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In Parkinson’s disease, the excess of beta oscillations in cortical-basal ganglia (BG) circuits has been correlated with normal
movement suppression. In this paper, a physiologically based resonance model, generalizing an earlier model of the STN-GPe
circuit, is employed to analyze critical dynamics of the occurrence of beta oscillations, which correspond to Hopf bifurcation.
With the experimentally measured parameters, conditions for the occurrence of Hopf bifurcation with time delay are deduced
by means of linear stability analysis, center manifold theorem, and normal form analysis. It is found that beta oscillations can be
induced by increasing synaptic transmission delay. Furthermore, it is revealed that the oscillations originate from interaction
among different synaptic connections. Our analytical results are consistent with the previous experimental and simulating
findings, thus may provide a more systematic insight into the mechanisms underlying the transient beta bursts.

1. Introduction

Parkinson’s disease ranks as the second most common neuro-
degenerative disorder after Alzheimer’s disease [1–3]. Accord-
ing to data from the Parkinson’s Foundation [4], more than 10
million people worldwide are suffering from the typical motor
symptoms including bradykinesia, muscular rigidity, rest
tremor, and postural and gait impairment, as well as nonmo-
tor impairment such as mood and sleep disorders, cognitive
decline, urinary symptoms, and incontinence [5, 6]. With an
incidence ranging from 10–18 per 100000 person years [5],
the health of increasingly individuals is debilitated.

A commonly acknowledged opinion is that these symp-
toms are associated with the degeneration of dopaminergic
neurons in the substantia nigra par compacta, which releases
the neurotransmitter dopamine to the basal ganglia [7]. Par-
ticularly, excessive beta oscillations (13-30Hz) have been
observed in the local field potential recording from the basal
ganglia of Parkinson patients with symptom severity [6–9].
The magnitude of beta oscillations is even related to the
severity and degree of bradykinetic or akinetic motor symp-
toms and rigidity [10, 11]. Some motor symptoms can be

ameliorated by suppressing these oscillations by deep brain
stimulation (DBS) or dopaminergic medications [12–14].
The recent clinical findings are persuading more attention
to deeply explore the mechanisms of beta oscillations associ-
ated with Parkinson’s disease.

Several computational models have been proposed to elu-
cidate the generation of pathologically exaggerated beta oscil-
lations in Parkinson’s disease [15–21]. With focus on the
subthalamic nucleus-globus pallidus circuit, Holgado et al.
developed a mean-field model and suggested that beta oscilla-
tions observed in the basal ganglia arise due to interactions of
two nuclei: the subthalamic nucleus (STN) and the globus pal-
lidus pars externa (GPe) [15]. They also found that the Hopf
bifurcation can occur when increasing the synaptic weights
from healthy to Parkinsonian regimes. Hu et al. [17] used an
improved network model consisting of two STN populations
and one GP population. Some recent experiments evidenced
that in addition to the STN-GP loop, the motor cortex also
plays a critical role in the generation of pathological beta oscil-
lations in Parkinson’s disease [10, 13, 22, 23]. Pavlides et al.
[24] thus proposed a cortex-subthalamic nucleus-globus palli-
dus model, with the excitatory and inhibitory neuronal
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populations of the cortex taken into account, and successfully
reproduced the beta oscillations in the experimental observa-
tion by Tachibana et al. [25]. Since it was proposed under
the hypothesis that beta oscillations are generated in the motor
cortex, and the basal ganglia resonate to the cortical input, the
cortex-subthalamic nucleus-globus pallidus model is also
called as resonance model. For brevity, we refer to it as the res-
onance model from now on.

Note that the resonance model is mainly explored by data
fitting and parameter identification [24], thus the fundamen-
tal dynamical mechanism by which the beta oscillation is
generated has not been disclosed. According to the research
with the STN-GP circuit [16], it was found that Hopf bifurca-
tion can induce the pathologically exaggerated beta oscilla-
tions. Thus, we wonder whether this is still the dynamical
mechanism for the resonance model. We also note that syn-
aptic transmission, the biological process by which a neuron
communicates with a target cell across a synapse, always
plays a critical part in the neuronal activity [3, 26]. For
instance, blocking excitatory synaptic transmission could
decrease neural firing and reveal spontaneous firing [26]. In
particular, experimental evidence suggests that the loss of
dopamine in Parkinson’s disease could influence dendritic
excitability [27]. Recent model investigations [16, 17, 26] fur-
ther highlighted that higher synaptic transmission delays and
strong synaptic connections between STN and GP popula-
tions are beneficial for promoting beta-frequency activity.
Therefore, in the present study, we aim to validate the Hopf
bifurcation mechanism of the pathological beta oscillation
in the resonance model based on the normal form theory,
using synaptic transmission delay and synaptic connection
weight as bifurcation parameters.

2. Materials and Methods

2.1. The Model and Existence of Hopf Bifurcation. We begin
with a review of the resonance model proposed by Alex Pav-
lides et al. [24], which investigated the cortico-basal–
gangalia-thalamic circuit as depicted in Figure 1(a). Themodel
includes two circuits, one composed of interconnected neural
populations in STN and GPe, and another composed of excit-
atory and inhibitory neurons in the cortex. Moreover, the
excitatory cortical neurons project excitatory glutamatergic
axons to STN. The model is described by a continuum
mean-field approach, given by

τSS′ = FS wCSE t − TCSð Þ −wGSG t − TGSð Þð Þ − S tð Þ,

τGG′ = FG wSGS t − TSGð Þ −wGGG t − TGGð Þ − Strð Þ −G tð Þ,

τEE′ = FE −wCCI t − TCCð Þ + Cð Þ − E tð Þ,

τII ′ = FI wCCE t − TCCð Þð Þ − I tð Þ, ð1Þ

where SðtÞ, GðtÞ, EðtÞ, and IðtÞ are the firing rates of STN,
GPe, excitatory, and inhibitory populations, respectively. Str
denotes the constant inhibitory input from striatum to GPe,
and C denotes the constant component of extrinsic and intrin-

sic excitatory input to cortical excitatory neurons. The param-
eters Tij and wij represent transmission delay and connection
weight, respectively. Here, the subscript i indicates the popula-
tion from which the signal originates, and the subscript j indi-
cates where the signal is received. τx denotes the membrane
time constants for population x, describing how rapidly the
population reacts to its inputs. Notice that the “resonance” is
mainly reflected in the hypothesis that the oscillations in basal
ganglia resonate to the excitatory cortical input.

The terms FXðX = S,G, E, IÞ are the sigmoid activation
functions expressing the relationship between firing rate
and synaptic input, shown as follows

FX inð Þ = MX

1 + MX − BXð Þ/BXð Þ exp −4in/MXð Þ , X = S,G, E, Ið Þ:

ð2Þ

Here, the constantMX is the maximum firing rate of popula-
tion X, and BX is the firing rate in the absence of the synaptic
input. The curves of these activation functions and their
derivatives are shown in Figures 1(b) and 1(c), respectively.

The values of all parameters in this paper, except for the
transmission delay and connection weights, are summarized
in Table 1. It is noteworthy that these values could be esti-
mated directly on the basis of experimental data, more details
could be found in Ref. [24].

It is well known that one of the classical mechanism for
occurring oscillations is the Hopf bifurcation, in which the
attractive limit cycle and asymptotically stable equilibrium
point could transform as parameters change. And these two
states correspond to the Parkinsonian and healthy state in
the STN-GPe model, respectively. Thus, we will investigate
the conditions for Hopf bifurcation of the resonance model
here. Since the model is difficult to analyze mathematically,
we make two simplifications: (i) the membrane time con-
stants τXðX = S,G, E, IÞ were taken to have an average value
of τ = 10ms; (ii) all transmission delays were taken to be
equal, denoted by the single variable T . Then, we could get
the following system:

τS′ = FS wCSE t − Tð Þ −wGSG t − Tð Þð Þ − S tð Þ,

τG′ = FG wSGS t − Tð Þ −wGGG t − Tð Þ − Strð Þ −G tð Þ,

τE′ = FE −wCCI t − Tð Þ + Cð Þ − E tð Þ,

τI ′ = FI wCCE t − Tð Þð Þ − I tð Þ: ð3Þ

denoting the equilibrium point of the system as u0 =
ðS∗,G∗, E∗, I∗ÞT , and the model (3) around the equilibrium
point can be formally rewritten into

du
dt

= B1u tð Þ + B2u t − Tð Þ + f u t − Tð Þð Þ, ð4Þ

with uðtÞ = ðSðtÞ − S∗,GðtÞ − G∗, EðtÞ − E∗, IðtÞ − I∗ÞT .
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Here, f = ð f S, f G, f E, f IÞT is deduced from the higher-order
terms of the vector field and B1 = −ð1/τÞI4×4

B2 =

0 a12 a13 0
a21 a22 0 0
0 0 0 a34

0 0 a43 0

2
666664

3
777775, ð5Þ

with

a12 =
4S∗2wGS

τM2
S

−
4S∗wGS

τMS
, a13 =

−4S∗2wCS

τM2
S

+ 4S∗wCS

τMS
,

a21 =
−4G∗2wSG

τM2
G

+ 4G∗wSG

τMG
, a22 =

4G∗2wGG

τM2
G

−
4G∗wGG

τMG
,

a34 =
4E∗2wCC

τM2
E

−
4E∗wCC

τME
, a43 =

−4I∗2wCC

τM2
I

+ 4I∗wCC

τMI
:

ð6Þ

For the linearized system du/dt = B1uðtÞ + B2uðt − TÞ,
the characteristic equation is given by
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Figure 1: (a) Connectivity in the cortical-basal-ganglia-thalamic circuit in the resonance model. This model includes sigmoid functions for
STN, GPe, excitatory, and inhibitory populations, which describe the input-output relationship of neurons in the populations as shown in
Figure 1(b). Here, wij and Tij denote the connection strength and synaptic delay between neural populations i and j, respectively. The
arrows represent the excitatory input, and the solid points represent the inhibitory input. (b) Output from the activation function FXðinÞð
X = S,G, E, IÞ, given by Eq. (2). (c) Derivatives of the activation function from Figure 1(b).

Δ λð Þ =

λ + 1/τ −a12 exp −λTð Þ −a13 exp −λTð Þ 0
−a21 exp −λTð Þ λ + 1/τ − a22 exp −λTð Þ 0 0

0 0 λ + 1/τ −a34 exp −λTð Þ
0 0 −a43 exp −λTð Þ λ + 1/τ

�����������

�����������
= Δ1 λð ÞΔ2 λð Þ= 0, ð7Þ
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where

Δ1 λð Þ = λ + 1/τð Þ2 − λ + 1/τð Þa22 exp −λTð Þ
− a12a21 exp −2λTð Þ,

Δ2 λð Þ = λ + 1
τ

� �2
− a34a43 exp −2λTð Þ ð8Þ

represent filtering that occurs when a signal gets through the
STN-GPe loop and the cortical excitatory-inhibitory loop,
respectively. Thus, the linear instability for Hopf bifurcation
can be induced by resonance in filter of the STN-GPe loop or
cortical excitatory-inhibitory loop.

As well known, if Eq. (7) has a pair of purely imaginary
roots ±iωðω > 0Þ, the stability should be changed, and a Hopf
bifurcation may occurs. So, we consider Δ1ðiωÞ = 0 and Δ2ði
ωÞ = 0 next.

(i) Suppose that λ = iωðω > 0Þ is a root of Δ1ðλÞ, i.e.,

Δ1 λð Þ exp λTð Þ = −iωa22 −
a22
τ

+ −ω2 + 1
τ2

+ i
2ω
τ

� �
� cos ωT + i sin ωTð Þ − a12a21
� cos ωT − i sin ωTð Þ = 0:

ð9Þ

Separating real parts and imaginary parts of Eq. (9), one
can obtain

−ω2 + 1
τ2

� �
sin ωT + 2ω

τ
cos ωT = ωa22 − a12a21 sin ωT ,

−ω2 + 1
τ2

� �
cos ωT −

2ω
τ

sin ωT = a22
τ

+ a12a21 cos ωT:

ð10Þ

Then, one can further obtain

sin ωT = −a22τ4ω3 − τ2a22 + τ4a12a21a22
� �

ω

τ4ω4 + 2τ2ω2 + 1 − τ4a212a
2
21

, ð11Þ

cos ωT = a22τ
3ω2 + τa22 + τ3a12a21a22

τ4ω4 + 2τ2ω2 + 1 − τ4a212a
2
21

: ð12Þ

According to Eqs. (11) and (12) and sin2ðωTÞ + cos2ðω
TÞ = 1, we have

ω8 + k1ω
6 + k2ω

4 + k3ω
2 + k4 = 0, ð13Þ

where

k1 = 4/τ2 − a222,

k2 =
6
τ4

−
3a222
τ2

− 2a12a21 a12a21 + a222
� �

,

k3 =
4
τ6

−
3a222
τ4

−
4a12a21 a12a21 + a222

� �
τ2

− a12a21a22ð Þ2,

k4 =
1
τ8

−
a222
τ6

−
2a12a21 a12a21 + a222

� �
τ4

−
a12a21a22ð Þ2

τ2
+ a12a21ð Þ4:

ð14Þ

Let z = ω2, then Eq. (13) becomes

z4 + k1z
3 + k2z

2 + k3z + k4 = 0: ð15Þ

Here, we give the following assumption (H1). Eq. (15)
has at least one positive root. Without loss of generality, we
assume that it has four positive roots, denoting by zk, ðk = 1
, 2,⋯,4Þ. Then, Eq. (13) has four positive roots as well,
namely, ωk =

ffiffiffiffi
zk

p , ðk = 1, 2,⋯,4Þ. According to Eq. (12), we
can get the corresponding critical value of time delay

T j
k =

1
ωk

arccos a22τ
3ω2

k + τa22 + τ3a12a21a22
τ4ω4

k + 2τ2ω2
k + 1 − τ4a212a

2
21

+ 2jπ
ωk

, k = 1, 2, 3, 4; j = 0, 1, 2,⋯
ð16Þ

Then ±iωk is a pair of purely imaginary roots of Eq. (7)
with T j

k.

(ii) Suppose that λ = iωðω > 0Þ is a root of Δ2ðλÞ, i.e.,

ω4 + 2ω2

τ2
+ 1
τ4

− a34a43ð Þ2 = 0: ð17Þ

So, we know that ω =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−a34a43 − 1/τ2

p
and the corre-

sponding time delay are

T j
5 =

−1
2ω arcsin 2ω

τa34a43
+ jπ

ω
, j = 0, 1, 2,⋯ ð18Þ

Finally, let the critical time delay as T0 = min
k=f1,2,3,4,5g

fT j
kg

and the corresponding purely imaginary roots as ±iω0.
Next, we need to verify the transversality condition.

Differentiating the two sides of Eq. (7) on time delay, we

Table 1: The parameter values used in this paper.

Parameter Value Parameter Value

τS 12.8ms τG 20ms

τE 10—20ms τI 10—20ms

BS 10 spk/s BG 20 spk/s

BE 0—20 spk/s BI 0—20 spk/s

MS 300 spk/s MG 400 spk/s

ME 50—80 spk/s MI 20—330 spk/s

Str 40.51 spk/s C 277.94 spk/s
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have

dλ
dT

� 	−1
= −

d1Δ1 λð Þ + d2Δ2 λð Þ
d3Δ1 λð Þ + d4Δ2 λð Þ , ð19Þ

where

d1 = 2 λ + 1/τ + Ta34a43 exp −2λTð Þð Þ,
d2 = 2 λ + 1/τð Þ + a22 exp −λTð Þ Tλ + T/τ − 1ð Þ + 2Ta12a21 exp −2λTð Þ,
d3 = 2λa34a43 exp −2λTð Þ,
d4 = λ λ + 1/τð Þa22 exp −λTð Þ + 2λa12a21 exp −2λTð Þ:

ð20Þ

Thus,

Re dλ
dT

� �−1

λ=iω0

( )
= −

PRQR + PIQI

Q2
R +Q2

I

, ð21Þ

with

PR = −d1IΔ1I + d1RΔ1R − d2IΔ2I + d2RΔ2R,

PI = d1IΔ1R + d1RΔ1I + d2IΔ2R + d2RΔ2I,

QR = −d3IΔ1I + d3RΔ1R − d4IΔ2I + d4RΔ2R,

QI = d3IΔ1R + d3RΔ1I + d4IΔ2R + d4RΔ2I,

d1I = 2ω0 − 2Ta34a43 sin 2ω0Tð Þ, d1R
= 2/τ + 2Ta34a43 cos 2ω0Tð Þ,

d2I = 2ω0 + Ta22ω0 cos ω0Tð Þ − a22 T/τ − 1ð Þ sin ω0Tð Þ
− 2Ta12a21 sin 2ω0Tð Þ,

d2R = 2/τ + Ta22ω0 sin ω0Tð Þ + a22 T/τ − 1ð Þ cos ω0Tð Þ
+ 2Ta12a21 cos 2ω0Tð Þ,

d3I = 2ω0a34a43 cos 2ω0Tð Þ, d3R = 2ω0a34a43 sin 2ω0Tð Þ,

d4I =
ω0a22
τ

cos ω0Tð Þ + ω2
0a22 sin ω0Tð Þ

+ 2ω0a12a21 cos 2ω0Tð Þ,

d4R = −ω2
0a22 cos ω0Tð Þ + ω0a22

τ
sin ω0Tð Þ

+ 2ω0a12a21 sin 2ω0Tð Þ,

Δ1I =
2ω0
τ

− ω0a22 cos ω0Tð Þ + a22
τ

sin ω0Tð Þ
+ a12a21 sin 2ω0Tð Þ,

Δ1R = −ω2
0 +

1
τ2

− ω0a22 sin ω0Tð Þ − a22
τ

cos ω0Tð Þ
− a12a21 cos 2ω0Tð Þ,

Δ2I =
2ω0
τ

+ a34a43 sin 2ω0Tð Þ, Δ2R

= −ω2
0 +

1
τ2

− a34a43 cos 2ω0Tð Þ:
ð22Þ

Therefore, if (H2) PRQR + PIQI ≠ 0 holds, Re f
ðdλ/dTÞ−1λ=iω0

g ≠ 0, the transversality condition for Hopf
bifurcation is satisfied.

On the other hand, we need to prove that the remaining
roots of Eq. (7) have strictly negative real parts. The following
Lemma is used.

Lemma 1. [28, 29]. Consider the exponential polynomial

p λ, e−λτ1 ,⋯e−λτm

 �

= λn + p1
0ð Þλn−1+⋯pn−1

0ð Þλ + pn
0ð Þ

+ p1
1ð Þλn−1+⋯pn−1

1ð Þλ + pn
1ð Þ

h i
e−λτ1+⋯

+ p1
mð Þλn−1+⋯pn−1

mð Þλ + pn
mð Þ

h i
e−λτm ,

ð23Þ

where τi ≥ 0ði = 1,⋯,mÞ and pðiÞj ðj = 1,⋯,n ; i = 1,⋯,mÞ are
constants. As ðτ1, τ2,⋯τmÞ varies, the sum of orders of the
zeros of pðλ, e−λτ1 ,⋯e−λτmÞ in the open right half plane can
change only if a zero appears on or crosses the imaginary axis.

For T = 0, Eq. (7) becomes

λ4 + d3λ
3 + d2λ

2 + d1λ + d0 = 0, ð24Þ

with

d0 = 1/τ4 − a22/τ3 − a12a21 + a34a43ð Þ/τ2 − a22a34a43/τ + a12a21a34a43,

d1 = 4/τ3 − 3a22/τ2 − 2 a12a21 + a34a43ð Þ/τ + a22a34a43,

d2 = 4/τ2 − 3a22/τ − a12a21 + a34a43ð Þ,

d3 = 4/τ − a22: ð25Þ

By the Routh–Hurwitz criterion, we know all roots of Eq.
(24) have negative real parts if the following condition holds

H3ð Þdi > 0 i = 0, 1,⋯3ð Þ,
d3d2 > d1,

d3d2d1 > d21 + d23d0:

ð26Þ

Through the analysis above, we have if the conditions
(H1)-(H3) hold, system (3) undergoes a Hopf bifurcation at
the equilibrium u0 when transmission delay T = T0.
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2.2. Direction and Stability of the Hopf Bifurcation. In Section
2.1, we have studied the condition for Hopf bifurcation
occurring. However, how the system advances towards the
parkinsonian state by Hopf bifurcation is not clear. In order
to further study the relationship between Hopf bifurcation
and the pathological beta oscillation, we turn to the center
manifold theorem and normal form method to judge the
direction of Hopf bifurcation and the stability of bifurcation
periodic solutions at a critical value T0. At first, let vðtÞ = uð
TtÞ,T = T0 + μ, μ ∈ R, then the system (4) can be transformed
into the following form

_v tð Þ = Lμ vtð Þ + F μ, vtð Þ, ð27Þ

where Lμ : C⟶ R4, F : R × C⟶ R4are given by

Lμ vtð Þ = T0 + μð Þ B1 vt 0ð Þð Þ + B2 vt −1ð Þð Þ½ �,

F μ, vtð Þ = T0 + μð Þf vt −1ð Þð Þ
= T0 + μð Þ f2 vt −1ð Þð Þ + f3 vt −1ð Þð Þð Þ, ð28Þ

with

By the Riesz representation theorem, there exists a func-
tion ηðθ, μÞ, θ ∈ ½−1, 0�, such that

Lμ φð Þ =
ð0
−1
dη θ, μð Þφ θð Þ, φ ∈ C: ð33Þ

In fact, we can choose ηðθ, μÞ = ðT0 + μÞ½B1δðθÞ + B2δðθ
+ 1Þ�, where δðθÞ is the Dirac delta function, i.e.,

δ θð Þ =
1, θ = 0
0, θ ≠ 0

(
: ð34Þ

For φ ∈ C1ð½−1, 0�, R4Þ,, we define

A μð Þφ =

dφ
dθ

, −1 ≤ θ < 0
ð0
−1
dη θ, μð Þφ θð Þ, θ = 0

8>>><
>>>:

, ð35Þ

R μð Þφ =
0, −1 ≤ θ < 0
F μ, φð Þ, θ = 0

(
: ð36Þ

Then, the system (27) can be transformed into the follow-
ing operator equation:

_v tð Þ = A μð Þvt + R μð Þvt: ð37Þ

f2 vt −1ð Þð Þ = f2S, f2G, f2E, f2Ið ÞT

=

cS w2
GSv

2
2 t − 1ð Þ +w2

CSv
2
3 t − 1ð Þ − 2wGSwCSv2 t − 1ð Þv3 t − 1ð Þ� �

cG w2
SGv

2
1 t − 1ð Þ +w2

GGv
2
2 t − 1ð Þ − 2wSGwGGv1 t − 1ð Þv2 t − 1ð Þ� �
cEw

2
CCv

2
4 t − 1ð Þ

cIw
2
CCv

2
3 t − 1ð Þ

0
BBBBBBB@

1
CCCCCCCA
,

ð29Þ

f3 vt −1ð Þð Þ = f3S, f3G, f3E, f3Ið ÞT

=

eS w3
CSv

3
3 t − 1ð Þ −w3

GSv
3
2 t − 1ð Þ + 3w2

CSwGSv
2
3 t − 1ð Þv2 t − 1ð Þ − 3w2

GSwCSv
2
2 t − 1ð Þv3 t − 1ð Þ� �

eG w3
SGv

3
1 t − 1ð Þ −w3

GGv
3
2 t − 1ð Þ + 3w2

SGwGGv
2
1 t − 1ð Þv2 t − 1ð Þ − 3w2

GGwSGv
2
2 t − 1ð Þv1 t − 1ð Þ� �

−eEw
3
CCv

3
4 t − 1ð Þ

eIw
3
CCv

3
3 t − 1ð Þ

0
BBBBBBB@

1
CCCCCCCA
,

ð30Þ

cX = −8X∗ MX − X∗ð Þ 2X∗ −MXð Þ
τM4

X

, ð31Þ

eX = 32X∗ MX − X∗ð Þ M2
X + 6X∗2 − 6MXX

∗� �
3τM6

X

  X = S,G, E, Ið Þ: ð32Þ
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The adjoint operator A∗ of A is given by

A∗ μð Þψ =
−
dψ
ds

, 0 ≤ s < 1
ð0
−1
dηT s, μð Þψ −sð Þ, s = 0

8>>><
>>>:

: ð38Þ

According to the discussion in Section 2.1, we know that
±iω0T0 are eigenvalues of Að0Þ and A∗ð0Þ, let qðθÞ =
ð1, χ, β, γÞTeiT0ω0θð−1 < θ ≤ 0Þ be the eigenvectors of Að0Þ
corresponding to eigenvalue iω0T0,
andq∗ðsÞ = ð1/ρÞð1, χ∗, β∗, γ∗ÞTeiT0ω0sð0 ≤ s < 1Þ be the
eigenvectors of A∗ð0Þ corresponding to the eigenvalue −iω0
T0. With a simple computation, we can obtain

χ = a21e
−iω0T0

iω0 + 1/τ − a22e−iω0T0
,

β = 1/τ + iω0
a13e−iω0T0

−
a12a21e

−iω0T0

a13 1/τ + iω0 − a22e−iω0T0ð Þ ,

γ = a43
a13

−
a12a21a43e

−2iω0T0

a13 1/τ + iω0ð Þ 1/τ + iω0 − a22e−iω0T0ð Þ ,

χ∗ = −iω0 + 1/τ
a21eiω0T0

,

β∗ = −iω0 + 1/τð Þa13eiω0T0

−iω0 + 1/τð Þ2 − a34a43e2iω0T0
,

γ∗ = a34a13e
2iω0T0

−iω0 + 1/τð Þ2 − a34a43e2iω0T0
: ð39Þ

And from the definition of the bilinear inner product

ψ sð Þ, φ θð Þh i = �ψ 0ð Þφ 0ð Þ −
ð0
θ=−1

ðθ
ξ=0

�ψ ξ − θð Þdη θ, 0ð Þφ ξð Þdξ,

ð40Þ

we have

�ρ = 1 + χ�χ∗ + β�β
∗ + γ�γ∗


 �
+ T0e

−iω0T0

� a21�χ
∗ + a12 + a22�χ

∗ð Þχ + a13 + a43�γ
∗ð Þβ + a34�β

∗
γ


 �
,

ð41Þ

such that hq∗, qi = 1, hq∗, �qi = 0.
In the following, we use the center manifold theorem to sim-

plify the system. Note that at the Hopf bifurcation point, the cor-
responding linear system has a pair of pure imaginary
eigenvalues λ = ±iω0, and all other eigenvalues have strictly neg-
ative real parts. So the whole infinite-dimensional state space C
could be decomposed into two complementary subspaces,
namely, C = EC + ES [30, 31]. Here, EC is the two-dimensional
subspace spanned by the eigenvectors corresponding to ±iω0,

termed the center eigenspace. And ES corresponds to the sub-
space complementary to EC, in which the real part of all eigen-
values is negative. Then, based on the center manifold theorem,
there exist a two-dimensional center manifold C0, and the
dynamical flow of the system (24) on it can be transformed into

vt θð Þ = q θð Þz tð Þ + �q θð Þ�z tð Þ +W z tð Þ, �z tð Þð Þ, ð42Þ

with

z tð Þ = q∗ θð Þ, vth i,

W z tð Þ, �z tð Þð Þ = vt θð Þ − z tð Þq θð Þ − �z tð Þ�q θð Þ
= vt θð Þ − 2 Re z tð Þq θð Þð Þ, ð43Þ

where z is the local coordinate for C0 in the direction of q for the
solution of Eq.(35), satisfying

_z tð Þ = q∗ θð Þ, _vth i
= q∗ θð Þ, A μð Þvt + R μð Þvth i
= iT0ω0z + �q∗ 0ð ÞF 0,W t, 0ð Þ + 2 Re z tð Þq 0ð Þ½ �ð Þ,

ð44Þ

andWðzðtÞ, �zðtÞÞ is the nonlinear map from EC to ES with

W z tð Þ, �z tð Þð Þ =W20 θð Þ z
2

2 +W11 θð Þz�z +W02 θð Þ�z
2

2 +⋯:

ð45Þ

Thus, our system in the ðz,WÞ plane reads

_z tð Þ = iT0ω0z + g z, �zð Þ
_W tð Þ = AW +H z, �zð Þ

(
, ð46Þ

with

g z, �zð Þ = q∗ θð Þ, R μð Þvth i
= �q∗ 0ð ÞF 0,W t, 0ð Þ + 2 Re z tð Þq 0ð Þ½ �ð Þ,

H z, �zð Þ = F 0, qz + �q�z +Wð Þ − q∗, F 0, qz + �q�z +Wð Þh iq
− �q∗, F 0, qz + �q�z +Wð Þh i�q:

ð47Þ

Then, we apply the normal form theory to deduce the Poin-
care normal form for the Hopf bifurcation, i.e.,

_ξ = iω0ξ + c1 0ð Þξ ξj j2 + o ξj j3

 �

, ð48Þ

where oðjξj3Þ represents all terms of fourth and higher order in
jξj, and

c1 0ð Þ = i
2ω0

g20g11 − 2 g11j j2 − g02j j2
3

� 	
+ g21

2 , ð49Þ
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where gijði + j = 2Þ and g21 can be explicitly determined. Let us
rewrite gðz, �z,WÞ as follows:

g z, �z,Wð Þ = g20
z2

2 + g11z�z + g02
�z2

2 + g21
z2�z
2 + o zj j3� �

,

ð50Þ

with the term oðjzj3Þ including all terms of fourth and higher
order in jzj; then, the calculation of gijði + j = 2Þ is
straightforward.

By keeping Fð0, vtÞ = f2ðvtð−1ÞÞ and inserting vtðθÞ = qð
θÞzðtÞ + �qðθÞ�zðtÞ in Eq. (29), we get

g20 =
∂2g 0, 0ð Þ

∂z2
= T0

�ρ

∂2 f2S
∂z2

+ �χ∗ ∂
2 f2G
∂z2

+ �β
∗ ∂2 f2E
∂z2

+ �γ∗
∂2 f2I
∂z2

 !
,

g02 =
∂2g 0, 0ð Þ

∂�z2
= T0

�ρ

∂2 f2S
∂�z2

+ �χ∗ ∂
2 f2G
∂�z2

+ �β
∗ ∂2 f2E
∂�z2

+ �γ∗
∂2 f2I
∂�z2

 !
,

g11 =
∂2g 0, 0ð Þ
∂z∂�z

= T0
�ρ

∂2 f2S
∂z∂�z

+ �χ∗ ∂
2 f2G
∂z∂�z

+ �β
∗ ∂2 f2E
∂z∂�z

+ �γ∗
∂2 f2I
∂z∂�z

 !
,

ð51Þ

where

∂2 f2S
∂z2

= 2cSe−2iT0ω0 χ2w2
GS + β2w2

CS − 2χβwGSwCS

� �
,

∂2 f2G
∂z2

= 2cGe−2iT0ω0 w2
SG + χ2w2

GG − 2χwSGwGG

� �
,

∂2 f2E
∂z2

= 2cEw2
CCγ

2e−2iT0ω0 ,

∂2 f2I
∂z2

= 2cIw2
CCβ

2e−2iT0ω0 ,

∂2 f2X
∂�z2

= conj
∂2 f2X
∂z2

 !
  X = S,G, E, Ið Þ,

∂2 f2S
∂z∂�z

= cS 2χ�χw2
GS + 2β�βw2

CS − χ�β + �χβ
� �

wGSwCS

� 
,

∂2 f 2G
∂z∂�z

= cG 2w2
SG + 2χ�χw2

GG − χ + �χð ÞwGSwCS

� 
,

∂2 f2E
∂z∂�z

= 2cEw2
CCγ�γ,

∂2 f2I
∂z∂�z

= 2cIw2
CCβ

�β:

ð52Þ

On the other hand, considering

g21 =
∂3g 0, 0ð Þ
∂z2∂�z

= ∂3

∂z2∂�z
q∗, f3h i + ∂3

∂z2∂�z
q∗, f2h i, ð53Þ

one can calculate g21 by two parts. The calculation of ð∂3/∂
z2∂�zÞhq∗, f3i is as straightforward as the calculation of g20.
Insertion of vtðθÞ = qðθÞzðtÞ + �qðθÞ�zðtÞ into Eq. (30) yields

∂3

∂z2∂�z
q∗, f3h i = T0

�ρ

∂3 f3Sð Þ
∂z2∂�z

+ �χ∗ ∂
3 f3Gð Þ
∂z2∂�z

 

+ �β
∗ ∂3 f3Eð Þ
∂z2∂�z

+ �γ∗
∂3 f3Ið Þ
∂z2∂�z

!
,

ð54Þ

where

∂2 f3S
∂z2∂�z

= 6eSe−iT0ω0 β2�βw3
CS − χ2�χw3

GS +w2
CSwGS

�
� 2β�βχ + β2�χ
� �

−w2
GSwCS 2χ�χβ + χ2�β

� ��
,

∂2 f3G
∂z2∂�z

= 6eGe−iT0ω0 w3
SG − χ2�χw3

GG +w2
SGwGG 2χ + �χð Þ�

−w2
GGwSG 2χ�χ + χ2� ��

,

∂2 f3E
∂z2∂�z

= −6eEe−iT0ω0γ2�γw3
CC ,

∂2 f3I
∂z2∂�z

= 6eIe−iT0ω0β2�βw3
CC: ð55Þ

The calculation of ð∂3/∂z2∂�zÞhq∗, f2i involves the map
Wðz, �zÞ from the subspace EC to its complementary subspace
ES. With the second equation of Eq. (46) in mind, Taylor
expansion of Hðz, �zÞ is as follows:

H z, �zð Þ =H20
z2

2 +H11z�z +H02
�z2

2 + o zj j2� �
, ð56Þ

and then by comparing the corresponding coefficients of Eq.
(56) and Eq. (45), we have

A − 2iT0ω0ð ÞW20 = −H20,
AW11 = −H11,

A + 2iT0ω0ð ÞW02 = −H02,
ð57Þ

whereW20ð−1Þ andW11ð−1Þ can be computed based on the
following equations, respectively.

W20ðθÞ = ðig20/T0ω0Þqð0ÞeiT0ω0θ + ði�g20/3T0ω0Þ�qð0Þe−iT0ω0θ +
E1e

2iT0ω0θ,

W11 θð Þ = −
ig11
T0ω0

q 0ð ÞeiT0ω0θ + i�g11
T0ω0

�q 0ð Þe−iT0ω0θ + E2, ð58Þ

with

8 Neural Plasticity



Then, inserting

vt θð Þ = q θð Þz tð Þ + �q θð Þ�z tð Þ + W20 θð Þ
2 z tð Þ2

+W11 θð Þz tð Þ�z tð Þ + W02 θð Þ
2 �z tð Þ2

ð60Þ

into Eq. (29) to get

∂3

∂z2∂�z
q∗, f2h i = T0

�ρ

∂3 f2Sð Þ
∂z2∂�z

+ �χ∗ ∂
3 f2Gð Þ
∂z2∂�z

 

+ �β
∗ ∂3 f2Eð Þ
∂z2∂�z

+ �γ∗
∂3 f2Ið Þ
∂z2∂�z

!
,

ð61Þ

where

∂2 f2S
∂z2∂�z

= 2cS

w2
GS 2χe−iT0ω0W 2ð Þ

11 −1ð Þ + �χeiT0ω0W 2ð Þ
20 −1ð Þ


 �
+w2

CS 2βe−iT0ω0W 3ð Þ
11 −1ð Þ + �βeiT0ω0W 3ð Þ

20 −1ð Þ

 �

−2wGSwCS χe−iT0ω0W 3ð Þ
11 −1ð Þ + βe−iT0ω0W 2ð Þ

11 −1ð Þ

 �

−wGSwCS �χeiT0ω0W 3ð Þ
20 −1ð Þ + �βeiT0ω0W 2ð Þ

20 −1ð Þ

 �

0
BBBBBBBBB@

1
CCCCCCCCCA
,

∂2 f2G
∂z2∂�z

= 2cG

w2
SG 2e−iT0ω0W 1ð Þ

11 −1ð Þ + eiT0ω0W 1ð Þ
20 −1ð Þ


 �
+w2

GG 2χe−iT0ω0W 2ð Þ
11 −1ð Þ + �χeiT0ω0W 2ð Þ

20 −1ð Þ

 �

−2wSGwGG e−iT0ω0W 2ð Þ
11 −1ð Þ + χe−iT0ω0W 1ð Þ

11 −1ð Þ

 �

−wSGwGG eiT0ω0W 2ð Þ
20 −1ð Þ + �χeiT0ω0W 1ð Þ

20 −1ð Þ

 �

0
BBBBBBBBB@

1
CCCCCCCCCA
,

∂2 f2E
∂z2∂�z

= 2cEw2
CC 2γe−iT0ω0W 4ð Þ

11 −1ð Þ + �γeiT0ω0W 4ð Þ
20 −1ð Þ


 �
,

∂2 f2I
∂z2∂�z

= 2cIw2
CC 2βe−iT0ω0W 3ð Þ

11 −1ð Þ + �βeiT0ω0W 3ð Þ
20 −1ð Þ


 �
:

ð62Þ

With gijði + j = 2Þ and g21 all available, one can obtain
c1ð0Þ as Eq. (49), and the model (3) could be transformed
into the Poincare form. Based on the results in Ref [30], the
coefficient μðεÞ which determine the exists of the periodic
solution, the period TðεÞ and the nontrivial Floquet exponent
near 0 of the periodic solution are given by

μ εð Þ = μ2ε
2 +O ε3

� �
,

T εð Þ = 2π
ω0

1 + T2ε
2� �

+O ε3
� �

,

β εð Þ = β2ε
2 +O ε3

� �
,

ð63Þ

with

μ2 = −
Re c1 0ð Þf g
Re λ′
n o ,

T2 = −
Im c1 0ð Þf g + μ2 Im λ′

n o
ω0

,

β2 = 2 Re c1 0ð Þf g:

ð64Þ

Therefore, we have the following results:

(1) The sign of μ2 determines the direction of the Hopf
bifurcation: if μ2 > 0 (μ2 < 0), the Hopf bifurcation
is supercritical (subcritical)

(2) The sign of T2 determines the period of the bifurcat-
ing periodic solutions: if T2 > 0 (T2 < 0), the period
increases (decreases)

(3) The sign of β2 determines the stability of the bifurcat-
ing periodic solutions: if β2 < 0 (β2 > 0), the bifurca-
tion periodic solutions are stable (unstable)

E1 = 2e−2iT0ω0

2iω0 + 1/τ −a12e
−2iω0T0 −a13e

−2iω0T0 0
−a21e

−2iω0T0 2iω0 + 1/τ − a22e
−2iω0T0 0 0

0 0 2iω0 + 1/τ −a34e
−2iω0T0

0 0 −a43e
−2iω0T0 2iω0 + 1/τ

0
BBBBB@

1
CCCCCA

−1 cS w2
GSχ

2 +w2
CSβ

2 − 2wGSwCSχβ
� �
cG w2

SG +w2
GGχ

2 − 2wSGwGGχ
� �

cEw
2
CCγ

2

cIw
2
CCβ

2

0
BBBBB@

1
CCCCCA,

E2 =

−1/τ a12 a13 0
a21 −1/τ + a22 0 0
0 0 −1/τ a34

0 0 a43 −1/τ

0
BBBBB@

1
CCCCCA

−1 cS w2
GS χj j2 +w2

CS βj j2 − 2wGSwCS χ�β + �χβ
� �� �

cG w2
SG +w2

GG χj j2 − 4wSGwGG Re χð Þ� �
cEw

2
CC γj j2

cIw
2
CC βj j2

0
BBBBB@

1
CCCCCA: ð59Þ
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3. Results

Synaptopathy is the earliest step in the Parkinson’s disease
cascade [32]. To clarify the effects of synaptic transmission
delay and connection strength on the onset of beta oscilla-
tions, numerical simulations are implemented with model
(3) to validate the theoretical results in the previous deduc-
tion, with comparison of analytical predictions of Hopf bifur-
cation types with the numerically calculated bifurcation
diagrams that are presented in Figures 2 - 4. For convenience,
we take the parameters from Ref. [24], that is, wSG = 2:56,
wGS = 3:22,wCC = 2:75,wCS = 6:60,wGG = 0:90, C = 277:94
and Str = 40:51: In the calculations, we distinguish between
the supercritical and subcritical Hopf bifurcation by ramping
up and ramping down the parameter across the critical point
with the Euler integration, respectively [33].

3.1. The Dependence of Oscillations on Synaptic Transmission
Delay. Experimental data suggested that synaptic transmis-
sion delay exists between different neuronal populations
[34]. And the time delay could often be a source of oscilla-
tion. Therefore, we firstly explore the dependence of oscilla-
tion onset on the transmission delay in this resonance
model. According to the analytic deduction in Section 2, we
know that Hopf bifurcation occurs at T0 = 3:6807ms, with

μ2 = 5:5252 × 10−4, β2 = −1:4874 × 10−5, and T2 = 8:6223 ×
10−6. Here, the signs of μ2, β2, and T2 imply that the Hopf
bifurcation is supercritical, the periodic solution is stable,
and the period increases with increasing time delay, respec-
tively. To confirm the theoretical results, let us resort to
Figure 2. From the bifurcation diagram (fixed points or local
minimums and maximums for each parameter point) against
transmission delay in Figure 2(a), we see that the model (3)
undergoes a supercritical Hopf bifurcation at T0 = 3:6807
ms, starting from a stable equilibrium point (Figure 2(b))
and entering into a stable limit loop (Figure 2(c)). The two
kinds of attractors are usually referred to as a healthy state
and an oscillation state, which falls into the beta band here
[16]. Moreover, as the time delay increases, the period grad-
ually becomes large. The simulated results are totally consis-
tent with the theoretical analysis, and this enables us to do
cross validation throughout Section 3, although we skip the
discussion.

Besides, from Figure 2(c), one clearly sees that beta oscilla-
tions occur in the excitatory neuronal population of cortex first,
and then the basal ganglia resonates at the same frequency.
This explains why the model (3) was called as the “resonance”
model [24]. Hence, synaptic transmission delay between neu-
ronal populations in the basal ganglia and cortex needs to be
sufficiently long to allow them to “charge” and increase their
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Figure 2: (a) Bifurcation diagram of the firing rate of the STN population SðtÞ against the transmission delay T . The critical point is consistent
with the theoretical result, as indicated by the black dashed line, where the steady state is stable at left and unstable at right. (b) Time series of
the firing rate for T = 2:5ms. (c) Time series of firing rate for T = 8:0ms. (d) The corresponding phase diagram in which the red curve
corresponds to Figure 2(b), and the blue curve corresponds to Figure 2(c).
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firing rate, which is just coincident with the results in Refs [12,
13, 17]. Figure 2(d) exhibits the corresponding phase portraits,
in which the red curve converges to a point, representing the
health state, while the blue curve converges to a limit cycle, cor-
responding to the Parkinsonian state.

3.2. The Dependence of Oscillations on Connection Weights.
Although most of the parameters in the resonance model
could be fixed based on the experimental data in Ref. [25],
the synaptic connection weights wij cannot be estimated from
experimental studies directly, which are usually estimated by
fitting the model to experimental recordings. Moreover, it is
well known that the depletion of dopamine in basal ganglia
maybe related to the synaptic connection strength [35]. As a
result, it should be interesting to explore the effect of the syn-
aptic connection strength on the generation of pathological
beta oscillation. For this purpose, let us fix the transmission
delay T = 3:6708ms and show in Figure 3 the bifurcation dia-
grams of the firing rate against wSG, which controls the
strength of the excitatory input from STN to GPe.

As shown in Figure 3, the model (3) undergoes a super-
critical Hopf bifurcation when the connection weight wSG is
changed from the healthy to the Parkinsonian parameter. A
beta oscillation of small amplitude appears after the destabi-
lization of the steady state, and the oscillation amplitude
increases as the weight wSG enlarges. Thus, pathological beta
oscillation could be significantly attenuated or restrained in
the resonance model by blocking the STN-GPe connection,
which in agreement with the experimental observation
reported in Ref. [25]. In addition, as seen from
Figures 3(a1)–(a3), the Hopf bifurcation value becomes
smaller with increasing wCS, but the mean firing rates of
STN and GPe populations get large as the weight wCS
enlarges, as shown in Figures 3(b1)–(b3). It reveals that the
excitatory input from the cortex to the subthalamic nucleus
also affects the neuronal activity in basal ganglia.

Next, we examine the impact of the connection weight
wCS, which links the STN-GPe circuit and cortical circuit,
on the beta oscillation onset. Figures 4(a1)–(a3) exhibit the
range of the firing rate of the STN population after the initial
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Figure 3: (a) Bifurcation diagrams of the firing rate of the STN population SðtÞ against the connection weightwSG and (b) time series of S and
G at critical points for three selected values of wCS ((a1)wCS = 4:0, (a2)wCS = 6:6, (a3)wCS = 10:0). The critical points are consistent with the
theoretical results, as indicated by the black dashed lines, where the steady states are stable at left and unstable at right.
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transient response as a function of the connection weightwCS
. It reveals that there are two bifurcation points appear as wCS
increases linearly, consisting with the theoretical prediction.
When the excitatory input from the cortex to STN is too
strong or too weak, the firing rates of STN and GPe converge
to stable equilibrium points. While the beta oscillations are
generated when the connection wCS lies in an moderate
region, the amplitude firstly increases and then declines until
zero. That may be the reason why blocking the excitatory
input to STN could abolish beta oscillation in STN [25]. At
the same time, it further demonstrates that the parameter
range for beta oscillations gets bigger when the connection
wSG increases. Figures 4(b1)–(b3)) depict the corresponding
time series of firing rates of STN and GPe at the left Hopf
bifurcation points, respectively.

3.3. Codimension Two Bifurcation Analysis. The above
numerical results show that the critical points for Hopf bifur-
cation in the resonance model can be influenced not only by
STN-GPe connection but also the excitatory input from the
cortex to STN. To illustrate how the beta oscillation onset

depends on both the STN-GPe and cortex-STN connection
strength, we depict the codimension-two bifurcation diagram
in Figure 5(a). It is clear that when the two-dimensional
bifurcation parameter ðwSG,wCSÞ is located in domain I, the
system converges to a stable equilibrium point, but excessive
oscillations at beta frequencies occur when the parameter is
within domain II. Hence, the system always stays at a healthy
state for small wCS or wSG. This is equally to say that the beta
oscillations cannot be generated in the single STN-GPe cir-
cuit but can originate from interaction among different neu-
ronal population circuits, which is in agreement with Ref
[24]. Therefore, blocking the connection between the STN-
GPe circuit and cortical circuit may restrain the appearance
of beta oscillation.

The codimension-two bifurcation diagram with the con-
nection weight wCS and the transmission delay T is shown in
Figure 5(b), where the parameter region is separated by the
Hopf bifurcation curve into parts: one is related with steady
firing rate and the other is about the oscillatory firing rate.
What is more, the oscillatory region can be divided into three
parts: alpha oscillation (marked as II with 8-13Hz oscillation
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Figure 4: (a) Bifurcation diagrams of the firing rate of the STN population SðtÞ against the connection weight wCSand (b) time series of S and
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frequencies), beta oscillation (III, 13-30Hz), and gamma
oscillation (IV, larger than 30Hz). With wCS = 8:0 fixed, the
variation of the nonzero oscillation frequency with transmis-
sion delay in Figure 5(c) exhibits the transition among oscil-
lations at gamma, beta, and alpha band frequency in turn,
and the firing rate directly evolves from a steady value into
the gamma oscillation, but the beta band frequency occupies
a more wide region. For intuitiveness, the firing rates of STN
and GPe with different band frequencies are exemplified in
Figure 5(d). From Figures 5(b) and 5(c), it is clear that a mod-
erate range of synaptic delay is responsible for the emergence
of beta oscillation, which contains the model parameters in
Refs. [15, 24].

4. Discussion

We have investigated critical conditions for pathological beta
oscillation onset in the resonance model based on the center
manifold theorem and normal form analysis. It is confirmed
that the model undergoes a supercritical Hopf bifurcation as
the synaptic transmission delay increases, which governs the

transitions from the healthy state to the Parkinsonian state. It
is found that a strong excitatory connection from STN to
GPe is favorable for the generation of beta oscillations, while
excessive excitatory input from cortex to STN would sup-
press beta oscillations. Particularly, the codimension-two
bifurcation diagram suggests that the beta oscillation onset
depends on the interaction of the STN-GPe circuit and
Cortex-STN synaptic connection. Our investigation has
demonstrated that a suitable transmission delay is responsi-
ble for the emergence of the beta oscillation. The investiga-
tion could be inspiring for clinical physician in treating
Parkinsonian patients.

In the near future, this study can be extended to general-
ized models with more biological conditions such as the feed-
back connection from the STN-GPe circuit to the cortex.
Note that the model of this study considers only four popula-
tions, namely, the excitatory population and the inhibitory
population of cortex, the subthalamic nucleus and globus
pallidus external segment, thus, for more insight in this
regard, one may consider the more complicated model [21]
which can take striatum and globus pallidus internal segment
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into account as well. In addition, the effect of the synaptic
plasticity and the environmental fluctuations on the onset
of beta oscillation should also be worthy to be explored.
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