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The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral
blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus
has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for
parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human
endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out
the 17 patients. Sequencing identified the virus as HERV-WEI and E2. HERV-W activity was confirmed by high expression levels
of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low
levels of HERV-WEL, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7
chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for
the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development

or deterioration of the disease remains to be proven.

1. Background

Osteoarthritis (OA) is one of the most common and painful
forms of arthritis striking people worldwide and may affect
all articular joints in the human body; however, it is most
prevalent in hands, knees, hips, and spines [1]. The dis-
ease is commonly defined as a heterogeneous group of
conditions that lead to joint pain and malfunction and
is characterized by the progressive destruction of articular
cartilage in addition to related changes in the subchondral
bone and joint margins. Despite being one of the oldest
documented diseases (arthritis has been demonstrated in
ice-aged skeletons and dinosaur bones [2, 3]), the exact

etiology of this disease remains unknown. “Wear and tear”
was in earlier days recognized as the main reason for the
disease. Today we know that many factors seem to play
a causal role in OA, including hereditary predisposition,
wrong alignment of limbs, mechanical overloading, chronic
inflammation, stress, obesity, ageing, and hormones [4, 5].
Viral infection has also been suggested to play a causative
role in the disease, but proof is lacking. Viral genomic
sequences of the DNA viruses parvovirus B19, human herpes
virus-1 (HHV-1; herpes simplex virus-1), HHV-3 (varicella
zoster virus), HHV-4 (Epstein Barr virus), HHV-5 (human
cytomegalovirus), transfusion transmission virus, and the
RNA viruses GB virus C and endogenous retroviruses have
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been identified in OA patients [6-20]. However, other groups
could not confirm these findings [21-28]. Moreover, viral
nucleic acid sequences were detected in peripheral blood
mononuclear cells, synovial fluid, or tissue, while cartilage or
chondrocytes were not examined. Additionally, these viruses
were also detected in non-OA control subjects [6, 8, 9, 11-
20]. These findings question the etiological role of viruses in
osteoarthritis. To investigate the implication of viral infection
in OA, we analyzed cartilage and chondrocytes obtained from
advanced OA and non- or early OA patients for signs of active
viral infection. For this purpose, we monitored specimens
for viral genome sequences, expression of viral proteins, and
virus particles. All samples were PCR or reverse-transcriptase
PCR negative for parvovirus B19, HHV-1, HHV-3, HHV-5,
HHV-6, and hepatitis C virus (HCV) with the exception of
human endogenous retrovirus (HERV) which was common
in cartilage from advanced OA patients, but not from non-
OA and early OA patients. Partial sequencing identified this
virus as HERV-W. Viral activity was evident by the presence of
dsRNA, viral protein syncytin-1, and virus budding, and virus
particles with estimated size corresponding to retroviruses
could be visualized in the material of all OA patients tested.
With the exception of one, samples of all non-OA and early
OA patients did not show signs of viral particles. These
findings suggest that activation of the endogenous retrovirus
HERV-W is more common in OA patients than in controls,
but it remains to be proven if this virus is implicated in the
initiation/onset or progression of the disease.

2. Methods

2.1. Patients. Material from a total of 33 advanced OA
patients (age 30-82) and 8 early or non-OA patients (age 25-
45) has been included in different parts of these experiments
(donor list is summarized in Supplementary Table, in
Supplementary Material available online at http://dx.doi.org/
10.1155/2014/698609). All participants signed a written
informed consent to use biopsies for scientific purposes. The
project was approved by the Regional Ethic Committee (REK
61/2007 and 5.2006.161) and experiments were performed in
accordance with the Code of Ethics of the World Medical
Association (Declaration of Helsinki) for experiments
involving humans. The patients involved in this study had
incipient to severe osteoarthritis and were classified as grades
0-4 according to the Kellgren-Lawrence (KL) radiological
classification of OA. Material analyzed in this study consisted
of cartilage tissue and cells derived from patients with
advanced osteoarthritis undergoing total joint replacement,
and surplus chondrocytes expanded in monolayer cultures
from patients with focal cartilage damages, undergoing
autologous cell transplantation (autologous chondrocyte
implantation (ACI); KL: 0-1). Additionally, healthy cartilage
samples used in this study (n = 2) were taken from young
adults suffering traumatic joint lesion (KL grade 0) in knee.

2.2. Cell Cultures. Cartilage biopsies were cut in small pieces
and incubated with collagenase type XI and deoxyribonu-
clease type I and IV from bovine (Sigma-Aldrich, Germany)
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at 37°C for up to 15 hours. Collagenase-digested tissue was
filtrated and spun down to eliminate excess of enzymes.
Isolated chondrocytes were washed in PBS and cultured
in complete medium, DMEM-FI12 (Sigma-Aldrich) supplied
with gentamicin (Sigma-Aldrich) and 10% bovine serum
(Sigma-Aldrich). Cells from ACI operations were expanded
initially in 10% autologous serum to meet the requirements
for transplantation in the clinics. Thereafter, surplus cells
were transported to the lab and their expansion continued
under the abovementioned conditions. Cells were grown
to 80% confluence before each subculturing. Chondrocytes
from both advanced OA and non-OA were expanded for 3-4
weeks (3 passages) before experimental analyses.

2.3. RNA-Isolating and ¢cDNA Synthesis. Medium was re-
moved and cells were washed in PBS; then PBS was removed
and the cell pellet was quickly frozen at —2°C, ready for RNA-
isolating or resolved in freezing medium (medium with 20%
bovine serum and 10% DMSO (Sigma-Aldrich)). Cells were
thawed and total RNA was prepared using Qiagen RNeasy
Mini Kit (cat. number 74106). The RNA concentrations
were measured by NanoDrop ND 1000 Spectrophotometer
(Thermo Scientific, Wilmington, DE, USA). Then cDNA was
synthesized using Oligo(dT) Primers (Amersham Pharmacia
Biotec Inc.) and MonsterScript reverse transcriptase (Epicen-
tre Biotechnologies, Madison, WI, USA) according to the
manufactures’ protocol.

2.4. Polymerase Chain Reaction (PCR). PCR was performed
on cDNA using Phusion High Fidelity DNA polymerase
(Finnzymes) and specific primers (Medprobe), listed in
Table 1. All PCRs were performed on a PTC-200 Peltier
Thermal Cycler; initiated melting; 5 minute, 96°C, followed
by 40 cycles with melting temperature 96°C, annealing
temperature 58°C, and extension temperature 72°C, all in
30-second intervals, and followed by final extension for 7
minutes at 72°C. The PCR products were applied to an agarose
gel before running electrophoresis. DNA band was visualized
by UV light and photographed.

2.5. Immunocytochemistry. Cells were grown in medium
DMEM-FI2 supplied with gentamicin and 10% FBS on cam-
ber slides (cat. number 177429, Nunc, Roskilde, Denmark)
and starved 24 h in serum-free medium and then washed in
cold PBS before incubating for 15 minutes with 0.5% saponin
(Sigma-Aldrich; cat. number 47036-50G-F) for permeability
and then for 2h in cold PBS containing 2% sucrose and
4% paraformaldehyde. The cells were washed twice in cold
PBS supplied with 1% BSA. Anti-dsRNA-specific J2-IgG2-
A monoclonal antibody (English & Scientific Consulting,
Hungary) was diluted 1:100 in PBS added and incubated over
night at 4°C. Negative controls were performed by omitting
primary antibody in this procedure. The cells were rinsed in
PBS before adding Alexa Fluor stained IgG F(ab)2 fragment
(Invitrogen) diluted 1: 400 in PBS supplied with 0.5% BSA as
secondary antibody and incubated over night at 4°C or for 2
hours at room temperature in dark. Labeled cell cultures were
examined by fluorescence microscopy.
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TABLE 1: Virus-specific primers used in this study.

Virus GenBank acc. number Primer sequences Position
HERVWE1
Envelope (=syncytin) NM_014590 F: cat cga tag cacccatcagatg 13-34
R: gag tga aat agc atgaaaaca g 3025-3004
ERVWEI gag AF156961 F: tgt ccg ctg tgc tec tga tc 1-20
R: ctg cgc cag tgt cca gga gac 1921-1901
HERVWE2
AF127228, F: cca ata gcc aga cca tta tat ac 1-23
Envelope
AF128229, R: tgg ggt tcc att tgt aag acc 1932-1912
ERVWE? gag AF123881 F: cta gaa cgt att ctg gag aat tg 2-24
R: ggc tct caa tgg tca aac ata ¢ 1509-1488
HHV-1 GU734772 F: tcc cca taa act ggg agt agc 55192-55212
R: cag aac tac agc gag ggc atc 55327-55307
HHV-6 NC.000898 F: gag tcc atg agt tag aag att 150874-150894
R: cta aat ttt cta cct ccg aaa tgt 152099-152076
External primers
F: agg gat gcc tgg aca caa ga 48810-48829
HHV-4 (Epstein Barr) V01555 R: tgg tgc tgc tgg tgg tgg caa t 49406-49385
Nested primers
F: tcttgatag gga tcc get agg ata 48839-48862
R: acc gtg gttbctg gac tat ctg gat 49335-49311
External primers
F: cag cac cat cct cct ctt cct ctg 3665-3688
R: cca agc ggc ctc tga taa cca agc 4099-4076
HHV-5 (human cytomegalovirus) GQ222016 .g &8 & &
Nested primers
F: aga cac tgg ctc aga cct gac 3708-3728
R: aga gtc tgc tct cct agt gtg 3989-3969
External primers
F: ggc gac act cca cca tgg atc ac 16-38
R: cat gtt gca cgg tct acg aga cc 342-320
Hepatitis C virus AB691598 Nested pfimirs 88 848
F: ctg tga gga act tct gtc tt 43-62
R: ctc gca agc acc cta tca gg 309-290
External primers
F: aat aca ctg tgg ttt tat ggg ccg 1579-1602
. R: cca ttg ctg gtt ata acc aca ggt 1862-1839
Human parvovirus B19 NC_000883 Nested primers
F: aat gaa aac ttt cca ttt aat gat gta g 1678-1705
R: cta aaa tgg ctt ttg cag ctt cta ¢ 1780-1756
External primers
F: tca ggt gct tca ttg gca gga tca 3008-3031
R: taa aat ttg tac ttt tgg gca ctg ctg 3805-3782
Rabbit endogenous retrovirus (HRV5) AF480924 Nested primers
F: tgc aac ctt atg tta gtg cac tcc 3052-3075
R: tac tgc ctg gtc aac ata tag 3766-3746

2.6. Transmission Electron Microscopy (TEM). Biopsies from
patients were cut in small pieces (I-2mm®) and fixed in
McDowell’s fixative as previously described [29]. Super-
natants collected from collagenase XI-treated cartilages for
breaking down matrix proteins were ultracentrifuged for
2 hours to isolate chondrocytes. The small pellets were
resuspended in 100 L PBS and subjected to standard proce-
dures for negative staining by uranyl acetate and microscopy.

2.7. Immune Electron Microscopy (IEM). Cartilage biopsies
were cut in small pieces and fixed in 8% formaldehyde in
PBS according to standard procedures [30, 31]. The presence
of double-stranded RNA (dsRNA) was demonstrated using
mouse anti-dsRNA J2-IgG2A monoclonal antibody (English
& Scientific Consulting, Hungary), diluted 1:50 in PBS
supplemented with 1% cold water fish skin gelatin (G-7765;
Sigma-Aldrich, St. Louis, MO) to block for nonspecific



binding of antibodies. A second rabbit anti-mouse IgG anti-
body (ICN/Chappel, Aurora, OH) was added, and binding
was visualized by protein-A gold (University of Utrecht,
The Netherlands). Between each step the specimens were
washed in PBS supplied with cold fish skin gelatin. Finally,
the grids were washed in distilled water and dried in 1.8%
methylcellulose and 0.3% uranyl acetate and examined in a
Jeol 1010 Transmission Electron Microscope (Tokyo, Japan).

3. Results

3.1 Identification of Endogenous Retroviral Transcripts in
OA Cartilage and Cultured Chondrocytes. Viral infections,
including parvovirus B19, HHV-1, HHV-3, HHV-5, HERVs,
and HCV, have been suggested as a causative factor in OA,
but solid proof is lacking [6, 8, 9, 11-20]. In fact, studies
examining chondrocytes or cartilage of OA patients for the
presence of virus are lacking and most studies have only
examined the presence of viral genomes, rather than active
viral infections. Because several viruses reside in a latent
or persistent state in most individuals, the presence of viral
mRNA was monitored as a sign of viral activity. Comple-
mentary DNA (cDNA) was prepared from RNA isolated
from chondrocytes of collagenase-treated cartilage, nitrogen-
crushed cartilage, or 3rd passage chondrocyte cultures from
OA patients and subjected to PCR using specific primers
(Table 1). No PCR products were obtained with primers
against parvovirus B19, HHV-1, HHV-4, HHV-5, HHV-6,
and HCV (data not shown). In 1999, Grifhiths and colleagues
detected human retrovirus-5 (HRV-5), a virus later char-
acterized as a rabbit endogenous retrovirus [10, 32]. Using
primers complementary to sequences in the pro/pol genes
of HRV-5, multiple bands of approximately 200, 300, 700,
and 1,000 bp were obtained with cartilage tissue and culture-
expanded chondrocytes from all OA specimens (n = 17). A
representative result for OA patients 2, 8, 9, and 10 is shown
in Figure 1. The presence of contaminating chromosomal
DNA containing integrated endogenous retroviral DNA is
unlikely because the isolated RNA was treated with DNase
before being converted into complementary DNA (cDNA).
Moreover, obtained cDNA was tested with primers against
the adenine phosphoribosyltransferase (APRT) gene that gen-
erate a 300 bp fragment for cDNA and an 800 bp fragment
for DNA. Only a 300 bp fragment was obtained (results not
shown). These findings underscore that the HERV amplicons
were derived from transcripts and not from the chromosomal
integrated viral genome.

3.2. Virus Identification: Sequencing of the Viral PCR Products.
Nested PCR on the PCR reaction with inward HERV-
5 primers (Table 1) did not generate PCR products. We
therefore sequenced of the PCR fragments obtained with
the outward HERV-5 primers. Sequence analysis revealed
that DNA was identical with human endogenous retrovirus
W family. Mixed PCR on cDNA was repeated with specific
primers for the ERVWEL (ERVW-1; GenBank accession
number NM_014590; [33]) and the ERVWE2 (GenBank
accession numbers AF127228 and AF127229; [34]) envelope
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FIGURE 1: Detection of human endogenous retrovirus sequences
in chondrocytes and cartilage from OA patients. Total RNA was
isolated and converted into cDNA. HERV sequences were amplified
using degenerated primers complementary to sequences in the
pro/pol genes of HRV-5 (Table 1) to obtain a ~1,000 bp fragment.
Lane 1: DNA marker (in kb); lanes 2-4: OAS; lanes 4, 8, and 10:
OAI0; lanes 6-8: OA9; lane 11: OA2. Lanes 2, 8, and 9: RNA isolated
from nitrogen-crushed cartilage; lanes 3, 7, and 10: RNA obtained
from enzyme-digested cartilage; lanes 4-6 and 11: RNA purified
from culture-expanded chondrocytes. PCR reactions were run on
an agarose gel, stained with ethidium bromide, and the DNA was
visualized under UV light. Cart.: cartilage; chond.: chondrocytes.

TABLE 2: PCR results using HERV degenerated and ERVWEI- and
ERVW2-specific primers.

. ERVWEI  ERVWE2 ERVWEI ERVWE2
Patient

roup env env gag gag
& (3000bp)  (1600bp)  (1900bp) (1500 bp)
OA 15/17 (88%)  15/17 (88%)  5/6 (83%)  5/6 (83%)
Non-/early 50 3g00) 08 (0%) NT* NT

OA
*NT: not tested.

genes (env; also referred to as syncytin). Two distinct PCR
products of, respectively, ~3,000 and ~1,900 bp were detected
in cartilage specimens of 15 out of 17 OA patients, but not
in one non-OA patient (Figures 2(a) and 2(b); Table 2).
The length of PCR products corresponds well with the
theoretical length of 3013 bp and 1932 bp, respectively. Partial
sequencing of the 3,000bp PCR products confirmed that
the amplified fragment spans a region of the envelope (env)
gene encoding syncytin of the ERVW member E1 (ERVWEL];
Supplementary Figure S1 [33, 35]), while the sequence data of
the ~1,900 bp fragment showed >95% identity with the env
gene of ERVWE2 (Figure 3). The viral sequences detected
in our OA patients possessed point mutations compared to
the reference strains ERVWEL and ERVWE2, respectively,
arguing against contamination of the samples (Figure 3
and Supplementary Figure S1). To confirm the presence of
ERVW-specific transcripts in material from OA patients,
PCR was performed on ¢cDNA prepared from expanded
chondrocytes from 6 OA patients (OA3, OA7, OA8, OA9,
OA10, and OA48) using another primer set specific for
the ERVWE] and ERVWE2 gag gene ([GenBank: AF156961
and AF123881], resp.; [34, 36]). ERVWE]1 and ERVWE2 gag
PCR amplicons corresponding to the expected 1920 bp and
1508 bp, respectively, could be detected in the chondrocytes
of all patients tested, except OA3 which had only ERVWEI
gag transcripts and OA48 which had only ERVWE2 gag
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FIGURE 2: Expression of ERVWEL and ERVW2 in chondrocytes from OA and non- or early OA patients. (a) PCR on cDNA prepared from
cultured chondrocytes isolated from knees or hip from OA patients. Specific primers for the ERVWEI and ERVWE2 env gene (encoding
syncytin) were used. (b) RNA purified from nitrogen-crushed cartilage. (c) RNA was isolated from chondrocytes obtained from 6 OA patients,
converted into cDNA, and amplified using specific primers complementary to the gag gene of HERVWETI (left panel) and HERVWE2 (right
panel) sequences. (d) Amplification of cDNA prepared from chondrocytes from non- and early OA patients. Lanes 1 and 11: 1 kb plus ladder;
lanes 2-10: amplified cDNA. The arrow indicates the presence of the amplified 3,000 bp of the ERVWEI env transcript.

transcripts (Figure 2(c)). No env-specific transcripts were
detected in the chondrocytes from the non-OA patient (Fig-
ure 2(a)), but because only one non-OA patient was originally
included, we expanded our control group with patients with
only focal cartilage damage. We tested cDNA prepared from
RNA isolated from chondrocytes from eight non-/early OA
patients for the presence of ERVWE gag sequences. Weak
PCR signals corresponding to the ~3,000 bp fragment were
detected for 3 of these 8 patients (Figure 2(d), lanes 2, 4,
and 5), while none of them were positive for the 1,600 bp
fragment (Figure 2). These results suggest that ERVWEI, but
not ERVWE2, may be expressed in some of the non-/early
OA patients.

3.3. Detection of Viral dsRNA and the Viral Envelope Pro-
tein Syncytin-1. Retroviruses pack their two copies of their
genomes as dimers, and viral dsRNA can be purified from
cells infected with retroviruses. Moreover, the viral genome
can form long hairpin ds RNA region, for example, with
its tRNA primer [37-43]. We reasoned that activation of
ERVWE in chondrocytes would result in the presence of
viral dsRNA. We therefore examined chondrocytes from
OA and non- or early OA patients for the presence of
dsRNA intermediates with an antibody that specifically
recognizes longer stretches of dSRNA. This antibody will react
with viral dsRNA, but not with cellular dsRNA [44, 45].
In immunofluorescence (IF) assays, chondrocytes prepared
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FIGURE 3: Alignment of the sequence of the 1,600 bp PCR products with ERVWE2 env transcript. Identical nucleotides are indicated by a
vertical line, while point mutations are shown. The sequence obtained from OAS8 patient has a deletion and insertion which restores the ORE

from OA cartilage samples showed a strong immunoreaction
for dsRNA at both the cytoplasmic and the nuclear regions
(Figure 4(a)). Additionally, traces of cytoplasmic nucleic
acids could be observed in cells by DAPI staining, most likely
corresponding to viral dSRNA. Chondrocytes prepared from
autologous chondrocyte implantation (ACI) operations dis-
played no or very low (e.g., patient 3 in Figure 4(b)) staining
with dsRNA-specific antibodies (Figure 4(b); Table 2). The
detection of dsRNA underscores the possible presence of

endogenous retrovirus, but we cannot exclude the fact that
these antibodies recognize other dsRNA from other sources
like RNA interference molecules or other viruses (e.g.,
dsRNA reoviruses). However, cartilage forms a closed system
with no supply of blood and lymph and no nerves so that
the presence of exogenous viruses can be excluded. Because
material from non-OA had no or weak dsRNA staining, it
seems unlikely that the signals in OA material derive from
the RNA interference pathway. To certify HERV-W activity,



BioMed Research International

OA3

o -
- -

Non-/early OA
patient 1

dsRNA

DAPI

Non-/early OA
patient 2

()

Non-/early OA
patient 3

FIGURE 4: Presence of dsRNA and syncytin-1in chondrocyte cultures obtained from OA and non- or early OA patients. Immunofluorescence
assay with specific antibodies against dsRNA and syncytin was used. (a) Top row: chondrocytes from OA patients were examined for the
presence of viral dsSRNA by immunofluorescence using antibodies that specifically react with viral dsRNA. Middle row shows the expression
of syncytin-1 in chondrocytes of the same OA patients. Bottom row: DAPI staining shows strong nuclear staining and weak cytoplasmic
staining for nucleic acids. (b) Chondrocyte cultures from non-/early OA patients were monitored for the presence of dsRNA (top panel).
Notice weak staining for dsRNA in chondrocytes from patient 3. Bottom row: DAPI staining.

samples were analyzed for expression of the envelope protein
syncytin-1. Immunofluorescence showed abundant expres-
sion of syncytin-1in OA-derived chondrocytes distributed all
over the cell, while no or low syncytin-1staining was observed
in samples from non-/early OA patients (Figure 4(a); Table 3).
Of the 22 OA patients examined, 20 expressed dsRNA and
syncytin in their chondrocytes (Table 3). In parallel experi-
ments, OA cartilage specimens and cells were examined by
cryoimmuno-EM with the same antibodies. This procedure
revealed expression of dsRNA in small clusters distributed
across the cytoplasm and the nucleus (Figure 5(a), panels A
and B). Interestingly, at the ultrastructural level we observed
that both dsRNA and syncytin colocalized in the same

clusters, scattered throughout the cytoplasm and nucleus
(Figure 5(a), panel C). Of note, expression of dsSRNA was not
restricted to advanced OA cases since immunolabeling was
achieved in cells from ACI and non-OA patients (Figure 5(b),
panels B and C, and Table 3). Chondrocyte lysates from
OA patients displayed immunoreactivity against syncytin-
specific antibodies, suggesting the presence of syncytin in
these cells (Figure 5(c)).

3.4. Viral Budding and Virus-Like Particles. HERV genomes
are integrated in the cellular chromosomes but most of
these retroviral genomes are transcriptional silenced due
to mutations in their coding regions or DNA methylation
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TABLE 3: Prevalence of dsRNA, syncytin-1, and HERV-like particles in samples from OA and non-/early OA patients.

Material/method IF syncytin IF dsRNA IEM syncytin =~ IEM dsRNA ~ TEM VLP  TEM budding
Chondrocytes OA 20/22% (S)*" 20/22 (S) 717 (S) 717 (S) 6/7 517
Cartilage OA 717 (S) 717 (S) 22/24 16/24
Chondrocytes non-OA 4/7 3W,1S) 3/7(2W,1S) 4/7 3W,1S) 3/7 2W,1S) 1/8
Cartilage non-OA 3/5(2W,1S) 3/5(2W,1S)
Collagenase-treated supernatants OA 3/4

*Number of positive samples/total number of samples.
**S: strong staining; W: weak staining; VLP: virus-like particles.

[46-48]. However, some HERVs can encode retroviral pro-
teins and viral particles have been isolated [48-51]. The
detection of the retroviral syncytin protein in chondrocytes
and cartilage samples from OA patients prompted us to
look for retrovirus particles. EM pictures taken from OA
cartilage specimens showed virus-like particles holding an
envelope-like structure with an estimated size of 100 nm (Fig-
ure 6), which corresponds to the size of human endogenous
retrovirus particles [52-55]. Importantly, virus-like particles
showed specific reactivity against syncytin-1 antibodies, as
demonstrated by immune-EM gold labeling (Figure 6(d)).
Similar virus-like particles also stained positively for the
envelope protein syncytin in whole-mounted collagenase-
digested OA-cartilage samples (Figure 6(c)). Last, we were
also able to capture virus-budding processes from cell bodies
in some specimens (Figure 6(a)). No retrovirus-like particles
were observed in material of early or non-OA patients, except
for one patient (Figure 5(b), panel C, insert). Because of the
limited size of the specimens, there was not enough material
to isolate and further characterize these virus particles.

4. Discussion

Viral infection has been suggested as an etiological factor
in OA, but unequivocal proof is lacking. While viral nucleic
acids and antibodies have been demonstrated in blood and
synovial fluids/tissues from OA patients, studies monitoring
the presence of viral activity, either as transcripts, proteins,
or viral particles, in cartilage or chondrocytes from such
patients have not been reported, so that a causal role of
viruses in this disease remains enigmatic [6, 8, 12, 16, 18,
23, 24]. The conclusion of a contributing role of viruses in
OA has also been hampered by the absent or relatively few
healthy, non-OA patients examined in comparative studies.
To the best of our knowledge, only one study investigated
the presence of viral mRNA in cartilage of OA patients.
Rollin and coworkers found HHV-4 transcripts in cartilage
in 2 out of 12 OA patients, but not in twelve healthy con-
trols [18]. We examined cartilage and cultured chondrocytes
obtained from advanced OA and early/non-OA patients for
the presence of viral transcripts. We could not detect mRNA
from parvovirus B19, different human herpes viruses, and
hepatitis C virus. However, we could show the presence
of HERV activity. Our results are the first to demonstrate
that activation of the endogenous retroviruses ERVWE] and

ERVWE2 occurs in cartilage/chondrocytes from OA patients
and that this is a more common phenomenon in advanced
than in early/non-OA patients. Activation of ERVWEI and
ERVWE2 was demonstrated here by the presence of dsRNA,
ERVW-specific transcripts, expression of the viral protein
syncytin, the occurrence of viral budding, and the presence
of virus-like particles with morphology and size similar
to the previously described MSRV and HERV-W [31, 56].
Sequencing cDNA representing part of the viral env tran-
scripts revealed the presence of mutations compared to
the sequences deposited in GenBank. Moreover, sequences
between patients contained different mutations. This argues
against contamination of our material. Several groups had
detected transcripts of HERV in material of OA patients, but
cartilage and chondrocytes had not been examined so far.
HERV-K mRNA was identified not only in peripheral blood
mononuclear cells from 17 out of 17 OA patients [19, 20] but
also in synovial fluid of 4/10 (resp., 10/10, 4/4, and 2/3) OA
patients [14, 17]. A recent study reported that 48% (54/113) of
OA patients had detectable HERV-KI18 expression in blood
versus 36% (22/62) of healthy controls (P = 0.12), and there
was an association between HERV-K18 expression and the
OA severity index. These findings suggest that other HERV's
may be implicated in OA [57]. Transcripts of the polymerase
gene of HERV were detected in 3 out of 3 synovial samples
from OA patients [7]. Other researchers have failed to identify
HERV transcripts or retroviral particles in synovial fluid
from OA patients [21, 22]. In 1999, the group of Venables
reported the amplification of human retrovirus-5 (HRV-5)
mRNA in synovial membranes from 3/5 OA patients, but
not from control individuals (0/13), while viral DNA could
be detected in synovial membranes of OA patients (3/9)
and one normal subject (n = 29) [9, 10]. This could not
be confirmed in another study, where none of the synovial
tissue samples from 75 OA patients tested positive for HRV-
5 DNA [26]. Later on, it was shown that HRV-5 is not
integrated in human DNA and that this virus belongs to an
endogenous retrovirus family found in rabbits and should
be renamed RERV-H [32]. Additional pitfalls that make the
interpretation of the results ambiguous are that none of the
studies actually screened for viral activity in chondrocytes
and that samples of control subjects (non-OA) patients often
displayed similar prevalence of HERV transcript. We readily
detected dsRNA and syncytin-1 in chondrocytes in 20 out of
22 tested OA patients, while weak expression levels of dsRNA
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FIGURE 5: Detection of dsRNA and syncytin-1 in chondrocyte cultures obtained from OA patients by IEM. (a) IEM on samples from OA
patients. Panels A and A": cryo-IEM shows the presence of syncytin in the nucleus and cytoplasm (arrow heads). CP: cytoplasm; CM: nuclear
membrane; MT: mitochondrion; n: nucleus. Panels B and B': detection of dsRNA. Panel C illustrates that dsRNA (small dots) and syncytin
(large dots) colocalize. (b) Cryo-IEM of virus dsRNA in early or non-OA patients (ACI). Panel A shows a completely negative sample and
represents two out of five tested chondrocyte cultures. Panel B: example of very low levels of dsRNA detected in chondrocyte culture of a non-
OA patient. Panel C: chondrocyte culture from one of the non-/early OA patients expressed relatively high levels of dsSRNA. The insert depicts
structures resembling virus budding (marked with an asterisk). (c) Western blot performed on lysates prepared from chondrocytes isolated
from OA patients. The expression of syncytin-1 was monitored using syncytin-1 specific antibodies. A band of ~55kDa which corresponds
to the theoretic molecular mass of syncytin-1 is visible in all lysates. Lane 1: protein marker (in kDa); lanes 2-6: chondrocyte lysates.

(o) (d)

FIGURE 6: Retrovirus-like particles in cartilage of OA patients. Transmission EM (a, b, and d) and negative staining EM (c) were used to
monitor the presence of virus-like particles in cartilage samples from OA patients. Negative staining EM was performed on collagenase-
treated cartilage, and the resulting subcellular bodies were absorbed into grids. (d) Immune-gold labeling of viruses with antibodies against
envelope protein syncytin. The size bar is indicated.

and syncytin were detected in cells derived from 3 out of 7 syncytin, and virus-like particles were present in cartilage
non-OA patients that were examined. One patient (a young,  from this patient. Although we did not use quantitative
healthy woman in her twenties with a sports injury, but with ~ methods, fluorescence staining for dsSRNA and syncytin-1was
no sign of osteoarthritis) had high levels of both dsSRNA and  visually weaker in non-OA patients compared to OA patients.
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We readily detected the presence of retrovirus-like particles
in OA patients, but no such particles were observed in the
cartilage biopsies taken from non-/early OA patients, except
for one individual. We cannot rule out the fact that HERV
particles were present in cartilage samples of chondrocytes
from the other non-OA patients we examined because only
a limited fraction of this material was examined. However
the size of sample from non-/early OA patients was similar to
that of OA patients. Our findings suggest that viral activation
is at least more common in these patients compared to the
control group. The observation that none of the chondrocytes
isolated from non-/early OA patients (n = 8) possessed
ERVWE2 transcripts, while 20 ERVWE2-specific transcripts
were observed in 20/22 of the OA patients, may indicate that
activation of this member of HERV is a hallmark for OA and
can be used as a diagnostic marker.

The much higher incidence of ERVWEL/2 activation in
OA patients compared to the control group may suggest
that the disease status may trigger endogenous retroviral
activation. Steroid hormones and inflammation are known
risk factors for OA [58-63]. Interestingly, these conditions
can also induce activation of HERV [64-67]. A drawback
of our study is that relatively few non-OA patients were
examined and their average age was significantly younger
than the OA patients (range 25-45 years versus 30-82 years).
For obvious reasons, it is difficult to obtain material from
age-matched healthy individuals. Moreover, most samples are
of very limited size making it impossible to test them by
all techniques applied here in this study. The control group
included younger patients suffering local cartilage damage or
traumatic joint lesion (sport injuries). The increased preva-
lence of HERV-W in OA patients compared to the control
group could therefore be age related. However, no age-related
expression of HERV-W has been reported so far in other
diseases where this virus has been found to be expressed.
Indeed, significantly increased HERV-W pol transcript levels
were monitored in cerebrospinal fluids from Creutzfeldt-
Jakob disease patients compared to normal controls (86/87
versus 33/40; P = 0.001), but no correlation with sex
and age existed [68]. Similarly, no significant correlation
emerged between the expression of HERV-W env gene and
age in PBMC either from autistic spectrum disorder patients
or from healthy individuals [69]. The lack of a correlation
between HERV-W expression and age has been reported by
other groups [70, 71]. Therefore, it is unlikely that old age
causes retroviral activation in cartilage of OA patients.

Assuming the implication of ERVW in the onset or
progression of OA, a pivotal question that must be solved
is the mechanisms by which this retrovirus contributes to
the cytotoxic processes in OA. Active viral replication may
contribute to the sustained inflammation of the synovial
tissue that is often seen in the context of OA [59, 61].
We observe syncytin-1 expression in chondrocytes from OA
patients and to a lesser extent in cells from some non-/early
OA controls. Syncytin-1 is primarily produced by placental
trophoblasts where it participates in cell-to-cell fusion [72,
73], but it can be expressed by some normal somatic cells.
In diseased nonplacental tissue, malignant cells, as well in
connection with different autoimmune diseases syncytin-1

1

expression has been also observed [74-79]. The role of
syncytin-1 in cancer is incompletely understood, but it has
been suggested to promote tumor-tumor and tumor-host cell
fusion. Other groups propose a connection between syncytin
expression and cell proliferation [80, 81]. Syncytin-1 has been
shown to regulate inflammation in neural cells [82]. Thus,
ectopic expression of syncytin-1 in human fetal astrocytes
induces expression of the endoplasmic reticulum stress genes
BiP and XBP-1/s, the proinflammatory cytokine interferon «
gene, and the NOS2 gene. In addition, syncytin-1 provokes
increase in intracellular Ca** levels and supernatants from
cell expressing syncytin-1 caused cytotoxic effects on oligo-
dendrocytes [82, 83]. Intriguingly, Ca®" has been shown to
stimulate the activity of the enzymes matrix metalloproteases,
phospholipase A2, and calmodulin-dependent kinase II, all of
which may be important in the pathophysiology of OA [84-
87].

5. Conclusions

We have shown higher prevalence of ERVWE] and ERVWE2
activity in chondrocytes and cartilage of OA patients com-
pared to non-/early OA patients. However, we cannot con-
clude whether these viruses are innocent bystanders that
are activated by pathological processes occurring during the
development of OA or whether they are involved in the
onset or the progression/deterioration of the disease. The
high prevalence of activated ERVWEs, especially ERVWE?2,
may be an indicator of OA, making the detection of ERVWE
transcripts a putative diagnostic marker.
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