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Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease caused by a variety of mutations in 

transcription factors, epigenetic regulators and signaling molecules. To determine how different 

mutant regulators establish AML subtype-specific transcriptional networks we performed a 

comprehensive global analysis of cis-regulatory element activity and interaction, transcription 

factor occupancy and gene expression patterns in purified leukemic blast cells. Here, we focussed 

on specific sub-groups of patients carrying mutations in genes encoding transcription factors 

(RUNX1, CEBPA) and signaling molecules (FTL3-ITD, RAS, NPM1). Integrated analyses of 

these data demonstrates that each mutant regulator establishes a specific transcriptional and 
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signaling network unrelated to that seen in normal cells, sustaining the expression of unique sets of 

genes required for AML growth and maintenance.

Acute myeloid leukemia (AML) is characterized by blocked myeloid lineage differentiation 

and accumulation of leukemic blast cells. AML is a highly heterogeneous disease caused by 

different types of mutations affecting signaling pathways as well as transcriptional and 

epigenetic regulators1–3. Recurrent mutations include loss of function mutations in 

transcription factors (TFs) controlling hematopoietic development, such as RUNX1, GATA2 

or C/EBPα4, and gain of function mutations in signaling molecules such as FLT3, KIT, 

JAK2 and NRAS regulating inducible TFs such as NF-κB, STAT or AP-1 family 

members5,6,7. The most common FLT3 mutations are internal tandem duplications (FLT3-

ITD), which give rise to a constitutively active growth factor receptor8,9 and often occur 

together with nucleophosmin1 mutations (NPM1). Another major group of mutations alters 

genes encoding epigenetic and chromatin regulators10,11 which play widespread roles in 

development and differentiation by controlling establishment, maintenance and extinction of 

lineage-specific gene expression programs. These include regulators of histone and DNA 

methylation such as MLL, EZH2, TET2, DNMT3A and IDH1/211–17. In normal cells, all 

common mutation targets cooperate to control the finely balanced gene expression changes 

essential for cell differentiation and lineage commitment.

TFs interact with defined target gene sequences and recruit epigenetic regulators to program 

specific chromatin states and mediate the coordinated activation or de-activation of cis-

regulatory elements driving gene expression18,19. Distal cis-regulatory elements interact 

directly with promoter elements, an arrangement that is both dynamic and robust20,21. 

From global studies examining a few selected types of AML we know that gene expression 

patterns and the epigenetic landscape differ from normal cells22–27. However, how the 

disruption of specific TF activity leads to a specific pattern of aberrant chromatin 

programming and changes in gene expression in AML remained unclear. It was not 

established at the global level which cis-regulatory elements are affected in their activity in 

different types of AML, how their activity is altered in patients carrying specific TF and 

signaling mutations or which factors maintain their transcriptional networks.

Here we addressed these questions by collecting transcriptome, digital footprinting and 

chromatin conformation capture data from purified leukemic blasts from AML patients with 

defined transcription factor and signaling molecule mutations and defined the components of 

AML subtype-specific regulatory circuitries. Our study comprises a comprehensive resource 

of the transcriptional networks of different AML subtypes, highlighting pathways required 

for tumour maintenance

Results

AML subtypes adopt unique chromatin landscapes

In order to examine how specific TF and signaling mutations alter the epigenome of AML, 

we purified leukemic blast cells from bone marrow or peripheral blood samples from AML 

patients (Fig. 1a). After determining the mutation status (Table S1), we selected a cohort of 
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patients with defined mutations, which included: RUNX1 mutations affecting DNA-binding 

(D-type) or lacking the trans-activating domain (T-Type), t(8;21) translocations fusing the 

DNA binding domain of RUNX1 to the co-repressor ETO, inv(16) which fuses CBFβ to 

smooth muscle myosin heavy chain 11 protein, mutations of both alleles of the CEBPA gene 

whereby one mutation leads to loss of DNA-binding activity28 and FLT3-ITD with or 

without NPM1 mutations. We performed RNA-Seq (Supplementary Fig. 1a) and high read 

depth DNaseI-Seq (Fig. 1b) to map DNaseI hypersensitive sites (DHSs) on 29 samples 

comprising seven major groups, and at least one analysis on 12 additional samples, 

including mutations such as NRAS, CBL, JAK2, SRFS2, or inv(3) (Supplementary Table 1). 

One patient with Non-Hodgkin Lymphoma (NHL) carried a RUNX1 mutation (RUNX1-

T-7). Samples were compared to CD34+ mobilized peripheral blood stem cells (PBSCs) 

from two healthy individuals and to cord blood (CB) CD34+ cells. To provide the 

community with a data resource, we established an online database containing multiple data-

sets including a genome browser (see Data Availability).

Unsupervised clustering revealed that distal DHSs formed different groups according to their 

mutations class (Fig. 1c). Samples with FLT3-ITD and/or NPM1 mutations represented one 

major group with sub-clusters for patients with NPM1 mutations or carrying two FLT3-ITD 

alleles, but excluding a FLT3-ITD patient carrying a RUNX1 mutation. DHSs from the 

t(8;21), inv(16) and CEBPA double mutant patients clustered as discrete groups within a 

larger group, indicating that these mutations affect similar pathways. Examples of these 

patterns can be seen in Supplementary Fig. S1b. DHSs from patients with RUNX1 mutations 

were more heterogeneous and clustered with the PBSCs and the inv(3) patients. The NHL 

(RUNX1-T-7) and the NPM1/RAS-3 patterns were unrelated to any of the others. We further 

validated our findings by analysing an independently derived published ATAC-Seq data-

set25, confirming that mutations in FLT3 underpin one major component of the clustering 

(Supplementary Fig. 2a). In contrast, the presence or absence of epigenetic mutations such 

as DNMT3A did not influence chromatin accessibility levels (Supplementary Fig. 2b) or 

gene expression (data not shown). Our mutation analyses showed no indications for the 

presence of confounding major sub-clones in purified undifferentiated AML cell 

populations, as mutations were present at close to either a 50% or a 100% allele frequency 

(Supplementary Dataset 1).

Unsupervised clustering analysis of RNA-Seq data from the same patients as well as direct 

comparisons between individual samples (Supplementary Figs. 1c, 2c) revealed strong 

correlations between mutation-specific chromatin landscapes and mutation-specific 

differential gene expression as exemplified by POU4F1 and FOXC1 where mRNA patterns 

correlated well with chromatin profiles (Supplementary Fig. 1d). We identified distinct 

patterns of expression for specific TF-encoding genes in different AML types 

(Supplementary Fig. 2d). For example, various homeo-domain gene family members (HOX, 
NKX, IRX and PBX families) were up-regulated in the FLT3-ITD and NPM1-mutated 

patients. Our comparative analyses show that aberrant TFs and chronic signaling impose 

distinct mutation group-specific patterns of chromatin accessibility and gene expression, 

irrespective of the presence of other classes of mutations.
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AML-specific clustering of distal cis-regulatory elements

We next examined the active cis-regulatory elements specific for each AML subtype by 

defining the union of all AML-specific DHSs as compared to CD34+ PBSCs and performing 

k-mean clustering to identify unique and common DHSs shared between patients, which 

identified 20 distinct DHS clusters (Fig. 2a). Less than half of these DHSs were found in any 

of the Corces et al. progenitor data ATAC-Seq sets25 and the percentage overlap varied 

substantially between clusters (range 2 – 40%; b). We verified mutation-specific clustering 

behaviour of our samples by comparing them with a recently published AML histone 

H3K27 acetylation data set26 showing similar patterns for FLT3-ITD, RUNX1 and CEBPA 
double mutations (Supplementary Fig. 3d). We also defined mutation specific groups of 

deregulated DHSs that were shared between the specific members of each of the seven major 

mutation groups defined in Table S1 (Supplementary Figs. 4a and 4b) which were 

distributed between both the mutation-specific clusters and the shared clusters (Fig. 2b) and 

were associated with differentially expressed genes (Dataset S2). Again, the t(8;21), inv(16), 

and CEBPA groups showed similar patterns whereby 914 upregulated DHSs were shared 

between the three groups (Supplementary Fig. 4a). The FLT3-ITD, FLT3- ITD/NPM1 and 

NPM1 mutation groups showed substantial overlap with 942 shared DHSs, and with only 

19% of these DHSs included in the 914 ITD/NPM1-specific group. These AML-specific 

patterns showed little similarity to normal myeloid differentiation as the majority of these 

specific sites were not up-regulated in GMPs relative to PBSCs (Fig. SN2b).

The presence of specific DHSs strongly correlated with the up-regulation of their associated 

genes (Supplementary Dataset 3, Supplementary Fig.4c), as exemplified by two DHS at 

POU4F1 (Supplementary Fig 4d). Supplementary Fig 4e shows examples of AML type-

specific up-regulated TF genes, and growth factor or receptor genes, which were associated 

with AML type-specific DHSs (Supplementary Data 4). The gene expression patterns of 

such genes were validated using publicly available data-sets (Supplementary Fig 5).

AML-specific transcription factor binding patterns

To identify TFs associated with the different chromatin patterns we analysed high-read depth 

DNaseI-Seq data using our Wellington digital footprinting algorithm29. Since closely 

related factors recognise identical sequences, compiling a non-redundant database of motifs 

(Supplementary table 2) and selected representative motifs encompassing each transcription 

factor family as defined in more detail on our web server (see URL list). Examples of 

footprints are depicted for NFI and ETS motifs at the MDFI locus in FLT3-ITD/NPM1-

mutated AML (Fig. 3a) and for RUNX, NFAT and C/EBP motifs at the C3AE1 locus in 

t(8;21) and CEBPA-mutated AML (Supplementary Fig. 6a). The majority of AML type-

specific DHSs within the 20 AML-specific DHS clusters contained footprints 

(Supplementary Fig. 6b). For validation, we compared RUNX motif footprints with publicly 

available RUNX1 ChIP data from our studies (FLT3-ITD/NPM124, t(8;21)30) and others 

(inv(16)31) (Supplementary Fig. 6c). Between 60% and 85% of footprinted RUNX motifs 

occurred in regions shown to bind RUNX1.

We next evaluated occupied motif enrichment in the 20 AML subtype-specific DHS clusters 

(Fig. 3b) which showed that motif occupancy patterns are highly AML type-specific. For 
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example, the FLT3-ITD/NPM1-specific clusters 5 and 19 are enriched for occupied HOX, 

FOX/E-box and NFI motifs and correlate with up-regulation of FOXC1, NFIX and multiple 

homeo-domain genes (Supplementary Fig. 2d). Occupied AP-1 motifs are enriched in 

multiple clusters (01, 05, 07, 12, 13, 18, 19), many of which in AML with signaling 

mutations. Because AP-1 factors mediate MAP kinase (MAPK) signaling this indicates 

wide-spread activation of this signaling pathway in FLT3-ITD AML24 and other AML 

types. Finally, we observed significant POU4F1 motif occupancy in clusters 02 and 20 

containing samples from t(8;21) and CEBPA double mutant patients but nowhere else (Fig. 

3b). POU4F1 is aberrantly expressed in t(8;21) cells32, but has so far not been linked to 

CEBPA double mutations. A similar differential occupancy pattern was seen when footprints 

were clustered according to mutation-specific groups of DHSs (Supplementary Fig. 6d). 

Note that motif occupancy of C/EBP motifs in AMLs with CEBPA double mutations 

showed no reduction in overall motif occupancy, suggesting compensation by other C/EBP 

family members.

To examine the position of transcription factor occupancy patterns within the hematopoietic 

hierarchy, we correlated the presence of footprints specific for AML-subtypes with 

accessible chromatin regions present in precursor cells (Fig 4)25. This analysis revealed 

unique factor occupancy patterns in AML cells compared to normal progenitors. For 

example, HOX motifs within open chromatin regions observed in HSCs, MPPs and MEPs 

are occupied in the FLT3-ITD/NPM1 and RUNX1 groups, but not in the t(8;21) group, 

indicating an early block in differentiation (see also Fig SN1b). Many of the samples, 

including NPM1, FLT3-ITD/NPM1 and t(8;21) cells, display high AP-1 motif occupancy 

which is normally only seen in monocytes. POU4F1 is expressed in HSCs, MPPs, MEPs and 

in CLPs25 and its binding motifs are occupied in t(8;21) and CEBPA double mutant cells, 

yet these AML cells also show strong occupancy of C/EBP motifs, which is normally a 

hallmark of GMPs and monocytes. In summary, our digital footprinting analysis shows (i) 

that each AML subtype employs a different combination of factors binding to elements 

shared with different types of precursor cells and that (ii) lineage unrelated expressed TFs 

such as FOXC1, NFIX and POU4F1 participate in such cooperation.

AML subtype-specific cis-element interactions

The construction of gene regulatory networks relies on linking cis-regulatory elements to 

their respective promoters33. We therefore examined (i) whether the differential activity of 

cis-regulatory elements in AML sub-types resulted in the formation of alternate cis-element 

interactions, and (ii) which TF families were involved in such interactions, by employing 

promoter-capture chromosomal structure analysis (CHi-C)34. We analysed cells from 

relapse patient sample t(8;21)-1R (Supplementary table 1), which maintained a gene 

regulation network similar to the presentation sample t(8;21)-1 (Figs. 1c, Supplementary 

Figs. 1c and 7a), and a patient carrying a FLT3-ITD/NPM1 mutation (ITD/NPM1-2, 

Supplementary Table 1). We compared these data to a dataset derived from human CD34+ 

cells34. Intra-chromosomal interactions did not differ at the global level (Supplementary 

Fig. 7b) and the organization into topologically associated domains (TADs) each containing 

the DHSs was unaffected by the type of AML (Supplementary Fig. 7c).
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The proportion of DHSs involved in AML subtype-specific interactions varied between 

DHS-clusters (Supplementary Fig. 7d) and ~40% of all promoters showing differential 

interactions were associated with expressed genes (Supplementary Fig. 7e,f). A direct 

comparison between the CHi-C data from the two patients (Supplementary Fig. 7g) 

demonstrated that differential interactions (i) correlated with differential DHS patterns and 

that (ii) the expression of a differential set of genes with different GO terms (Supplementary 

Dataset 5) as exemplified by the KLF2 gene which is differentially expressed between 

FLT3-ITD and t(8;21) and CD34+ cells (Supplementary Fig. 7h).

On average 80% of all DHSs mapped in the t(8;21) AML, the FLT3-ITD AML and the 

CD34+ cells participated in interactions (Supplementary Fig. 8a). An average of 17% of 

interactions were AML type-specific and not present in CD34+ PBSCs (Supplementary Fig. 

8b). To identify the TF families involved in regulating differential interactions we 

determined the proportions of enriched occupied motifs in the DHSs underlying interactions 

(Supplementary Fig. 8c). These analyses suggest that hematopoietic TFs such as RUNX, 

ETS and C/EBP family members and AML subtype-specifically expressed TFs participate 

in differential interactions in both AML types, together with the AP-1 factor family. In the 

FLT3-ITD AMLs this included HOX proteins and factors occupying FOX/E-box motifs. In 

the t(8;21) AMLs this included proteins binding to FOX and POU4F1 motifs.

Differential interactions drive AML-specific gene expression

The majority of DHSs underlying interactions between the three data-sets and those of 

individual patients were shared with an average level of 80% overlap (Supplementary Fig. 

8d), confirming that the global transcriptional network of related cells is highly related35,36. 

Sub-type-specific DHSs participating in interactions were enriched within related groups, 

but not within unrelated groups (Supplementary Fig. 8e), confirming that the two patients 

were representative for those groups. For both the FLT3-ITD/NPM1 and the t(8;21) sample 

the nearest promoter accounted for 65-74% of AML type-specific interactions associated 

with genes that are up-regulated compared to CD34+ cells (Fig. 5a). Similar results were 

seen for each of the 20 DHS clusters (Supplementary Fig. 8f).

To integrate differential interaction data, digital footprinting data and gene expression data, 

we assigned the respective DHSs to their interacting promoter as described in Fig 5b. GO-

term and KEGG-pathway analyses of expressed genes in the two types of AML (Fig 5c-f) 

revealed an AML subtype-specific core signature of genes being driven by specific cis-

regulatory elements (for an extended gene list see Supplementary Dataset 5). For both AML 

samples these included genes involved in regulating pro-inflammatory pathways. FLT3-ITD 

cells also displayed an activated MAPK signaling signature whereas the t(8;21) signature 

also included RAP, RAS, PI3K and FOXO signaling genes. FOXO1 is already known to be 

part of the t(8;21) pre-leukemic maintenance program37. More than 50% of all genes within 

these pathways were targets of RUNX1-ETO (Fig. 5g)30 thereby linking them to the actual 

driver mutation. A similar percentage of the genes within the FLT3-ITD/NPM1 core 

pathway are bound by RUNX1 (Fig. 5g) which is up-regulated in FLT3-ITD24 

(Supplementary Dataset 5). Since ~83% of the DHSs involved in interactions in each of the 

3 samples (Supplementary Fig. 8g) were shared, we merged all three CHi-C data-sets to use 
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this data to assign the DHS from the 20 clusters (Fig 2a) to their respective promoters. The 

remaining 17% of DHS were assigned to the nearest promoter. GO-term and KEGG-

pathway analyses of such genes (listed in Supplementary Dataset 6) again showed activation 

of genes connected with signaling processes, such as an inflammatory response, regulation 

of MAPK activity and cytokine regulation in all types of AML.

AML subtypes display unique transcription factor networks

Constitutive and inducible TFs form regulatory networks by interacting with their own 

and/or other regulatory genes35. Cancer cells maintain a stable regulatory network, implying 

that the expression of each network member is tightly controlled and remains in balance. 

Consequently, perturbation of the network components maintaining this balance may 

destabilize leukemic cells thus offering novel therapeutic options. We therefore combined 

footprinting, TF gene expression and where possible, CHi-C data to construct TF networks 

in normal CD34+ cells and the different AML subtypes by linking occupied binding motifs 

within TF genes to the specific TF families recognising these motifs. The TF families 

involved and the full network structure for each cell type without filtering can be studied in 

detail via the weblink (see URL). Comparison between the different AML subtypes and 

normal CD34+ cells identified interactions between TF sub-sets that were either shared 

between AMLs and CD34+ cells (Supplementary Fig. 9) or were subtype-specific (Fig. 6), 

These results suggest that the AP-1 family network is of regulatory relevance for all AML 

subtypes (Fig. 6b-g). POU4F1 and HLH family factors recognising MYC/MAX type E-

boxes formed prominent nodes in t(8;21) AML only, while HOX proteins, FOXC1, NFIX 

and the MAF family were exclusively highlighted in FLT3-ITD and NPM1 AML. Specific 

nodes and edges were also part of the normal precursor program (Supplementary Fig 9). For 

example the link between the C/EBP family and NFIL3 was shared between the FLT3-ITD/

NPM1 cells (Fig. 6f) and CD34+ PBSCs (Supplemental Fig. S9f). A detailed discussion of 

the different network structures and the role of different TF families with more examples can 

be found in Supplemental Notes.

Transcription factors contributing to AML-specific growth

We next validated the role of TFs forming network nodes by transducing three different 

AML cell lines and primary FLT3-ITD AML cells with lentiviral vectors coding shRNAs 

targeting POU4F1 (specific for t(8;21)) or NFIX and FOXC1 (specific for FLT3-ITD). NFIX 

is known to play a role in myeloid lineage specification38 but has not been linked to specific 

mutation types. FOXC1 is an oncogene in its own right39 and overexpression is observed in 

AMLs with FLT3-ITD mutations24. However, NFIX and FOXC1 have not been linked to 

the maintenance of the FLT3-ITD AML. We transduced two distinct shRNA constructs per 

gene into FLT3-ITD and t(8;21) cell lines, significantly reducing the corresponding TF 

transcript and protein levels (Supplementary Fig 10a-f). Knockdown of POU4F1 
(Supplementary Figs. 10a and d) inhibited the proliferation of t(8;21)-positive Kasumi-1 

cells (Fig. 7a, Supplementary Fig. 10g), confirming our previous findings32. Expression of 

NFIX shRNAs (Supplementary Figs. 10b and e) impaired the proliferation of FLT3-ITD-

positive MV4-11, but not FLT3-ITD-negative Kasumi-1 cells (Figs. 7b,c, Supplementary 

Fig. 10h,i). We next tested the effect of shRNA knock-down of these genes on the colony 

forming ability of CD34+ FLT3-ITD/NPM1 mutant patient cells and on CD34+ PBSCs. 
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Both NFIX and FOXC1 shRNA constructs reduced the colony forming ability of AML cells, 

but not that of normal CD34+ HSP cells (Figs. 7d, e).

In addition to subtype-specific TFs such as POU4F1 or NFIX, our network analysis suggests 

that the AP-1 family is of general significance for all AML subtypes examined. AP-1 is a 

heterodimer formed by members of the FOS, JUN, ATF, CREB and JDP families of 

transcription factors making it challenging to target by defined RNAi approaches. To this 

end, we transduced AML cells with an inducible version of a dominant negative FOS 

(dnFOS) protein40,41. Doxycyclin-mediated induction of dnFOS significantly inhibited 

proliferation of both t(8;21)-positive Kasumi-1 cells and FLT3-ITD expressing MV4 11 cell 

lines (Figs. 7f, g, Supplementary Fig. 10j, k) and the colony-forming ability of primary 

CD34+ FLT3-ITD cells but not of CD34+ HPSCs (Figs. 7h,i, Supplementary Fig. 10l).

Finally, we examined the significance of AP-1 for leukemia propagation in vivo by 

transplanting either Kasumi-1 or MV4-11 cells expressing a doxycycline-inducible dnFOS 

into immunodeficient RG mice, followed by randomization into a doxycycline and untreated 

arm. In the case of Kasumi-1 transplantation, 6 out of 7 animals of the control group, but 

only 2 animals of doxycyclin-treated group developed granulosarcomas (Fig. 7j). Neither of 

the latter two tumours expressed dnFOS after DOX treatment (data not shown). Doxycycline 

treatment of mice transplanted with FLT3-ITD MV4-11 cells harboring the dnFOS 
transgene inhibited the development of leukemia while all untreated mice rapidly developed 

tumours and had to be sacrificed (Fig. 7k). Taken together, these findings demonstrate the 

significance of AP-1 for several AML subtypes and emphasize the potential of 

transcriptional network analyses to predict TFs crucial for malignant propagation.

Discussion

In this study we defined how aberrantly expressed TFs and signaling molecules shape the 

epigenetic landscape of different sub-types of human AML. We show (i) that it is possible to 

use high-quality DNaseI footprinting analyses of purified AML blast cells to identify AML 

subtype-specific TF networks, (ii) that such TF networks point towards a dependency on 

specific factors for leukemic growth and (iii) that the global activation of signaling pathways 

parallels a growth dependency on AP-1 activity in multiple types of AML. Our 

comprehensive integration of multi-omics data reveals a strong connection between 

leukemic classifier mutations, networks of TFs and signaling components in primary AML. 

Moreover, mapping of cis-element promoter interactions by CHiC enabled assigning the 

majority of genes of all analysed subtypes to their correct promoter. Different types of AML 

have previously been classified by their gene expression and DNA-methylation 

patterns42,43 revealing the existence of specific gene regulatory networks. Our work now 

defines these networks in detail, and convincingly proves that leukemic drivers determine 

the regulatory phenotype by establishing and maintaining specific gene regulatory and 

signaling networks distinct from normal cells. Induced and aberrantly expressed TFs are not 

bystanders, but are important for network maintenance and leukemic growth, thus 

highlighting novel therapeutic opportunities for targeted treatment.
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The full set of target genes of RUNX1-ETO in t(8;21) is known and the t(8;21) specific 

epigenome and TF binding pattern has been extensively characterized44. Multiple target 

genes relevant for the maintenance of the leukemogenic state have been identified, including 

FOXO1, UBASH3B, POU4F1, and LAT2 together with the members of the RUNX1-ETO 

complex 22,32,37,45–47 and our current comparative study has identified multiple new 

network components. However, for the other types of AML, in particular for the FLT3-ITD 

such knowledge was not available. Here, we identified a number of signaling and 

transcriptional components distinguishing FLT3-ITD from normal blasts and from other 

types of AML, comprising a rich resource for combinatorial therapy approaches. We 

examined the contribution to leukemic growth for two genes with AML subtype-specific 

activity (NFIX and FOXC1) and showed that their elimination resulted in reduced growth 

and colony forming ability of AML but not normal cells, confirming that AML maintains an 

aberrant transcriptional network required for survival.

The AP-1 factor family plays an important role in many types of tumours48 and our study 

shows that it is of major importance for AML. FLT3-ITD MV4-11 cells have abundant 

levels of nuclear AP-1, and FLT3-ITD target genes such as CCNA1 are suppressed by 

MAPK inhibitors in these cells24. We have recently shown that JUN scores highly in a 

siRNA dropout screen examining the requirements for tumour development in t(8;21) AML 

(Martinez-Soria et al., in press). FOS plays an important role in the resistance against BCR-

ABL inhibition in CML by activating compensatory signaling pathways49. Since several 

growth factor and stress signal cascades feed into AP-1, a targeted inhibition of all AP-1 

binding may avoid resistance via rewiring of signalling pathways.

In the classical mechanism of two-step leukemogenesis a mutation altering a differentiation 

trajectory cooperates with signaling mutations directing leukemic growth10,11. Mutations in 

TFs and epigenetic regulators setting up the epigenetic landscape upon which TFs act, fall 

into the first category while the FLT3-ITD mutation falls into the second. However, these 

distinctions are becoming blurred as from the viewpoint of gene regulation, growth factor 

receptors strongly influence transcriptional activity via inducible TFs, as exemplified by 

AP-1 family members. These factors play a dominant role in driving the differentiation 

trajectory as they display an AML sub-type specific occupancy signature that is 

uninfluenced by the presence or absence of epigenetic regulator mutations (in this case 

DNMT3A)24. This is not to say that mutations in epigenetic regulators do not influence the 

developmental trajectory of AML and clinical outcomes, as shown in CBF AML50 since 

AML cells with such mutations acquire an altered DNA methylation landscape that is likely 

to influence TF binding51. However, our data show that leukemic phenotype and self-

renewal of different types of AML are defined by differentially activating a multitude of 

different and often lineage-unrelated signaling pathways and by expressing lineage-unrelated 

TFs. From the viewpoint of finding therapeutic targets, identifying such mutation-specific 

pathways will offer an opportunity to eliminate their specific maintenance program by 

targeting multiple pathways simultaneously. Our study provides a first step towards this 

goal.
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Accession code

GSE108316

URLs

Data Server: http://bioinformatics-bham.co.uk/tfinaml/

fastQC: (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/)

Bowtie: (http://bowtie-bio.sourceforge.net/bowtie2/manual.shtml)

MACS 2: (https://github.com/taoliu/MACS)

DEseq2: (https://bioconductor.org/packages/release/bioc/html/DESeq2.html)

Wellington algorithm: (http://pythonhosted.org/pyDNase/)

STAR: (https://github.com/alexdobin/STAR)

Cufflinks: (http://cole-trapnell-lab.github.io/cufflinks/)

LIMMA: (http://bioconductor.org/packages/release/bioc/html/limma.html)

JASPAR: http://jaspar.genereg.net/

HOMER: (http://homer.ucsd.edu/homer/index.html)

HiCUP: (https://www.bioinformatics.babraham.ac.uk/projects/hicup/)

GOTHiC: (http://bioconductor.org/packages/release/bioc/html/GOTHiC.html)

R scripting language: (https://www.r-project.org/)

GSEA: (http://software.broadinstitute.org/gsea/index.jsp)

Picard: (http://broadinstitute.github.io/picard/).

DFilter: (http://collaborations.gis.a-star.edu.sg/~cmb6/kumarv1/dfilter/)

Bedtools: (https://bedtools.readthedocs.io/en/latest/)

Cytoscape: (http://www.cytoscape.org/)

Online Methods

Patient samples and PBSC cell processing

Human tissue was obtained with the required ethical approval from the NHS National 

Research Ethics Committee. AML and PBSC samples used in this study were either surplus 

diagnostic samples, or were fresh samples obtained with specific consent from the patients. 

AML samples were obtained from either (i) the Haematological Malignancy Diagnostic 

Service (St James’s Hospital, Leeds, UK, (ii) the Centre for Clinical Haematology, Queen 
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Elizabeth Hospital Birmingham, Birmingham, UK, (iii) the West Midlands Regional 

Genetics Laboratory, Birmingham Women’s NHS Foundation Trust, Birmingham, UK, or 

from iv) Erasmus University Medical Center, Rotterdam, The Netherlands. Mononuclear 

cells were purified on the same day that they were received, and in most cases also directly 

further purified using either CD34 or CD117 (KIT) magnetic antibodies, as previously 

described 24. For some samples with greater than 92% blast cells the column purification 

was not performed. Mobilized PBSCs were provided by NHS BT, Leeds, and NHS BT, 

Birmingham.

Mutation detection

Mutated genes identified in each patient are summarized in Supplementary Table 1, together 

with the age, gender and white blood cell count for each patient. Mutations were identified 

by one of two different methods. The first batch of patients were assayed by targeted exon 

sequencing of 55 cancer-associated genes using 1212 pairs of previously defined PCR 

primers 24 for amplification using a RainDance Technologies platform. The mutation 

sequence data from this screen was analyzed using algorithms to detect either (i) nucleotide 

variants using the Genome Analysis Toolkit (GATK) 52 or insertions and deletions using 

Pindel 52. Mutations were also screened against the COSMIC database of previously 

observed mutations (link see URL section). Subsequent samples were assayed using the 

Illumina Trusight myeloid panel of primers and processed by approaches similar to those 

used for the first batch. All identified mutations are listed in Table S1. Some of these 

patients were also included in a previous publication from our laboratory, using different 

patients identification codes 24 to those used in the current study.

Cell lines

Cell lines were cultured in an incubator at 37°C in GIBCO™ 1640 RPMI + Glutamax™ 

medium supplemented with 10% heat inactivated fetal calf serum (GIBCO), 100 U/ml 

Penicillin, 100 mg/ml Streptomycin.

Growth curve measurements

250000 MV4-11 or Kasumi-1 cells were cultured in RPMI supplemented with 10 % fetal 

calf serum, 2mM L-Glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin. Cells were 

counted with Trypan Blue exclusion and split every 3 days to maintain them in the log phase 

of growth. For the inducible dnFOS, cells were counted and split every 2 days and 1.5 μg/ml 

of doxycycline was added.

Co-culture of Primary Cells with MS-5 feeders

Primary cells were maintained in co-culture with MS-5 cells 53 Briefly, cells were cultured 

in LTC medium (α-minimum essential medium (Lonza) supplemented with heat-inactivated 

12.5% fetal calf serum (Gibco), heat-inactivated 12.5% horse serum (Gibco), penicillin and 

streptomycin, 200 mM glutamine, 57.2 μM β-mercaptoethanol (Sigma) and 1 μM 

hydrocortisone; (Sigma) supplemented with 20 ng/ml IL-3, granulocyte colony-stimulating 

factor (G-CSF) and thrombopoietin (TPO) in flasks pre-coated with MS-5 cells.
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Lentiviral transduction and shRNA treatment

LEGO-iG-shRNA were generated by cloning shRNAs (Table S3) into the LEGO-iG 

vector54. LEGO-iG-dnFOS was generated by cloning the dnFOS insert, originally generated 

by Charles Vinson (National Cancer Institute, Bethesda, USA 40 into the LEGO-iG 

backbone. Inducible dnFOS was cloned into a pENTR backbone and then using Gateway 

Cloning to insert that into the Tet-on plasmid pCW57.1 (David Root, Addgene plasmid 

#41393). Backbone vectors LEGO-iG and Inducible dnFOS then used to generate lentiviral 

particles using packaging and envelope genes on four separate plasmids: TAT, REV, 

GAG/POL and VSV-G55.

For virus production, 293T Human Embryonic Kidney cells were cultured in Dulbecco’s 

Modified Eagle Medium supplemented with 10 % fetal calf serum, 2mM L-Glutamine, 100 

U/ml penicillin, 100 mg/ml streptomycin and 0.11 mg/ml Sodium pyruvate; and were seeded 

to achieve 70-80% confluency at time of transfection. HEK293T cells were transfected using 

the calcium phosphate co-precipitation of the five-plasmids (LEGO-iG with TAT, REV, 

GAG/POL and VSV-G) at a mass ratio of 24 μg : 1.2 μg : 1.2 μg : 1.2 μg : 2.4 μg per 150 

mm diameter plate of cells. Viral supernatant was harvested after 24 h and subsequently 

every 12 h for 36 h prior to concentration with Centricon Plus 70 100 kDa filter (Millipore, 

USA), using the manufacturer’s instructions. Concentrated viral particles were stored at 4 °C 

prior to lentiviral transduction. Cell lines were transduced with concentrated virus in the 

presence of 8 μg/ml polybrene by spinoculation at 1500 xG for 50 min. After 12 – 16 h 

incubation at 37 °C viral media was exchanged for fresh media. Cell sorting by FACS was 

performed to isolate GFP+ cells 3 days after transduction.

Primary cell samples were defrosted 24 h prior to transduction and co-cultured with MS-5 

feeder cells in LTC medium. 6 well non-tissue culture treated plates were coated with 24 

μg/ml retronectin (Takara Clontech) for 2 h prior to blocking with 2% BSA PBS for 30 min. 

The blocking buffer was washed off with HBSS (Gibco) containing 2.5% HEPES. 1 ml viral 

concentrate was applied to the retronectin coated plate by centrifugation at 2000 xG for 45 

minutes, after which the concentrated viral supernatant was refreshed and the centrifugation 

repeated. Primary cells suspended to a concentration of 1 x 106 cells/ml in the remaining 

viral supernatant; supplemented with 20 ng/ul G-CSF, IL-3, TPO and 8 μg/ml polybrene, 

were then added to the plate and transduced by spinoculation at 1500 xG for 50 min. After 

12 – 16 h incubation at 37 °C viral media was exchanged for fresh media. Cell sorting by 

FACS was performed to isolate GFP+ cells 3 days after transduction.

Colony Formation Assays of Primary Cells

Colony formation assays were performed on sorted cells by seeding at 2500 cells/ml in 

Methocult Express (Stem Cell Technologies). After 14 days colonies were counted.

Animal experiments

Immunodeficient Rag2-/-Il2rγ-/-129×Balb/c (RG) mice were housed in the Comparative 

Biology Centre (Newcastle University) under specific pathogen free conditions. All animal 

work was conducted in accordance with Home Office Project License PPL60/4552 by 

researchers who had completed approved Home Office training and held current Personal 
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Licenses under the Animals (Scientific Procedures) Act 1986. Kasumi-1 pCW57.1-dnFOS 

cells were intrahepatically injected into 14 newborn (2 days old) RG mice at a cell dose of 

2.5x105 cells/mouse as described previously (Martinez Soria et al., 2009). Twelve days later, 

mice were randomized into two treatment groups, one given doxycycline 50 mg/kg three 

times per week intraperitoneally in an unblended fashion till the experimental endpoint. 

MV4-11 pCW57.1-dnFOS cells were intrafemorally injected into RG mice at a cell dose of 

5x105 cells/mouse followed by randomization into two groups. For the dox group 

doxycycline was added at a concentration of 2 mg/ml for the initial 3 days and at 0.2 mg/ml 

subsequently to drinking water containing 2% sucrose. Controls were given water containing 

2% sucrose. Animals were humanely killed upon clinical signs of illness or at defined 

experimental endpoints.

RT- qPCR

RNA was extracted using the Machery-Nagel Nucleospin kit. 1μg RNA was used to make 

cDNA with 0.5μg OligoDT primer, Murine Moloney Reverse Transcriptase and RNase 

Inhibitor (Promega, USA) according to manufacturer’s protocol. RT-PCR was performed 

using Sybr Green mix (Applied Biosystems, UK), at 2x dilution. Primers were used at 

100nM concentration. A 7900HT system (Applied Biosystems, UK) was used to perform 

qPCR. Analyses were performed in technical duplicates using a standard curve derived from 

the untreated cell line.

Western Blotting

Protein lysates from cell lines were analyzed by Western blot. Relevant primary antibodies 

against FOXC1 (Cell Signaling Technology - #8758), NFIX (Invitrogen - #PA5-31234), 

POU4F1 (Santa Cruz Biotechnology – sc-8429) were used to detect target genes and 

GAPDH (mouse αGAPDH – Abcam – ab8245; rabbit αGAPDH – Cell Signaling 

Technology – 2118L) was used as a housekeeping gene. Secondary antibodies mouse anti-

rabbit HRP (Santa Cruz Biotechnology – sc-2054) and goat anti-mouse HRP (Jackson 

ImmunoResearch – 115-035-062) enabled detection and quantifications by densitometry 

using Imagelab software and a GelDoc imager.

Statistical analysis of validation experiments

Validation experiments were performed in triplicate (n=3) where each replicate represents a 

separately transduced cell line or primary cell sample cultured and analyzed independently. 

The exception are the in vitro inducible dnFOS cell line experiments where each replicate 

represents a separate culture of a clone stably expressing the dnFOS peptide in order to 

avoid variations in the degree of expression. The significance of differences in colony 

counts, doubling time, mRNA expression and cell concentrations at individual time points 

on growth curves were calculated using Student’s t-test where n=3 using 4 degrees of 

freedom, t values between significantly different groups (p<0.05) were all greater than t=3.2.

Standard error bars on graphs show standard error of the mean: x ± σ
n .
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The tumor mass of mice transplanted with Kasumi-1 pCW57.1-dnFOS with and without dox 

was analyzed using a Mann-Whitney test as the distribution of data was not normal. This 

experiment was performed n of 7 engrafted mice in each group (p=0.0326, Mann-Whitney U 

= 8.5. The survival curve of mice engrafted with MV4-11 pCW57-dnFOS with and without 

dox was analyzed using a Kaplan-Meier plot (n=5 engrafted mice) using a Mantel-Cox Chi-

square test (Chi square = 8.097, df=1, p=0.0044) and yielding a Mantel-Haenszel hazard 

ratio of 14.08.

RNA-Seq library preparation

RNA was extracted and analyzed from purified AML cells as previously described 23

DNaseI-Seq

DNaseI digestions of permeabilized cells were performed as previously described56. Briefly, 

live cells were added directly to a solution of DNaseI (DPFF, Worthington) in dilute Nonidet 

P40, digested for 3 min at 22°C, and the reactions then terminated by addition of SDS to 

0.5%. DNaseI was typically used in the range of 2-6 μg/ml using a final 1.5 x 107 cells/ml. 

DNaseI-Seq libraries were then prepared and validated essentially as previously described 

30. Libraries were run on Illumina sequencers.

Promoter capture HiC (CHi-C) from patient AML blasts

AML cells from patient peripheral blood were first purified by density gradient 

centrifugation (Lymphoprep™) and then using CD34 antibody coupled beads. 5× 107 

t(8;21) blasts (patient t(8;21)-1R) and FLT3-ITD/NPM1 blasts (patient ITD/NPM1-2) were 

fixed in 37 ml of RPMI-1640 supplemented with 15% FBS and 2% formaldehyde for 10 

minutes at room temperature. 6 ml of 1M glycine (0.125 M final concentration) was added 

to quench the reaction and cells were incubated at room temperature for 5 min, followed by 

15 minutes on ice before pelleting the cells at 4 °C and washing them in ice cold PBS. Each 

sample was flash frozen in liquid nitrogen, and stored at −80 °C. Cells were lysed in a tight 

dounce homogeniser (ten cycles) with 3ml of cold lysis buffer (10 mM Tris-HCl pH 8, 10 

mM NaCl, 0.2% Igepal CA-630, one tablet protease inhibitor cocktail (Roche complete, 

EDTA-free, 11873580001)). Cells were left on ice for five minutes then homogenised 

another ten times. The lysed cells, in 3 ml lysis buffer, were added to 47ml of lysis buffer 

and incubated on ice for 30 minutes with occasional mixing. Chromatin was pelleted and 

resuspended in 1ml of 1.25x NEBuffer 2 and split into four. Each sample was then pelleted 

at 1000 rpm and resuspended in 358 µl of 1.25x NEBuffer 2. 11 µl 10% SDS was added and 

each tube was incubated at 37°C for 60 minutes, rotating at 950 rpm. Samples were mixed 

by pipetting up and down every 15 minutes. SDS was quenched with 75µl 10% Triton X-100 

and incubated at 37°C for 60 minutes. HindIII digestion, biotinylation, ligation, crosslink 

reversal, promoter capture and library preparation was performed exactly as described in34.

DNaseI-Seq data analysis

Alignment—DNaseI-seq sequences from all experiments were mapped onto the reference 

human genome version hg38, with Bowtie version 2.3.157,24 using default parameters. Low 

quality reads were trimmed prior to the alignment and the quality control (QC) statistics for 
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the samples were obtained using FastQC tools. Reads that were aligned to unique 

chromosomal positions were retained.

Peak calling—DNaseI Hypersensitive Sites (DHSs) were called with MACS2 using 

callpeak function (nomodel, call-summits and q= 0.005 parameters)58. DHSs were allocated 

to genes and to the gene promoter if it was within 2kb of the gene transcription start site 

(TSS), and as distal otherwise. Overlaps between DHSs peaks were defined by requiring the 

summits of two peaks to lie within +/-200 bp.

DNaseI-Seq peak set definition—To define a common set of coordinates covering all of 

the significant distal DHSs investigated in this study, we merged all of the individual 

DNaseI-Seq reads for all of the AML samples assayed by DNaseI-Seq. This data set was 

then used to define the peak summits of 128,864 distal peaks, excluding promoters, which 

were detected in the merged data. This approach was designed to maximize the precision 

and sensitivity of the peak detection, allowing us to generate a single set of peak coordinates 

that (i) included all the regions where peaks might be found, thereby reducing the level of 

false negatives, and (ii) greatly diminished the number of false positives. The DNA read 

counts were then determined for 400 bp windows centered on each peak for each AML 

sample and for the PBSC samples. To account for the different number of reads in each of 

the samples; the read counts were initially normalized for total read depth using DEseq2 59. 

Because most of our individual DNaseI-Seq data sets encompassed in the range of 25,000 to 

40,000 significant distal DHSs, we further normalized the values obtained on the basis of the 

midpoint (12.5 percentile) of the top 25% of peaks (32,216 peaks).

Mutation-specific DNaseI-Seq peak set definition—We determined the average log2 

values for 7 distinct groups of AMLs that carried the same specific mutations in key 

regulators, and which shared similar patterns of DHSs based on the DHS clustering analysis. 

The samples included in each group are color-coded and listed in order in Table S1 for AML 

samples with the following mutations: (i) 3 samples with FLT3-ITD but not NPM1 (#1 to 3), 

(ii) 6 samples with FLT3-ITD and NPM1 (# 1 to 6), (iii) 2 samples with NPM1 but not 

FLT3-ITD (# 1 and 2), (iv) 4 samples with t(8;21) (1 to 4), (v) 3 samples with inv(16) (# 1 to 

3); (vi) 6 samples with RUNX1 or RUNX1 and CEBPA (1 to 6), and (vii) 3 samples with 2 

CEBPA mutations (#1 to 3). To define mutation-specific subsets of specific DHSs, we 

identified peaks where the average log2 value both was at least 64 and at least 3-fold higher 

than in PBSCs. Downregulated DHSs are defined as being at least 3-fold less than in PBSCs. 

Samples were not included in these 7 specific groups in cases where, for example, 2 copies 

of the FLT3-ITD mutation were present, the NPM1 mutation was paired with a NRAS 

instead of the FLT3-ITD, RUNX1 mutations were paired with a JAK2 mutation, or where 

only a single CEBPA allele was mutated.

Clustering of DNaseI-Seq data—Clustering of DNaseI-seq samples was carried out 

using the merged distal DHSs. The number of reads that mapped to these DHSs was counted 

in a 400bp window centered on the DHS summit, and subsequently normalized to total 

sample size using DEseq2 59. Pearson correlation coefficients were then calculated for each 

pair of samples using the log2 of the normalized read counts, and then hierarchically 
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clustered using Euclidean distance and complete linkage clustering of the correlation matrix 

in R.

For further analysis methods see Supplementary Material.

RNA-seq data analysis

RNA-Seq reads were aligned to the human genome hg38 build with STAR60 using 

ENCODE recommend parameters. Separate density profiles for the positive and negative 

strand were generated using bedtools. Cufflinks61 was used to calculate the expression 

values as Fragments Per Kilobase per Million aligned reads (FPKM) from the aligned RNA-

seq data. Mutation-specific group’s gene-wise expression values were obtained using the 

cuffdiff function of cufflinks. The correlation between any two AML samples was obtained 

as the Pearson correlation coefficient of expression values over all genes. A correlation 

matrix was thus generated for all the samples and hierarchically clustered to study the 

relationship among samples as given in Figure S1C. Smooth scatter plots were generated in 

R. For further analysis methods see Supplementary Material.

Promoter Capture HiC data analysis

The CHi-C paired-end sequencing reads from ITD/NMP1-2 and t(8;21)-1R patients and a 

publically available CD34+ dataset (accession numbers ERR436032 and ERR436025) were 

put through HiCUP pipeline62. The raw sequencing reads were separated and mapped 

against the human genome (hg38). The reads were then filtered for experimental artefacts 

and duplicate reads, and then re-paired. Statistically significant interactions were called 

using GOTHiC package63 and HOMER software. This uses a cumulative binomial test to 

detect interactions between distal genomic loci that have significantly more reads than 

expected by chance, by using a background model of random interactions. This analysis 

assigns each interaction with a p-value, which represents its significance. Differential 

interactions were determined with HOMER64 for t(8;21) using FLT3-ITD or CD34+ as 

background and FLT3-ITD using t(8;21) or CD34+ as a background. A difference with a p-

value of less than 0.1 was deemed to be significant

Transcription Factor Gene Regulatory Network Construction

We identified a subset of 310 transcription factor (TF) genes that are expressed in one or 

more of our AML samples. The gene names for transcription factors in human were 

obtained from AnimalTFDB65. The 310 TFs were considered as nodes and the nodes 

coloured according to their expression values at each AML subtype (Fig 6, Supplementary 

Fig 9 and Fig SN5). Node border colour signifies whether the gene is up-regulated, down-

regulated or invariant base on a 2-fold-change compared to CD34+ cells. The node border 

type indicates whether a gene is differentially expressed in one AML subtype as compared 

to other subtypes. A directed edge from TFa to TFb indicates motif binding of a TFa to the 

locus of the TFb and the edge is prominently displayed if TFa binds to the locus at that stage. 

The edge is classified and colour coded according to the significant of motif count 

enrichment.
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Motif count enrichment for TFs network—Initially footprints for each AML subtype 

were identified by using the Wellington algorithm29 and were annotated to their related 

promoter using CHi-C data where possible. Motif search within footprint coordinates where 

performed using HOMER64. The number of motifs per TF gene were counted and the 

significance of motif enrichment was identified using bootstrapping on random sampling, a 

random set of mapped motif were extracted from all union footprinted motif of all AML 

subtypes and the CD34+ cells. After 1000 iterations the mean, standard deviation and the z-

scores are computed. Motif (TFa) is linked to gene (TFb) with positive Z-score values only.

Motif count enrichment for up-regulated TFs—The correlations (re) between all TF 

genes based on FPKM values from the RNA-seq analysis were identified and the 

correlations (rm) between all TF genes based on motif count binding were identified. The 

correlation coefficients were z-transformed using Fisher Z-transformation with “FisherZ” 

function in R. The average of the transformed z-scores of both gene expression and motif 

were transformed to correlation (r). All TF genes with a correlation coefficient equal or 

greater than a cut-off of 0.3 were considered. Then for each AML cell type, the differentially 

expressed TF genes among these correlated genes were identified. First those of each AML 

subtype as compared to CD34+ cells and second those of all AML subtypes compared to the 

average expression of other subtypes including CD34+ cells. Up-regulated genes with a 2-

fold-change in expression compared to CD34+ cells or compared to other AMLs were 

considered to construct the network. Motif enrichment for the correlated and up-regulated 

TF genes and edges were identified as described above.

List of used position weight matrices—A description of how the motifs were curated 

can be found in the legend of Table S2.

Data availability statement

Raw data have been deposited at GEO under the accession number GSE108316. Processed 

data are available from our Data server (see URL section)
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Refer to Web version on PubMed Central for supplementary material.
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Editorial Summary

Integrated analysis of transcriptome, open chromatin region and chromatin conformation 

capture data from Acute Myeloid Leukemia patients with defined transcription factor and 

signaling molecule mutations provides insights into subtype-specific regulatory network 

in AML.
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Figure 1. Different types of AML adopt unique transcriptome and chromatin landscapes.
(a) Experimental strategy. (b) UCSC Genome browser tracks of DNaseI-seq mapping in 

purified AML cells. (c) Hierarchical clustering of Pearson correlation coefficients of DNaseI 

accessible sequences from all patient samples with normalized read counts of DNaseI-Seq 

data for the different classes of mutations (left panel), right panel: list of mutations in cells 

from each patient
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Figure 2. AML-specifically active cis-regulatory elements cluster into common and unique 
chromatin landscapes.
(a) Heatmap depicting unsupervised K-mean clustering of the DNaseI-Seq log2 signals seen 

in each AML specific distal DHS peak in each AML sample compared to PBSCs. Clustering 

was done only on rows (DHS peaks) while samples were ranked based on the clustering in 

Fig, 1c. The diagram on top of the heatmap shows the DHS peak population used for 

clustering. (b) Binary heatmap showing the overlap between the clusters from A and the 

DHSs of the 7 mutation classes which are deregulated compared to CD34+ PBSCs as 

described in Supplementary Fig 4a.
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Figure 3. AML-specifically active cis-regulatory elements display AML type-specific 
transcription factor occupancy patterns.
(a) UCSC browser screen shot of the MDFI locus zooming in on an AML type-specific DHS 

(box) with occupied NFI, ETS and RUNX sites. (b) Heatmap depicting the degree of motif 

enrichment after hierarchical clustering of motif occupancy in each of the 20 AML DHS 

clusters. Enrichment score was calculated by the level of motif enrichment in all the 

footprints of all high read-depth samples for each cluster, as compared to union of footprints 

in all experiments.
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Figure 4. AML cells show occupied motif patterns unrelated to normal progenitor cells.
Enrichment analysis of footprinted motifs in AML subgroups which overlap with ATAC-Seq 

peaks present in precursor cells25. The bars with the colour code above the heatmap reflect 

the type of mutation and the order of the different patients is depicted in the enlarged panel 

above the colour bars. Additional explanations are provided in Supplementary methods.
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Figure 5. Capture HiC shows differences in locus-specific cis-regulatory interactions between 
different types of AML and normal cells.
(a) Percentage of up- and down-regulated genes with differential interactions from the FLT3-

ITD and the t(8;21) compared to CD34+ PBSCs. The bar figure shows also the percentage of 

the common genes for the FLT3-ITD and the t(8;21), the number of differentially expressed 

genes (DEG) is shown on top of each bar. (b) Flow diagram showing the steps for 

identification of differential interactions and the downstream analysis. (c) Top enriched GO 

terms for the up-regulated genes of the FLT3-ITD compared to CD34+ PBSCs as outlined in 

(a). (d) Network diagram of top KEGG pathways for the up-regulated genes of the FLT3-
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ITD compared to CD34+ PBSCs as outlined in (a). (e) Top enriched GO terms for the up-

regulated genes of the t(8;21) compared to to CD34+ PBSCs shown as outlined in (a) 

Network diagram of top KEGG pathways for the up-regulated genes of the t(8;21) compared 

to CD34+ PBSCs as outlined in (b). (h): Percentage of RUNX1-ETO and RUNX1 targets 

amongst up-regulated genes with differential interactions, the exact number of genes is 

shown above the bars.
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Figure 6. Identification of transcription factor networks driving the expression of AML type-
specific up-regulated TF genes
(a) Outline of analysis strategy. (b) t(8;21)-specific TF network, (c) CEBPA(x2)-specific TF, 

(d) Inv(16) specific TF network, (e) Mutant RUNX1-specific TF network, (f) FLT3-ITD/

NPM1 specific TF network, (g) NPM1-specific TF network

Factor families binding to the same motif as shown in Supplementary table 2 form a node 

contained within a circle. Arrows going outwards from the entire node highlight footprinted 

motifs in individual genes generated by any member of this factor family whereby the 

footprint was annotated to the gene using the CHiC data where possible, otherwise to the 
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nearest gene. For selected nodes, the name of the underlying motif is highlighted in large 

letters. The expression level (FKPM) for the individual genes is depicted in white (low)/red 

(high) colour. An orange smooth ring around the circle indicates that this gene is specifically 

up-regulated in this type of AML compared to CD34+ PBSCs and/or other AML types, a 

dotted circle indicates a gene that is up-regulated as compared to CD34+ cells. Genes 

without outgoing arrows due to a lack of know binding motifs are highlighted by their 

octagon shapes.
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Figure 7. Identification of AML type-specific TFs required for maintaining leukemic growth and 
colony forming ability.
(a - c) Scatter plot showing the growth curves of (a) Kasumi-1 cells after transduction with 

shPOU4F1 or (c) shNFIX and (b) of MV4-11 cells after transduction with shNFIX. (d, e) 

Dot plot showing the number of colonies formed by a FLT3-ITD+ primary AML cell 

samples (d) or PBSCs (e) after transduction with shRNA targeting FOXC1, NFIX or a 

mismatch control. (f) Scatter plot showing the growth curve of Kasumi-1 cells transduced 

with either a doxycycline-inducible dnFOS or an empty vector control with and without 1.5 

mcg/ml doxycycline. (g) Dot plots showing the growth curve of MV4-11 cells transduced 
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with either a doxycycline-inducible dnFOS or an empty vector control (right panel) with and 

without 1.5 μg/ml doxycycline. (h,i) The expression of a dnFOS causes a reduction in the 

colony forming ability of CD34+ FLT3-ITD+ primary AML cells (H) but not CD34+ PBSCs 

(i (j) Granulosarcoma formation in RG mice by Kasumi-1 expressing a doxycycline-

inducible dnFOS. dnFOS was induced by intraperitoneal injection of doxycycline. (k) 

Survival curve for RG mice transplanted with MV4-11 cells expressing doxycycline-

inducible dnFOS. The induction of dnFOS significantly increased the survival time of mice.

Significance in all experiments was tested using a two-tailed Student’s t-test (n=3) with * 

p<0.05, **p<0.01 in both samples compared to the mismatch control where indicated. Error 

bars show standard error of the mean. Further detail on statistical analysis can be found in 

Online Methods.
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