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A B S T R A C T   

In this study, the focus was to produce xanthan gum from pineapple waste using Xanthomonas 
campestris. Six machine learning models were employed to optimize fermentation time and key 
metabolic stimulants (KH2PO4 and NH4NO3). The production of xanthan gum was optimized 
using two evolutionary optimization algorithms, particle swarm optimization, and genetic algo-
rithm while the importance of input features was ranked using global sensitivity analysis. KH2PO4 
was the most important input and was found to be beneficial for xanthan gum production, while a 
limited amount of nitrogen was needed. The extreme learning machine model was the most 
adequate for modeling xanthan gum production, predicting a maximum xanthan yield of 10.34 g/ 
l (an 11.9 % increase over the control) at a fermentation time of 3 days, KH2PO4 of 15 g/l, and 
NH4NO3 of 2 g/l. This study has provided important insights into the intelligent modeling of a 
biostimulated process for valorizing pineapple waste.   

1. Introduction 

Exopolysaccharides (EPS) are naturally synthesized secondary metabolites that microorganisms produce from a carbon source, 
with plants and mammals being important sources. Because of their biocompatibility, biodegradability, and increased physical and 
biological properties, microbial EPS are being explored as a viable replacement for chemical polymers [1]. Over the past few decades, a 
large variety of microbial EPS have been reported with applications in numerous industries, such as food, medicine, pharmaceuticals, 
petroleum, environmental remediation, and cosmetics [2,3]. 

Xanthan gum is a water-soluble EPS, and it is the earliest bacterial EPS to be produced via aerobic fermentation of simple sugars by 
Xanthomonas campestris in stirred tank fermenters [2]. It is also the second microbial EPS to receive FDA approval for use as a thickener 
and stabilizer in food additives [4]. The structure of xanthan features a 1,4-linked β-D-glucose backbone, which has trisaccharide side 
chains at alternate glucose residues containing a glucuronic acid residue bridging two mannose units at the C (3) position. Terminal 
mannose connects to glucuronic acid via β− 1,4 to α-D-mannose through the α-(1,2) linkage. About 50 % of the terminal mannose 
residues have pyruvic acid linked to the O (4) and O (6) positions, while acetate groups are at the O (6) position of the non-terminal 
mannose. Internal mannose residues contain 60–70 % acetate, while 30–40 % of terminal mannose bear pyruvate residues [5]. 
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Despite reports of various Xanthomonas spp., such as X. malvacearum, X. phaseoli, and X. carotae, producing xanthan gum, several 
studies have established the superiority of X. campestris because it can utilize a wide range of carbohydrate substrates to produce 
xanthan gum [6]. Because of its excellent rheological properties, xanthan gum is used as a stabilizing, thickening, and suspending 
agent in a variety of industries, including food, medicine, pharmaceuticals, paint, cosmetics, petroleum, and agriculture [7]. 

For industrial-scale production of xanthan gum, there is an enormous requirement for energy in the form of a carbon source. As 
much as 70 % of the total xanthan gum production cost has been attributed to the carbon source [8]. For the commercial production of 
xanthan gum, simple sugars such as glucose and sucrose are typically used as carbon sources. With the reported cost of sourcing glucose 
and sucrose being in the range of $400–600/ton, it is no surprise to note the expensive cost of producing xanthan gum, which is in the 
range of $4000–5000/ton [9,10]. The annual production rate of xanthan gum is approximately 30,000 tons [11]. Because of the 
increasing cost of glucose and sucrose, it is becoming increasingly difficult for this amount to meet the annual demand, which is 
growing at a rate of 5–10 %. Thus, there is an urgent need to source inexpensive carbon sources that can reduce the current cost of 
producing xanthan gum. 

For better process economics, xanthan gum can be produced from cheaper substrates with high levels of carbon. These substrates 
will potentially yield more xanthan gum while making the production process more economically competitive [12]. In this context, 
examples of inexpensive carbon sources that have been reported in the literature include whey [13], sugarcane bagasse [14], cassava 
bagasse [15], waste bread [16], potato waste [17], and fruit wastes [9,18,19], all geared toward the green biosynthesis of xanthan 
gum. 

Fruit waste, in particular, is a very promising and inexpensive source of carbon for xanthan gum production. They can be easily 
metabolized by microorganisms to produce secondary metabolites such as xanthan gum. In addition, fruit waste has the advantages of 
being biocompatible and nontoxic, has abundant availability, and has a very high bioconversion rate [19]. 

Among fruit wastes, pineapple waste is promising and attractive for the biosynthesis of xanthan gum because it is a rich source of 
carbohydrates and other nutrients. Beyond that, Nigeria is ranked among the top countries producing pineapple, and thus, there is an 
opportunity to take advantage of the vast amounts of pineapple waste generated from pineapple consumption and processing [20]. 
Currently, in Nigeria and most developing countries, pineapple waste has little or no use, and the vast majority is often disposed of 
inappropriately, thereby constituting a source of environmental concern [21]. 

Despite the volume of work reported on xanthan gum production in the past decade, very few have reported its industrial-scale 
production due to its low yield [22]. In this regard, special attention needs to be given to the design of the fermentation process, 
especially the introduction of certain important nutrients needed for microbial function and stimulation. Beyond that, the nutrient 
composition of the fermentation medium has an impact on the molecular weight, structure, and chemical composition of the resulting 
xanthan gum [23]. In this context, the important medium components include nitrogen, potassium, and phosphorus sources such as 
NH4NO3 and KH2PO4, and this is an area that needs more attention and thus forms the motivation of the current study. Of interest in 
the current work is the stimulating role of NH4NO3 and KH2PO4 during xanthan gum production. A nitrogen source is important 
because it promotes the formation of mycelia, and in particular, ammonium salts are preferred as nitrogen sources because they 
contribute to pH and vegetative growth regulation [24]. On the other hand, KH2PO4 is an important source of potassium and phos-
phorus and plays an important role in facilitating oxidative phosphorylation, pH regulation, and the formation of the cell wall and 
coenzyme [25]. The choice of NH4NO3 and KH2PO4 in this study is in alignment with common practices in xanthan gum production, as 
evidenced by numerous literature sources [8,13,26]. This decision prioritizes simplicity and cost-effectiveness, enhancing the eco-
nomic viability of producing xanthan gum from pineapple waste on a larger scale. While organic sources and alternative substrates 
offer merits, the selected inorganic sources ensure a straightforward and standardized approach. 

Identifying the optimal levels of these stimulants can result in enhanced xanthan gum yield. A comprehensive assessment of these 
nutrients will enhance the understanding of the complex interrelationships between xanthan gum production and nutrient availability. 
This process is usually carried out using the traditional ‘one variable at a time’ approach. However, this method is not efficient because 
it is cumbersome, prone to error, does not consider the interaction between variables, and does not identify the true optimum. 
Although the regression-based tool response surface methodology (RSM) was developed to overcome these limitations, the tool itself is 
limited by its inability to extrapolate outside the design space, identify the global optimum, and adequately model highly nonlinear 
processes such as fermentation [27]. 

In recent reports on the biosynthesis of fermentation products, data-driven machine learning (ML) tools have been favored as a 
result of their highly accurate predictions. They can overcome the previously enumerated limitations of conventional tools and can 
model highly nonlinear and complex processes [28]. Among the ML tools reported for modeling xanthan gum production, only 
artificial neural networks (ANN) [29–31] and support vector machines (SVM) [22] have been reported, showing that only a few works 
have applied ML modeling for xanthan gum production. Recently, state-of-the-art ML tools that are now receiving attention include 
kernel ridge regression (KRR), extreme gradient boosting (XGB), extreme learning machine (ELM), and random forest (RF) [32]. These 
ML tools can utilize a small dataset for training, with accompanying excellent generalization capabilities and identification of the 
global optimum. Beyond that, these tools were chosen based on their established efficiency and effectiveness in modeling bioprocesses, 
especially fermentation. In selecting multiple ML tools, the aim is to comprehensively evaluate their performance and identify the most 
suitable one. Comparing their performance will achieve the goal of providing insights into their limitations and strengths, ensuring a 
robust analysis and scientific rigor. Within the limits of the authors’ literature search, no work was found that adopted these 
state-of-the-art ML tools in modeling the biosynthesis of xanthan gum, which represents a gap that this work intends to fill. In any case, 
most studies on xanthan gum biosynthesis that deploy ML do not optimize the structure of the ML tool architecture before data fitting, 
which often limits the performance of the tools, as seen in previous works that used ML for xanthan gum modeling [29,30,33]. Another 
area that does not often receive attention during the deployment of ML tools is the assessment of model uncertainty, the contribution of 
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each input feature, and their relative level of importance, even though this can help to derive more insights from the model [34]. 
Global sensitivity analysis (GSA) is preferred for doing this, and it has advantages over local sensitivity analysis and analysis of 
variance (ANOVA) because the model uncertainty is attributed to the sources of individual variation from the input features [35]. In 
this context, GSA will provide useful insights into the important factors that influence xanthan gum production, thus facilitating the 
development of optimized xanthan gum production strategies. 

Thus, in the current work, the focus was to develop ML models for predicting xanthan gum production as a function of three input 
features. Common ML tools such as ANN and SVM and state-of-the-art ML tools such as KRR, ELM, XGB, and RF were assessed to 
evaluate the one that offered the best performance in terms of prediction accuracy based on a 3-fold cross-validation for the 
fermentation dataset. The relative importance of the input features and their contribution to model uncertainty were evaluated using 
global sensitivity analysis. The ML models were implemented in Python, a very interactive programming language with simple syntax 
and yet very powerful computation capacity. Python has some obvious advantages compared to conventional software such as 
MATLAB. Python’s variety of libraries makes it superior for developing advanced machine learning models. In addition, most of the 
machine learning projects currently developed are done with Python, which makes transfer learning possible and seamless [36]. 

2. Materials and methods 

2.1. Collection and preparation of the substrate 

Pineapple waste, which is a residue obtained from pineapple waste processing into juice, was collected from a local juice producer 
in Benin City, Nigeria. The waste consisted of pineapple peels and leftover pulp. The water-soluble nutrient content of the substrate was 
extracted with 100 ml of water (pH 7) using 100 g of homogenized pineapple waste. The resulting slurry was thoroughly agitated and 
then allowed to stand for 2 h. The slurry was then transferred to a domestic juicer and intermittently agitated at 1600 rpm for 2 min 
(twice in 1 min) to achieve homogenization [8]. The homogenized slurry was then filtered using a muslin cloth to remove the residual 
solids and obtain the water-soluble nutrient fraction. The extract was used as a carbon source to produce xanthan gum. 

2.2. Chemical reagents 

All reagents used in this study were of analytical grade, which reflects their purity and applicability for assay use. Metal salts such as 
zinc chloride, magnesium chloride, ammonium nitrate, potassium dihydrogen phosphate, and iron chloride were sourced from a 
reagent supplier in Onitsha, Nigeria. 

2.3. Microorganism and media preparation 

Xanthomonas campestris was used as the model microorganism to produce xanthan gum. The active strain of X. campestris isolated 
from spoilt tomatoes was generously donated by the Department of Microbiology, University of Benin, Nigeria. The isolate was 
maintained on a glucose-containing nutrient agar slant at 4 ◦C [8]. The composition of the fermentation medium adopted was pre-
viously reported [37]. The medium was made up of citric acid (2.1 g/l), MgCl2 (0.507 g/l), H3BO4 (0.006 g/l), FeCl3⋅6H2O (0.020 g/l), 
CaCO3 (0.020 g/l), ZnO (0.006 g/l), and Na2SO4 (0.089 g/l). 

2.4. Xanthan gum biosynthesis 

The water-soluble nutrient extract was used as the sole source of carbon for producing xanthan gum. It was combined with 
deionized water in the appropriate ratio to take the sugar concentration to 40 g/l. Xanthan gum biosynthesis was carried out in 250 ml 
Erlenmeyer flasks with a 100 ml working volume. The pH of the substrate was adjusted to 7 before the start of fermentation. To begin 
the fermentation process, the flasks were inoculated with the inoculum (5 % v/v), and the flasks were incubated with orbiter shaking at 
120 rpm and 30 ◦C for the required number of days, which was varied between 1 and 3 for optimization purposes. KH2PO4 (0–15 g/l) 
and NH4NO3 (2–6 g/l) were introduced into the medium to serve as stimulants of microbial growth, and their levels were varied 
according to the experimental design. The experiments were carried out in triplicate to ensure reliability. In addition, separate control 
experiments were set up (in the absence of microbial stimulants) and monitored to investigate the actual impact of the stimulants. 

2.5. Xanthan gum recovery 

At the end of the fermentation period, residual microbial cells were separated from the fermentation broth through centrifugation 
at 10,000 rpm and 4 ◦C for 30 min. The recovery of xanthan was carried out by precipitation using cold isopropanol. This was done by 
thoroughly mixing three parts of isopropanol with one part of the supernatant. The mixture was allowed to stand for 24 h for pre-
cipitation to take place and then recentrifuged under the same conditions to separate the precipitated xanthan gum. The recovered 
xanthan gum was oven-dried at 50 ◦C until a constant weight was achieved [22]. 

2.6. Experimental data generation and processing 

To generate the data needed for the development of the ML models, a design of experiment (DOE) was used. Specifically, a three- 
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variable Box‒Behnken design (BBD) was used to plan the fermentation experiments for data collection. This was done to generate data 
that can be used to train and validate the models under varying experimental conditions [38]. The suitability of the Box‒Behnken 
design has been established by numerous studies based on its ability to fit the second-order model that typically serves as a starting 
point for the majority of chemical engineering processes [39]. In addition, the design utilizes fewer experimental runs compared to a 
similar design such as the central composite design. In this case, the chosen BBD resulted in 17 experiments, of which five were 
replicated at the center point of the input variables. The three input variables investigated were fermentation time, concentration of 
KH2PO4, and concentration of NH4NO3, whose range of values shown in Table 1 were determined from a combination of literature 
sources and preliminary experiments. The measure of the performance of the fermentation process was taken as the yield of xanthan 
gum. The planning of the experiment was carried out using Stat-Ease’s Design Expert software (version 11). 

The prediction efficiency of ML models may be negatively impacted if the data used for modeling is not standardized to have a 
normal distribution. In this regard, normalization of the data was carried out following the transformation procedure previously re-
ported [40] as shown in Equation (1). 

x̂i,j =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[(
xi,j + 1

)λ
− 1

]/
λ, if λ ∕= 0, xi,j ≥ 0

ln
(
xi,j + 1

)
, if λ = 0, xi,j ≥ 0

−
[(
− xi,j + 1

)2− λ
− 1

]/
(2 − λ), if λ ∕= 2, xi,j < 0

− ln
(
− xi,j + 1

)
, if λ = 2, xi,j < 0

(1)  

where xi,j and x̂i,j refer to the original and transformed xanthan gum production data obtained from the fermentation process for the 
input feature j. λ represents the transformation factor derived from the maximum likelihood estimation, and i (1 to N) represents the 
number of data points for each input feature. Data normalization was performed using Equation (2) [32]. 

xi,j =
x̂i,j − xj

σj
(2)  

where xi,j, xi,j and σj refer to the normalized data, mean of the input feature j, and standard deviation of the same input feature, 
respectively. 

2.7. Machine learning model development 

Fig. 1 shows a flowchart depicting the information flow for the development of the ML models utilized in this work. The data 
generated from the experimental design were stored in a data warehouse in the form of a Microsoft Office Excel Workbook. All the data 
engineering and machine learning were implemented using Python (version 3.7.5), with the integrated development environment 
(IDE) being Jupyter. All numerical operations were carried out using Numpy version 1.20.3 and Pandas version 1.1.2. The specific ML 
models considered in this work were ANN, SVR, ELM, KRR, RF, and XGB, and these were implemented in the Python environment 
using the following libraries: Scikit-learn version 0.23.2 (SVR, KRR, RF), TensorFlow version 2.4.0 (ANN), and XGBoost version 1.2.3 
(XGB) [32,38]. The graphical visualization of the data was carried out using Matplotlib, a very comprehensive library for data 
visualization in Python. The hardware specification used to run the codes for all the ML models was an HP EliteBook with an Intel Core 
i5 processor with a speed of 1.9 GHz and RAM of 16 GB operating on Windows 10. A k-fold cross-validation method was used to 
evaluate all the ML models to assess the one with the best performance for predicting xanthan gum yield in terms of the input features. 
Cross-validation is an important step in the development of ML models because it reduces the chances of overfitting and improves 
model generalization capability. This means that the model can correctly predict the chosen output for data not previously exposed to 
the model. Thus, the xanthan gum yield dataset was randomly divided into k groups (folds), and the ML models were trained with k – 1 
folds (representing one training dataset) and validated with the remaining fold. This method has the advantage of ensuring high 
prediction accuracy without bias, as the entire dataset was used for model training and validation [41]. This process was repeated k 
times with different combinations of training and validation datasets. In this work, 3-fold cross-validation (i.e., k = 3) was adopted. The 
train-test split was 70:30 (i.e., 70 percent of the data were used for training and 30 percent to test the trained models. Cross-validation 
was done on the whole training set. Testing was done with the test dataset which the models were not exposed to during training. 

2.7.1. ANN modeling 
The ANN model is a feed-forward neural network consisting of three hidden layers, each with a set of neurons that can estimate a 

Table 1 
Actual and coded levels of input variables.  

Variables Symbol Coded and actual levels 

− 1 0 +1 

Time (d) X1 1 2.0 3 
KH2PO4 concentration (g/l) X2 0 7.5 15 
NH4NO3 concentration (g/l) X3 2 4.0 6  
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given output response (y) from the provided input data (x). Each neuron calculates a linear combination (z) of n input features (xi) with 
corresponding weight (wi) and bias (b), as shown in Equation (3). The selection of the right activation function is essential in the ANN 
modeling process because it is chiefly responsible for the mapping of the inputs to the outputs. In this regard, several activation 
functions, such as exponential, scaled exponential linear unit (SELU), rectified linear unit (ReLU), and leaky rectified linear unit (Leaky 
ReLU), were evaluated to determine which was most appropriate. 

z=
∑n

i=1
xiwi + b (3) 

During the ANN process, the transformed version of the output data is forwarded from one hidden layer to another. The network is 
trained through an updating process that tunes the model weights to minimize model loss (ℓ), which is typically taken as the root mean 
square error (RMSE), as shown in Equation (4), where ŷi is the model prediction. The minimization is done through a gradient descent 
method where the weights are manipulated as a function of ℓ and scaled using the learning rate (λ), as shown in Equation (5). 

l =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(yi − ŷi)

2

√

(4)  

wt+1 =wt − λ
∂l
∂wt

(5) 

To avoid overfitting, a 3-fold cross-validation was carried out using the output dataset. Initialization of the weights of the ANN was 
done using a normal distribution of each hidden layer. The ANN model was implemented in the TensorFlow version 2.4.0 library. The 
ANN hyperparameters were optimized using grid search cross-validation (GridSearchCV). 

2.7.2. SVM modeling 
A support vector machine is an ML model based on a supervised training algorithm. It works based on the development of hy-

perplanes in an infinite dimensional space for discriminating between data groups. It is desirable if the hyperplane is far from the 
closest training data points for any class [32]. SVM has been generalized to be used for regression purposes, and in this regard, it is 
termed support vector regression (SVR). For a given vector of input features (x = xi∈

p; i,…,n) and vector of target outputs (y =n), SVR 
produces a linearly correlated regression model of the form shown in Equation (6). 

F(x)=wT φ(x) + b (6)  

where w and b are the vectors of model weight and bias determined by solving Equation (7). 

Fig. 1. Flowchart showing the development of ML models.  
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min
w,b,ζi ,ζ∗i

1
2
wT w + C

∑n

i=1
ζi + ζ∗

i

subject to:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi − wT φ(xi) − b ≤ ε + ζi

wT φ(xi) + b − y ≤ ε + ζ∗
i

ζi, ζ∗
i ≥ 0

(7)  

where C and ζ are hyperparameters referring to the penalty term and error term away from the hyperplane (ε tube). Prediction by the 
SVR model is estimated using the Lagrangian dual method, as shown in Equation (8). 

f (x)=
∑n

i=1

(
αi − α∗

i

)
K
(
xi, xj

)
+ b (8)  

where αi and α∗
i are Lagrange multipliers and K is the kernel. Various kernels that were assessed to determine the most suitable one 

included radial basis function (RBF), polynomial, sigmoid, and linear kernels. 

2.7.3. KRR modeling 
KRR combines a kernel approach with ridge regression to model nonlinear relationships between input features and output re-

sponses. The ridge regression functions by minimizing the sum of squared errors with constraint fulfillment while providing an es-
timate to penalize it. An important advantage of KRR is its ability to incorporate a kernel approach and regularization to capture 
nonlinear relationships while overcoming the challenge of overfitting [42]. Equation (9) shows a mathematical representation of KRR, 
where fi is defined in Equation (10). 

arg min
1
m

∑m

i=1
‖fi − yi‖

2
+ λ‖f‖2

H (9)  

fi =
∑m

i=1
αj
(
xj, xi

)
(10)  

where ‖ • ‖H refers to the Hilbert normed space. The KRR expression (Equation (9)) can be expressed as an m × m kernel matrix, as 
shown in Equation (11). 

(K + λnI)= y (11)  

y=
∑m

i=1
αiΦ(xi, x) (12)  

In training the KRR model, the algorithm determines α by solving Equation (11) and then searching for the optimum values of α and λ 
from the set of parameters. The optimized parameters are then used in testing the model, as shown in Equation (12). Different kernels, 
such as linear, RBF, and polynomial kernels, were assessed to determine the most suitable one. 

2.7.4. ELM modeling 
Extreme learning machines, although initially developed as single-hidden-layer feedforward neural networks, can express the 

nonlinear relationship between input features and output/target responses. In ELM, the parameters characterizing the input and 
hidden layers, such as weights and bias, are randomly initialized, while the output weights are calculated using the Moore-Penrose 
generalized inverse [32]. The mathematical expression of the single hidden layer ELM is shown in Equation (13). 

fL(x)=
∑L

i=1
βihi(x) = h(x)β (13)  

where β = [β1,…, βL]
T is a column vector representing the output weights between the output node and the hidden layer of L nodes, 

while h(x) = [h1(x),…, hL(x)] is the row vector representing the output of the hidden layer for each input feature x. 
H(x) helps to map the input data of dimensional space (d) to the dimensional space of the hidden layer (L, H). The vector shown in 

Equation (14) represents the training data. The objective of the ELM algorithm is to minimize the training error and output weight 
norm, which represents an important advantage for ELM [43]. 

{
(xi, ti)

⃒
⃒xi ∈Rd, ti ∈Rm, i= 1,…,N

}
(14)  
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2.7.5. RF modeling 
Random forest is an advanced decision tree-based ML algorithm. It is based on a bootstrapping and aggregation approach called 

bagging [42]. In the RF modeling process, each decision tree is fed a random set of replacement input data (a bootstrap sample) and 
grows independently based on this. The synergy derived from the aggregation of predictions from each decision tree is the major factor 
behind the accuracy of the RF model. The RF process takes place in three steps. The first step is the generation of n bootstrapping 
samples using the input variables. The second step involves building an unpruned regression tree by taking advantage of the maximum 
predictor split, while the last step involves the aggregation of the predictions from the n number of trees. 

For a random data subset d (x,y), the decision tree iteratively partitions the variable space (x) as samples with close targets are 
aggregated. The data at node m is represented by dm with Nm samples. dm may be partitioned into subsets denoted as dright

m and dleft
m using 

each candidate split θ(p, tm), where p and tm refer to a feature and threshold, respectively (Equation (15)). 
{

dleft
m =

{
(x, y)

⃒
⃒xp ≤ tm

}

dright
m = dm

/
dleft

m

(15) 

The candidate split is defined as a loss function H( •), as shown in Equation (16). 

H(dm)=
1

Nm

∑

y∈dm

(y − ym)
2 (16)  

where ym = 1
Nm

∑

y∈dm

y 

The minimization of Equation (16) yields the parameters θ(p, tm). 

G(dm, θ) =
Nleft

m

Nm
H
(
dleft

m (θ)
)
+

Nright
m

Nm
H
(
dright

m (θ)
)

(17) 

The recursion of Equation (17) continues for dright
m and dleft

m until the maximum depth is achieved. The prediction of the RF model is 
thus obtained from Equation (18). 

f (x)=
1
K
∑K

k=1
DTt(x) (18)  

where K is the number of decision trees (DT) in the random forest. 

2.7.6. XGB modeling 
XGB is another novel and advanced decision tree-based ML algorithm that is based on the application of gradient boosting in 

conjunction with series-grown decision trees. It works by integrating many weak learners to develop a strong learner via additive 
learning. It takes advantage of automatic parallel computation to deliver improved computational accuracy during training. Equation 
(19) shows the prediction function for a step time (t). 

f (t)i =
∑t

k=1
fk(xi)= f (t− 1)

i + ft(xi) (19)  

where ft(xi), f (t)i , f (t− 1)
i and xi represent a learner at step t, prediction at step t, prediction at step t – 1, and input data, respectively. 

To prevent overfitting issues with XGB, equations are used to evaluate the model’s goodness of fit with the original function, as 
shown in Equation (20). 

Obj(t) =
∑n

k=1
l(yi, yi) +

∑t

k=1
Ω(fi) (20)  

where l, n, and Ω represent the loss function, observation number, and regularization term (Equation (21)), respectively. 

Ω(f )= γT +
1
2

λ‖ω‖2 (21)  

where ω, λ, and γ represent the score vector, regularization parameter, and mini loss, respectively. 

2.8. ML model selection and accuracy 

The performance of the ML models in predicting xanthan gum yield was evaluated using established statistical indicators such as 
the coefficient of determination (R2 value), mean absolute error (MAE), root mean square error (RMSE), Akaike’s information criterion 
(AIC), Willmott’s index of agreement (WI), average absolute deviation (AAD), and Nash-Sutcliffe efficiency (NSE), as shown in 
Equations (22)–(28) [42,44,45]. 
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R2 = 1 −

∑n

i=1

(
ya,i − yp,i

)2

∑n

i=1

(
yp,i − ya

)2
(22)  

NSE= 1 −

∑n

i=1

(
yp,i − ya,i

)2

∑n

i=1

(
yp,i − ya

)2
(23)  

WI = 1 −

∑n

i=1

(
yp,i − ya,i

)2

∑n

i=1

( ⃒
⃒yp,i − ya

⃒
⃒+

⃒
⃒ya,i − ya

⃒
⃒
)2

(24)  

AIC= n ln
(

RSS
n

)

+ 2(N + 1) +
2(N + 1)(N + 2)

(n − N − 2)
(25)  

MAE=
1
n
∑n

i=1

⃒
⃒
(
ya,i − yp,i

)⃒
⃒ (26)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1

(
yp,i − ya,i

)2

√

(27)  

AAD=
1
n
∑n

i=1

[⃒
⃒
(
ya,i − yp,i

)⃒
⃒

ya,i

]

× 100 (28) 

In these equations, yp,i, ya,i, ya, N, n, and RSS represent the model predictions, experimental values, mean of the experimental 
values, number of model parameters, number of data points, and residual sum of squares, respectively. Typically, high values of R2, 
NSE, and WI (closer to one) combined with very low values of RMSE, MAE, and AAD are desirable for good model prediction. 

2.9. Algorithm-based optimization of xanthan production 

Two evolutionary optimization algorithms, particle swarm optimization (PSO) and genetic algorithm (GA), were used to determine 
the maximum xanthan gum yield and the corresponding values of the input features. PSO is a population-based search technique that 
uses an iterative procedure to optimize both discontinuous and continuous functions [46]. In this method, each particle in the pop-
ulation, typically called a swarm, is taken as a potential solution. The spatial distribution of the particles is changed randomly until an 
optimal state of equilibrium is achieved. In optimizing a system of M output variables, the PSO technique considers a swarm of N 
particles with a randomly assigned position (x) in the multidimensional space. The velocity (v) of each particle is related to its position 
as shown in Equations (29) and (30): 

xi(t)= xi(t − 1) + vi(t) (29)  

vi(t)=ωvi(t − 1)+ c1r1(xPbesti − xi(t)) + c2r2(xGbesti − xi(t)) (30) 

In these equations, Pbest and Gbest are personal and global best positions, respectively, which are defined based on the minimum 
mean square error. c1 represents the cognitive parameter that determines the affinity of the particle to its personal best position, while 
c2 represents a social parameter that determines the affinity of the particle to its global best position. ω represents the inertia weight 
and measures the influence of a particle’s previous velocity on its current velocity. r1 and r2 are two random variables bounded be-
tween zero and one. The values of these parameters were tuned to determine their optimal values. 

Genetic algorithm is a metaheuristic technique that is motivated by the evolutionary theory of natural selection [47]. The unique 
advantages of GA are its capacity for optimizing real-life multivariate systems using advanced fitness functions and its ability to carry 
out global optimization of nonlinear systems. Its sequential deployment of initialization, selection, crossover, and mutation enables it 
to solve multimodal optimization problems. In the GA procedure, the generation of a population of random individuals is the beginning 
of the evolutionary process, which involves the high-probability selection of individuals with higher fitness values. Based on bio-
inspired operations such as selection, crossover, and mutation, a new generation is produced stochastically from the preceding gen-
eration. This means that the next generation is generated at random from the preceding one, although dominant individuals have a 
higher probability of being reproduced. The iterative method is repeated until convergence is achieved. 

In this work, the search space for the optimization problem using both tools was limited to that of the experimental design 
generated from the input variables. Both PSO and GA were implemented in the Python environment. 
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2.10. Feature evaluation via global sensitivity analysis 

Global sensitivity analysis was used to identify the impact of each input feature on the prediction accuracy of each ML model. The 
high-dimensional model representation (HDMR) method implemented in SobolGSA software (Centre for Process Systems Engineering, 
Imperial College London) was used for this purpose. Unlike local sensitivity analysis, which only computes the effects of input features 
at a specified point, global sensitivity analysis computes the effects of input features over the whole space. This means that the 
magnitude of the range over which each input feature is varied has a direct influence on the sensitivity to that input in global sensitivity 
analysis [35]. Additionally, global sensitivity analysis may be used to investigate the relationships between input features. 

Global sensitivity indices were calculated using the HDMR coefficients. Any result from the model (y), i.e., xanthan gum yield, may 
be represented by a function, f(x), of the model’s inputs (x), which are fermentation time, the concentration of KH2PO4, and the 
concentration of NH4NO3. The key characteristic of HDMR is the decomposition of the complete function into a sum of functions that 
solely depend on subsets of the input variables, as follows: 

y= f (x)

= fo +
∑N

i=1
fi(xi)+

∑N

i=1

∑N

j=i+1
fij
(
xi, xj

)
+ ...+ f1,2...,N(x1, x2...xN)

(31)  

where N, i, j, and fo represent the number of input features, index of input features, and average value of f(x), respectively. For 
simplicity and ease of handling, only the first two terms of Equation (31) are usually taken into consideration because of the negligible 
contributions of the terms containing more than two input features. Orthogonal polynomials were used to evaluate the functions fi(x) 
and fij (xi,xj). The contribution of each input feature and their interaction form the basis for the estimation of the global sensitivity 
indices. Following Equation (31), the contribution of each term, i.e., σ2

i and σ2
ij, to the variance of the output response can be related to 

the total variance (σ2
f ) as shown in Equation (32): 

Table 2 
Optimized values of hyperparameters for ML models.  

ML model Hyperparameters Final optimized value aTotal execution time (ms) 

ANN kernel_initializer “normal” 34.76 
model optimizer “adam” 
hidden layer 1 number of neurons 62 
hidden layer 1 activation function “exponential" 
hidden layer 2 number of neurons 32 
hidden layer 2 activation function “exponential" 
hidden layer 3 number of neurons 16 
hidden layer 3 activation function “exponential" 
output layer number of neurons 1 
output layer activation function “linear" 

SVM C 700 6.38 
ε 0.001 
ϒ 6 × 10− 3 

kernel “RBF” 
random_state 100 

ELM hidden_units 50 14.74 
activation_function “relu” 
C 1 
random_type “normal" 

KRR α 0.001 368.08 
kernel “RBF” 
ϒ 1.78 × 10− 2 

random_state 100 

XGB learning_rate 0.3 510.15 
n_estimators 200 
ϒ 0.001 
max_depth 50 
subsample 0.5 
colsample_bylevel 0.7 
random_state 100 

RF n_estimators 100 50.00 
max_features 17 
max_depth None 
min_samples_split 2 
min_samples_leaf 1 
bootstrap false  

a Total execution time = model training time + inference time. 
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σ2
f =

∑N

i=1

∫ 1

− 1
f 2
i (xi)dxi +

∑N

i=1

∑N

j=i+1

∫ 1

− 1

∫ 1

− 1
f 2
ij

(
xi, xj

)
dxidxj

=
∑N

i=1
σ2

i +
∑N

i=1

∑N

j=i+1
σ2

ij

(32) 

The linear, interaction and total sensitivity indices were obtained as using Equations (33)–(35): 

Si =
σ2

i

σ2
f

(33)  

Sij =
σ2

ij

σ2
f

(34)  

STi = Si +
∑

j∕=i

Sij (35) 

These global sensitivity indices were then used to assess the relative level of importance of the input features in relation to the 
variance of the output response. 

3. Results and discussion 

3.1. ML model selection and accuracy 

The experimental data generated from the fermentation process was used to train each ML model to optimize their respective 
hyperparameters, as shown in Table 2. The hyperparameters were optimized via a combination of a 3-fold cross-validation technique 
and a full-factor experimental grid search. The accuracy of the ML models corresponding to each optimized hyperparameter was 
assessed using key statistical metrics, as shown in Table 3. 

All the models generally displayed high predictive accuracy, as reflected in the high coefficient of determination values (R2 > 0.97). 
The R2 value is one of the most important measures of model fit and accuracy. A high R2 value, very close to one, is desirable. For 
example, the ANN model had an R2 value of 0.9804. This implies that 98.04 % of the variability in the predicted xanthan gum yield 
values was explained by the input features. An R2 value greater than 0.8 is an indication of an adequate model fit [48]. Thus, the R2 

values obtained in this work for all the ML models investigated point to the fact that the models were able to predict xanthan gum 
production with a high level of accuracy. This observation was also corroborated by other statistical indices similar to the R2 value 
(NSE > 0.90 and WI > 0.98). The NSE metric is a better index of model accuracy than the R2 value because of the responsiveness of the 
variances between the experimental observations and model predictions [49]. On the other hand, Willmott’s index of agreement is a 
standardized indicator for assessing model prediction and shows improvements over the R2 value. Low values (close to zero) are 
indicative of poor model accuracy, while values close to one are indicative of excellent model accuracy [50]. The values of NSE and WI 
shown in Table 3 showed that there was generally good agreement between the experimental observations and the model predictions 
for all the ML models investigated. Error measures such as RMSE, MAE, and AAD were also used to assess the accuracy of the model 
predictions. These error terms show the deviation of the model predictions from the actual experimental observations. Thus, they are 
used to demonstrate the quality of the model predictions. Low values of these error terms are preferable, and this was the case with the 
values reported in Table 3. The levels of fit demonstrated by all the ML models are illustrated by the parity plots shown in Fig. 2 (a - f). 
The clustering of the data points around the 45o line supports the desirable goodness of fit observed. Table 4 shows the comparison 
between the actual experimental data and the model predictions. The model predictions were generally close to the experimental 
observations, further corroborating the adequate model fit. 

An assessment of the statistical metrics in Table 3 was used to discriminate between all six ML models. It was found that the extreme 
learning machine was the best in terms of overall performance for the prediction of xanthan gum production. The ELM model had the 
lowest RMSE value, indicating that it was characterized by the least loss of information compared to the actual experimental data. To 
confirm this observation, the Akaike information criterion was used for further model discrimination. The AIC measures prediction 
error and hence model quality, and it is a useful tool for model selection. The AIC strikes a balance between model simplicity and 

Table 3 
Assessment of ML model prediction.  

Parameter ANN SVM ELM KRR XGB RF 

R2 0.9804 0.9760 0.9877 0.9781 0.9758 0.9583 
NSE 0.9801 0.9733 0.9871 0.9762 0.9745 0.9336 
WI 0.9950 0.9935 0.9968 0.9942 0.9933 0.9801 
MAE 0.1155 0.1011 0.0744 0.1172 0.1105 0.2376 
RMSE 0.1507 0.1744 0.1212 0.1649 0.1704 0.2752 
AAD (%) 1.9787 1.6973 1.2188 1.9481 1.9211 3.8604 
AIC − 53.0090 − 48.0359 − 60.4138 − 49.9398 − 32.5365 − 32.5365  
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quality of fit, accounting for model accuracy while balancing the risk of overfitting and underfitting [44]. The ELM model had the 
lowest AIC value compared to the other ML models. This means that the ELM model was the best tradeoff between model simplicity 
and information capture [51]. Thus, the ELM model will be able to provide the right balance between model goodness of fit on the one 
hand and overfitting or underfitting on the other hand. 

Although no literature exists that assessed the deployment of ELM for modeling a xanthan gum fermentation process, the excellent 

Fig. 2. Parity plots comparing (a) ANN, (b) SVM, (c) ELM, (d) KRR, (e) XGB, and (f) RF predictions with experimental values.  
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Table 4 
Comparison of ML model predictions with experimental observations.  

Run 
no 

Input features Response (Xanthan gum yield (g/l)) 

X1 X2 X3 Experimental 
value 

ANN 
prediction 

SVM 
prediction 

ELM 
prediction 

KRR 
prediction 

XGB 
prediction 

RF 
prediction 

1 2 7.5 4 5.8 6.2 6.2 6.1 6.1 6.1 6.1 
2 2 0.0 2 6.7 6.6 6.6 6.7 6.6 6.7 6.3 
3 2 7.5 4 6.2 6.2 6.2 6.1 6.1 6.1 6.1 
4 3 0.0 4 5.7 5.9 5.7 5.7 5.7 5.7 5.9 
5 2 7.5 4 6.2 6.2 6.2 6.1 6.1 6.1 6.1 
6 1 7.5 2 7.2 7.2 7.2 7.2 7.2 7.2 6.9 
7 3 15.0 4 7.8 7.6 7.8 7.8 7.8 7.7 7.5 
8 2 15.0 6 6.9 6.8 6.7 6.9 6.7 6.6 6.4 
9 2 7.5 4 5.9 6.2 6.2 6.1 6.1 6.1 6.1 
10 2 0.0 6 4.5 4.4 4.2 4.4 4.2 4.9 5.0 
11 3 7.5 2 7.5 7.5 7.8 7.7 7.8 7.5 7.4 
12 2 7.5 4 6.3 6.2 6.2 6.1 6.1 6.1 6.1 
13 1 15.0 4 6.5 6.4 6.5 6.4 6.5 6.4 6.4 
14 2 15.0 2 8.3 8.2 8.3 8.3 8.3 8.3 8.0 
15 3 7.5 6 6.5 6.4 6.4 6.5 6.4 6.4 6.2 
16 1 7.5 6 4.6 4.5 4.6 4.6 4.6 4.6 4.6 
17 1 0.0 4 4.5 4.2 4.5 4.5 4.5 4.5 4.6 

Control experiment 

X1 = 0.00; X2 = 0.00, X3 = 0.00; Y = 9.24 g/l  

Fig. 3. One-way partial dependence plot showing the impact of (a) time, (b) phosphorus source, and (c) nitrogen source on the output.  
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predictive performance of ELM has also been reported by other researchers for other fermentation processes. For example, Liu et al. 
[52] used ELM to calibrate pH measurements obtained from Fourier transform near-infrared (FT-NIR) spectroscopy during solid-state 
fermentation of crop straw. They recorded an R2 value of 0.9618 and an RMSE value of 0.1044, which was enough to give accurate pH 
measurements. In another study, Baron and Zhang [53], developed an ELM-based data-driven model to overcome the difficulties of 
developing a mechanistic model for the control of a fed-batch fermentation process. They reported enhanced model accuracy, which 
was useful for developing a reliable control strategy for the process. In a similar work, an extreme learning machine approach was 
combined with the recursive least squares (RLS) method to model and optimize a fed-batch fermentation process [54]. The RLS was 
integrated with the ELM model to cope with the variations in the process due to unaccounted disturbances. Their findings showed that 
the hybrid ELM-RLS model was able to model a simulated baker’s yeast fermentation process with desirable results. In a very recent 
study, Zhao et al. [55] adopted a semisupervised ELM model for modeling a yeast fermentation process. They reported enhanced 
training speed and prediction accuracy. Also, some reports support the superiority of ELM over modeling tools such as RSM [56], SVM 
[57], ANN [58], and adaptive neuro-fuzzy inference system (ANFIS) [59]. From these studies, it was found that the superiority of ELM 
derives from its fast training speed (as it is a one-hidden-layer neural network), and remarkable capacity for generalization and ac-
curacy, making it suitable for modeling highly nonlinear relationships such as those typically encountered in fermentation processes 
[60]. Compared to traditional feedforward neural networks, ELM has been reported to exhibit remarkable efficiency and general-
ization over a wide range of problems in different study areas [61,62]. It has also been reported in some studies that ELM has com-
parable or better efficiency and generalization ability compared to SVM and its variants [63]. 

3.2. Partial dependence plots for input-output data visualization 

To assess the individual and interactive impacts of the input features on the xanthan gum predictions, one-way and 2-way partial 
dependence plots (PDPs) were adopted. The generation of PDPs involves constraining all data points to take the same feature value 
such that the partial dependence function reflects the average prediction of the output. If the feature with which the PDP was generated 
is unrelated to the others, the PDPs accurately depict how the feature impacts the prediction on average [64]. The major attraction to 
the use of PDPs lies in their intuitive nature and ease of implementation, their ability to explicitly model a causal link between input 

Fig. 4. Two-way partial dependence plots showing the interaction between (a) phosphorus concentration and time, (b) nitrogen concentration and 
time, and (c) phosphorus concentration and nitrogen concentration. 
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features and model outputs, and their ability to explain the relationship between outputs and inputs irrespective of the nature of the 
relationship. PDPs are also model-agnostic, meaning that they can be used with any model [65]. 

Fig. 3 shows the one-way PDP for the effect of each input on xanthan gum production. The inward tick marks on the x-axis indicate 
the density of the data for each feature. The tick marks are important because their absence will essentially eliminate any meaning to 
be derived from the PDP. From Fig. 3(a), the influence of fermentation time on xanthan gum yield was observed to increase signifi-
cantly from 1 to 2 days. Although the trend continued beyond 2 days, the influence was not as significant as previously observed. 
Generally, increased fermentation time resulted in higher xanthan gum production. This shows that the carbon substrate was pro-
gressively and continuously converted to xanthan gum throughout the fermentation process. High xanthan production was observed at 
three days of fermentation. Because of the potential for resource savings, the fermentation duration needs important consideration for 
optimization. A similar observation has been reported by previous researchers. For instance, Psomas et al. [66] reported higher 
xanthan gum yields with increasing fermentation time. They recorded a maximum xanthan gum yield of 7 g/l for a fermentation time 
of 3 days. The importance of optimizing the fermentation time was also illustrated by Cacik et al. [67], whose optimal control strategy 
for minimizing fermentation time reduced the fermentation time by 16.3 %. 

As shown in Fig. 3(b), KH2PO4, a source of phosphorus and potassium, was beneficial for xanthan gum production, as seen in the 
positively correlated relationship between KH2PO4 concentration and xanthan gum production. Research has shown that the pro-
duction of an EPS such as xanthan gum occurs via a defensive strategy by microorganisms surviving in saline environments [68]. It is 
thought that the secretion of EPS serves to balance the osmotic effect experienced by microbial cells as a result of the saline envi-
ronment. Potassium and phosphate ions provided by KH2PO4 play important roles in fungi-facilitated fermentation processes. Po-
tassium ions, for example, increase fungal cell growth as well as oxidative phosphorylation [25]. Phosphates, on the other hand, are 
required for cell development and metabolism, as well as the synthesis of cell walls and coenzymes, among other critical intermediates 
[22]. They also act as essential buffers, assisting in the regulation of protoplasmic pH. 

The effect of nitrogen limitation is shown in Fig. 3(c). Nitrogen limitation favored the formation of xanthan gum. This is easily 
explained by noting that a high concentration of nitrogen is only essential for cell maintenance and the synthesis of important cell 
elements such as proteins, nucleic acids, enzymes, and peptides. As is typical with the production of EPS such as xanthan gum, a high 
carbon-nitrogen (C/N) ratio is expected to favor the process [69]. In keeping the concentration of carbon substrate constant, as was 
done in this work, it is seen that low levels of nitrogen increased the C/N ratio, with the consequence of increasing the formation of the 
EPS. This observation has also been recorded by previous researchers [22,70]. 

To assess the interoperability and interaction between two features on the target response, two-way PDPs were generated, as shown 
in Fig. 4. The explanation for the two-way PDP is similar to that given for the one-way PDP. In Fig. 4(a), the interaction between 
fermentation time and phosphorus level is presented to elucidate how both features simultaneously affect xanthan gum production. 
There was a clear and positive influence on xanthan gum production when these two features interacted. Similar observations were 
recorded for Fig. 4(b and c). 

3.3. Optimization of xanthan gum production 

The hyperparameters of the two evolutionary optimization algorithms used were determined as shown in Table 5, and the results 
were used to implement both optimization strategies with the results shown in Table 6. Both optimization algorithms predicted the 
same maximum xanthan gum production under very similar fermentation conditions, suggesting their reliability for optimizing the 
fermentation process. A maximum xanthan gum concentration of 10.34 g/l was predicted with corresponding values of fermentation 
time, KH2PO4 concentration, and NH4NO3 concentration of 3 days, 15 g/l, and 2 g/l, respectively. These results were validated by 
carrying out triplicate experiments using these values, and the average of the three experiments revealed a xanthan gum concentration 
of 10.31 g/l. When compared with the control experiment that did not utilize phosphorus and nitrogen supplements in the fermen-
tation medium, the optimum xanthan production value represents an 11.91 % increase from the value of 9.24 g/l obtained (Table 4). 
This is a clear demonstration of the importance of these stimulants. The choice of KH2PO4 was informed by its cost-effectiveness, as 
phosphorus is important for xanthan gum biosynthesis. While 15 g/l may seem like a lot, KH2PO4 is a key determinant of xanthan yield. 
The overall impact on total xanthan production costs is less significant when considering the vital role of KH2PO4 in the fermentation 
process. Furthermore, while the addition of 15 g/l KH2PO4 to the medium can enhance microbial growth and potentially xanthan 
production, it could also impact the molecular weight, and rheological properties such as viscosity and shear-thinning behavior of the 
produced xanthan gum [71]. In the future, studies will be needed to investigate the economic and rheological aspects of xanthan 

Table 5 
Optimized values of hyperparameters for optimization algorithms.  

Optimization algorithm Hyperparameters Final optimized value 

PSO Swarm size 15 
c1 0.5 
c2 1 × 10− 4 

ω 0.5 
GA Population size 40 

Bits per variable 32 
Crossover rate 0.9 
Mutation rate 0.01  
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production in the context of the nutrient medium components. 
The 11.91 % increase in xanthan gum production recorded can be attributed to several reasons related to the fermentation process 

and metabolic engineering. For instance, KH2PO4 and NH4NO3 are important sources of phosphorus and nitrogen, respectively, and 
these are essential nutrients that play vital roles in the growth and metabolism of Xanthomonas campestris. Thus, the addition of 
KH2PO4 and NH4NO3 likely enhanced the availability of these important nutrients, thereby promoting the growth and metabolic 
activity of Xanthomonas campestris, which could have resulted in the overall higher production of xanthan gum [24]. In addition, 
KH2PO4 and NH4NO3 can act as inducers that trigger the activation of specific genes or enzymes involved in the production of xanthan 
gum. These inducers could possess the ability to trigger the signaling of specific metabolic pathways in Xanthomonas campestris. By 
possibly modulating the metabolic network of Xanthomonas campestris to favor the synthesis of xanthan gum, the inducers could have 
caused the increased production of xanthan gum observed [72]. Lastly, KH2PO4 can regulate fermentation medium pH by acting as a 
buffer, which provides a more favorable environment for the growth of Xanthomonas campestris. The existence of optimal pH condi-
tions can enhance microbial and metabolic activity, resulting in the ultimate enhancement of xanthan gum production [25]. 

The optimized xanthan gum production reported herein is comparable to that reported in previous work. For instance, Psomas et al. 
[66] reported a maximum xanthan gum production of 7 g/l after 3 days of fermentation. In another work, Demirci et al. [16] 
investigated the use of different Xanthomonas strains for the biosynthesis of xanthan gum from waste bread. They reported a maximum 
xanthan yield of 10.3 g/l for X. axonopodis pv. vesicatoria, while close values of 12.9 and 12.5 g/l were obtained for X. campestris and 
X. hortorum pv., respectively. X. campestris cultivated on a biopolymer production medium yielded a xanthan gum production of 9.7 g/l 
[73], while xanthan gum yields of 2.8–8.3 g/l were reported by Moreira et al. [74] for X. campestris cultivated on a synthetic production 
medium. Li et al. [75] reported xanthan gum yields reaching 11.7 g/l for X. campestris grown solely on kitchen waste. In more recent 
work, Rabiya and Sen, (2022) reported a xanthan gum yield of 12.4 g/l using a modified mineral salt medium. In another recent work, 
Vaishnav et al. [8] recorded 11.1 g/l of xanthan gum from mixed fruit waste using X. campestris. In comparing these results with those 
of the current work, the differences observed might be attributed to the different microorganisms, feedstocks, and fermentation 
conditions employed. 

3.4. Feature importance via sensitivity analysis 

The evaluation and ranking of the input features were carried out via global sensitivity analysis. Fig. 5 shows the ranking of the 
inputs based on the level of their importance. Based on the first-order indices, the phosphorus source (KH2PO4) was ranked first as the 
most important input, with a contribution of 43.4 % to the total variance of the response (Fig. 5(a)). This was followed by the nitrogen 

Table 6 
Optimization results for xanthan gum production.  

Variables Optimization algorithm 

PSO GA 

Time (d) 2.99 2.99 
KH2PO4 concentration (g/l) 15.00 14.99 
NH4NO3 concentration (g/l) 2.00 2.00 
Predicted xanthan yield (g/l) 10.34 10.34 
Actual xanthan yield (g/l) 10.31  

Fig. 5. Sensitivity indices for (a) first and total order and (b) second-order interaction.  
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source (NH4NO3) and fermentation time, with individual contributions of 38.7 % and 15.7 %, respectively. The overwhelming 
importance of KH2PO4 was also reflected in its impact on the interaction terms involving it, i.e., X1X3 and X2X3, ranking first and 
second, respectively (Fig. 5(b)). In any case, all the inputs were sensitive, as they all had total sensitivity indices greater than 0.1, as 
stipulated by Zhang et al. [76]. The fact that KH2PO4 was ranked as the most sensitive input is not a surprise considering its significant 
importance in the fermentation process, as already alluded to. The results obtained from a sensitivity analysis are important in 
providing further insights into the fermentation process for the biosynthesis of xanthan gum, and the specific details will be useful in 
making important decisions in ensuring maximum operational control of the fermentation process. 

4. Conclusion 

The current work is a comprehensive evaluation of the biosynthesis of xanthan gum from pineapple waste using Xanthomonas 
campestris. An extreme learning machine model was found to adequately model the relationship between fermentation time and the 
impact of phosphorus and nitrogen stimulants (KH2PO4 and NH4NO3) on xanthan gum production with high accuracy. A maximum 
xanthan gum production of 10.34 g/l was obtained with particle swarm optimization and genetic algorithm at KH2PO4 and NH4NO3 
concentrations of 15 g/l and 2 g/l, respectively, for a fermentation time of 3 days. An improvement of 11.9 % was achieved in xanthan 
gum production with the use of KH2PO4 and NH4NO3 compared to when they were absent from the fermentation medium. An 11.9 % 
increase in xanthan gum production has numerous implications. The increased yield translates to improved cost efficiency, economics, 
and the potential commercial viability of the process. It also translates to a more stable supply chain in the case of largescale production 
of xanthan gum to meet the increasing demand. The sensitivity analysis showed that KH2PO4 was the most important input to the 
process. This work has shown that pineapple waste is a valuable resource that, when valorized, can reduce the cost of producing 
xanthan gum, promoting sustainable production and the circular economy. In addition, the use of microbial stimulants is an oppor-
tunity for fermentation process intensification. 
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