cell fractions. The blue color represents positive correlation, and red represents negative 
correlation. (D) Heatmap of 22 immune cell types based on SYNE1 mutation. The blue color represents the mt group, and red represents the wt 
group. 
 

 
 

Figure 4. Predicting of ICB response based on SYNE1 mutation and biomarker evaluation. (A) Violin plot showing the differential 
TIDE between the mt and wt groups. (B) Evaluation of SYNE1 as a biomarker compared with existing biomarkers. (C) Multivariate analysis of 
SYNE1 and existing biomarkers using the COX proportional hazards model. 
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Our study has several limitations. First, the sample size 

was relatively small, and a clinical trial with a larger 

sample size is needed to validate our hypothesis. In 

addition, basic experiments should be performed to 

verify and clarify the mechanism. 

 

MATERIALS AND METHODS 
 

Clinical cohorts and the mutation data 

 

In this study, we analyzed the relationship between 

TMB and clinical outcome in 443 patients from the 

cBioPortal database (https://www.cbioportal.org) and 

the supplemental file, “mutation-load-updated.txt,” of a 

TCGA Pan-Cancer study (https://api.gdc.cancer.gov/ 

data/ff3f962c-3573-44ae-a8f4-e5ac0aea64b6) [31]. 

TMB was determined as the total number of mutations 

per sample, normalized by the whole-exome sequencing 

coverage, as described in Knijnenburg et al [32]. Intronic 

mutations, mutations in the 3′ or 5′ UTR regions or UTR 

flanking regions, silent mutations, and small, in-frame 

insertions and deletions were all removed. TCGA clinical 

data were download from TCGA Pan-Cancer Clinical 

Data Resource (TCGA-CDR) (https://ars.els-cdn.com/ 

content/image/1-s2.0-S0092867418302290-mmc1.xlsx). 

SYNE1 mutation data were download from the Kidney 

Renal Clear Cell Carcinoma (TCGA, Firehose Legacy) 

dataset (http://download.cbioportal.org/kirc_tcga.tar.gz). 

 

Bioinformatic analysis 
 

MAF files containing somatic variants for American 

ccRCC samples were download from TCGA datasets and 

visualized using the maftools package [33]. Gene set 

enrichment analysis (GSEA) was performed with R 

studio script [34]. Gene expression data were 

downloaded from TCGA and divided into two groups 

based on SYNE1 mutation status. The gene set 

“msigdb.v7.0.entrez.gmt” was downloaded from the 

Molecular Signatures Database (http://software.broad 

institute.org/gsea/msigdb/index.jsp) and was used for the 

enrichment analysis. The CIBERSORT algorithm was 

used to evaluate the fractions of 22 tumor-infiltrating 

lymphocyte subsets and were compared based on SYNE1 

mutation status [35]. The TIDE algorithm was used to 

predict ICB responses and evaluate ability to serve as a 

neoantigen (http://tide.dfci.harvard.edu) [21]. Values of p 

> 0.05 were considered statistically significant. 

 

Statistical analyses 
 

X-tile plots provided a single and intuitive method to 

assess the association between TMB and patient 

survival [36]. The Kaplan-Meier method was used to 

analyze the correlation between SYNE1 mutation, TMB 

and patient survival, and the log-rank test was used to 

compare survival curves. Statistical tests were 

performed using R software, version 3.6.2 (R 

Foundation for Statistical Computing; Vienna, Austria). 

Univariate and multivariate Cox regression analyzing 

the association between clinical characteristics and 

survival was performed using SPSS, version 19. Values 

of p > 0.05 were considered statistically significant. 
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