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Background: Low-grade gliomas (LGG) account for 20–25% of all gliomas. In this study, we assessed 
whether metabolic status was correlated with clinical outcomes in LGG patients using data from The Cancer 
Genome Atlas (TCGA).
Methods: LGG patient data were collected from TCGA, and the Molecular Signature Database was used 
to extract gene sets related to energy metabolism. After performing a consensus-clustering algorithm, the 
LGG patients were divided into four clusters. We then compared the tumor prognosis, function, immune 
cell infiltration, checkpoint proteins, chemo-resistance, and cancer stem cells (CSC) between the two groups 
with the greatest prognostic difference. Using least absolute shrinkage and selection operator (LASSO) 
analysis, an energy metabolism-related signature was further developed.
Results: Energy metabolism-related signatures were applied to identify four clusters (C1, C2, C3, and C4) 
using a consensus-clustering algorithm. C1 LGG patients were more related to the synapse and had higher 
CSC scores, more chemo-resistance, and a better prognosis. C4 LGG was observed to have more immune-
related pathways and better immunity. We then identified six energy metabolism-related genes (PYGL, 
HS3ST3B, NNMT, FMOD, CHST6, and B3GNT7) that can accurately predict LGG prognosis not only as a 
whole but also based on the independent predictions of each of these six genes.
Conclusions: The energy metabolism-related subtypes of LGG were identified, which were strongly 
related to the immune microenvironment, immune checkpoint proteins, CSCs, chemo-resistance, prognosis, 
and LGG advancement. A signature of genes involved in energy metabolism could help to distinguish and 
predict the prognosis of LGG patients, and a promising method to discover patients that may benefit from 
LGG therapy.
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Introduction

Low-grade gliomas (LGGs) are slow-growth primary 
brain tumors that account for 20–25% of all gliomas, 
with an average survival of 5–15 years (1). According 
to the classification of the World Health Organization 
(WHO), low-grade glioma mainly refers to grade I 
and II neuroepithelial tumors. It includes hairy cell 
astrocytoma, neurocytoma, astrocytoma and mixed  
oligodendrocytoma (2). As with the deepening of research 
on LGG, many aspects related to clinical diagnosis and 
treatment remain controversial (3,4). For a long time, LGGs 
have been considered a subgroup of gliomas with benign 
clinical and biological behaviors, but growing evidence 
shows that the same grade gliomas have biological behaviors 
and clinical characteristics (5,6). However, the prognosis is 
quite different; some patients can survive for a long time 
or have a long survival period, while others have a highly 
malignant outcome, even similar to that of glioblastoma 
multiforme (7). Therefore, accurate risk assessment and 
selective diagnostic/treatment strategies are necessary.

The different energy metabolism of cancer cells 
compared to normal cells is a hallmark of most cancers 
(8,9). Growing evidence suggests that energy metabolism 
reprogramming is tightly related to cancer initiation and 
advancement, especially aerobic glycolysis (10,11). Aerobic 
glycolysis may provide enough adenosine triphosphate 
(ATP) for tumors under hypoxia, playing a crucial role 
in tumor growth, metastasis, and therapy (10,12,13). 

Some tumor cells exhibit a predominant glycolysis 
phenotype, while others display a predominant oxidative 
phosphorylation (OXPHOS) phenotype (14). Metabolic 
reprogramming in cancer cells is increasingly being shown 
to be heterogeneous (15). In addition to absorbing free fatty 
acids and ketones, tumor cells can also absorb catabolic 
acids produced by their neighbors as energy sources 
for mitochondrial oxidative phosphorylation (16,17). 
Furthermore, glutamate-driven mitochondrial oxidative 
phosphorylation, as opposed to glycolysis, accounts for most 
ATP production under hypoxic conditions (18). Recent 
research suggests that cancer-related alterations in energy 
metabolism may lead to new targeted therapies, which 
may be less harmful and more effective in treating cancer 
compared to conventional cytotoxic chemotherapy (19,20). 

Similarly, LGG cells also provide energy for life activities 
mainly by glycolysis instead of aerobic respiration. It was 
found that the expression and activity of key glycolytic 
enzymes in LGG cells increased, and glucose absorption 
and lactic acid production increased significantly. The 
significant increase of glycolysis metabolism increases the 
growth rate, invasion and metastasis ability of LGG cells, 
and promotes the progress of LGG disease (21). Research 
shows that the factors causing tumor occurrence, such as 
the deletion of tumor suppressor gene and the activation 
of proto oncogene, can cause metabolic changes of tumor 
cells, and lead to aerobic glycolysis disorder, which can lead 
to tumor progression (22). As low-grade gliomas are mainly 
characterized by their IDH mutations, IDH1 and IDH2 
are NADP+-dependent enzymes that catalyze the oxidative 
decarboxylation of isocitrate in the citric acid cycle to α- 
Ketoglutarate (α-KG). In glioma, IDH mutation causes the 
enzyme to α- KG is further converted to 2-hydroxyglutarate 
(2-HG). 2-HG and α-KG antagonizes, competitively 
inhibits multiple α-KG dependent dioxygenase activity, 
resulting in chromatin hypermethylation (23,24).  
Berghoff et al. (25) also found a strong association 
between IDH1 mutation status and the tumor immune 
microenvironment in LGG. Patients with mutated IDH1 
had higher immune cell infiltration and higher expression 
levels of programmed cell death ligand 1 (PD-L1) than 
patients with non mutated IDH1 IDH1 mutation can be 
used as a risk indicator for the prognosis of LGG. 

The present study summarizes the molecular typing 
of LGGs based on metabolic gene signatures and the 
construction of risk prediction models, providing new 
perspectives for the early detection, prognosis, and 
optimization of treatment options for LGGs. We present 
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the following article in accordance with the TRIPOD 
reporting checklist (available at https://atm.amegroups.
com/article/view/10.21037/atm-22-6502/rc).

Methods 

Acquisition of information on patients with LGG

Data from 510 LGG patients, including transcriptomic 
datasets and relevant clinical information, were collected 
from The Cancer Genome Atlas (TCGA, www.portal.gdc.
com). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). 

Selection of energy metabolism-related genes and consensus 
clustering 

Data on energy metabolism genes were collected from 
the Molecular Signatures Database (MSigDB) (www.
broad.mit.edu/gsea/msigdb/) (14,26). After removing the 
overlapping genes, 590 genes related to energy metabolism 
were retrieved. Consensus clustering was performed 
using “ConsensusClusterPlus” (v1.54.0) (cluster size: 
6). Heatmaps were created using “pheatmap” (v1.0.12) 
to visualize gene expression. Survival was assessed using 
Kaplan-Meier curves generated by the “survival” R package.

Differentially expressed genes (DEGs) recognition and 
enrichment assay 

To understand the DEGs between the groups, volcano plots 
(fold change >4.0 or <0.25, P<0.05) were drawn to illustrate 
the abundance of DEGs using “ggplot”. The top 50 up- or 
down-regulated DEGs were displayed as a heatmap. For a 
deeper understanding of the functions of involved genes, 
enrichment analysis was carried out using “ClusterProfiler”. 
Gene Ontology (GO) and the Kyoto Encyclopedia of 
Genes and Genomes (KEGG) were also analyzed with 
“ClusterProfiler”. Furthermore, the one-class logistic 
regression (OCLR) algorithm was applied to highlight 
the relationship between metabolic status and CSCs, as 
previously described (27). 

Investigation of immune infiltration and immune 
checkpoints

The groups were consensus-clustered, and immune 

inf i l trat ion was est imated using CIBERSORT in 
‘immunedeconv’ and displayed as heatmaps and boxplots. 
In addition, eight immune checkpoint-related genes were 
selected, including CD274, PDCD1, PDCD1LG2, CTLA4, 
LAG3, HAVCR2, TIGIT, and SIGLEC15, and the gene 
levels were extracted and visualized using the “ggplot2” 
and “pheatmap” R packages. Data were analyzed using 
the Wilcox test, and P<0.05 was considered statistically 
significant. 

Gene signature identification

The DEGs between groups were obtained as three gene 
sets. Energy metabolism-related genes were selected using 
a Venn diagram with these three gene sets and 590 energy 
metabolism-related genes. Using univariate Cox regression, 
LGG data were screened to determine whether genes 
associated with energy metabolism could predict overall 
survival in patients. Additionally, LASSO Cox regression 
was applied to select features through glmnet. A Kaplan-
Meier assay was performed using log-rank tests and 
univariate cox regression.

Results

Data collection and consensus clustering

To explore the involvement of energy metabolism in 
LGG, the clinical information and RNA test data of 
510 patients were collected from TCGA. Subsequently, 
590 energy metabolism-related genes (EMRGs) were 
identified. To further investigate how EMRGs affect LGG 
prognosis, an empirical cumulative distribution function 
(CDF) plot, principal components analysis (PCA), and a 
consensus clustering matrix showed that LGG patients 
were divided into four groups (Figure 1A-1D and available 
online: https://cdn.amegroups.cn/static/public/atm-
22-6502-1.xlsx). DEGs [standard deviation (SD) >0.1] 
grouped by EMRGs were shown in these two groups 
(Figure 1E and available online: https://cdn.amegroups.
cn/static/public/atm-22-6502-1.xlsx). Among the LGG 
patients in clusters 1 to 4, the median overall survival 
was 10.3, 7.3, 4.7, and 1.7 years (P<0.0001, Figure 1F  
and available online: https://cdn.amegroups.cn/static/
public/atm-22-6502-1.xlsx), and progression-free survival 
was 6.3, 3.6, 4.1, and 1.1 years (P<0.0001, Figure S1),  
respectively.

https://atm.amegroups.com/article/view/10.21037/atm-22-6502/rc
https://atm.amegroups.com/article/view/10.21037/atm-22-6502/rc
http://www.portal.gdc.com
http://www.portal.gdc.com
http://www.broad.mit.edu/gsea/msigdb/
http://www.broad.mit.edu/gsea/msigdb/
https://cdn.amegroups.cn/static/public/atm-22-6502-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-1.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-1.xlsx
https://cdn.amegroups.cn/static/public/ATM-22-6502-supplementary.pdf
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Figure 1 Subtypes of LGG patients based on the EMRG consensus cluster. (A) CDF plot for k=2 to 6. (B) AUC changes. (C) Principal 
component analysis of the different clusters. (D) Consensus clustering matrix of 510 LGG patients for k=4. The darker the blue stand for 
the higher the expression of gene set. (E) Heatmap of gene expression related to energy metabolism. Red/blue: high/low gene expression. (F) 
Kaplan-Meier survival curves of overall survival in the different clusters. LGG, low-grade gliomas; EMRG, energy metabolism-related gene; 
CDF, cumulative distribution function; AUC, area under the curve.
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Enrichment analysis 

To investigate the different mechanisms between the 
clusters, we identified the DEGs in clusters 1 and 4 with 
the largest differences in overall survival. The volcano plot 
displayed the up-regulated genes (CACNG2, TRIM67, 
SCRT1, PRLHR, etc.) and down-regulated genes (PDPN, 
EMP3, CH3L1, TIMP1, etc.) in cluster 1 compared 
to cluster 4 (Figure 2 and available online: https://cdn.
amegroups.cn/static/public/atm-22-6502-2.xlsx). Next, the 
top 50 genes were displayed as a heatmap in order of their 
up- and down-regulation (Figure 2B and available online: 
https://cdn.amegroups.cn/static/public/atm-22-6502-2.
xlsx). In addition, the threshold and adjusted P value of the 

reduced change value were set at 4 and 0.05, respectively, 
and functional enrichment analysis was conducted based on 
the up- and down-regulated genes.

As shown in Figure 2C,2E, the major signaling pathway 
in cluster 1 shown by KEGG analysis was mainly related to 
activating the synaptic transmission processes and down-
regulating the immune-related functions. The biological 
process of GO analysis showed a similar result, with the 
major enriched terms closely associated with the activated 
synaptic transmission in up-regulated genes (Figure 2D and 
available online: https://cdn.amegroups.cn/static/public/
atm-22-6502-2.xlsx) and immune cell proliferation in down-
regulated genes (Figure 2F and available online: https://cdn.
amegroups.cn/static/public/atm-22-6502-2.xlsx).
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Figure 3 Analysis of the immune cell infiltration in clusters 1 and 4. (A) Heatmap of immune cell scoring using the CIBERSORT algorithm. 
Red/blue represents high/low expression or score. (B) Boxplots of immune infiltration status using the CIBERSORT algorithm. Boxplot (C) 
and Heatmap (D) of IC-related gene expression. The “-” represents no statistical significance. Red/blue represents high/low expression or 
score. (E) Boxplot of immune checkpoint-related genes expression in two clusters. CSC score (F) and chemoresistance of the two clusters 
to temozolomide (G), vinblastine (H), and cisplatin (I). *P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. CSC, cancer stem cells; IC, immune 
checkpoint.

Immune infiltration assay 

The up-regulated genes in cluster 4 were closely 
related to tumor immunity. The immuno-infiltration 
heatmap revealed markedly different tumor immune 

microenvironments (Figure 3A, available online: https://

cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx). The 

boxplots using the CIBERSORT algorithm also showed 

similar results (Figure 3B,3C, available online: https://cdn.

https://cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx
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amegroups.cn/static/public/atm-22-6502-3.xlsx). Moreover, 
the expressions of immune checkpoint (IC)-related genes 
were higher in cluster 4 (Figure 3D,3E, available online: 
https://cdn.amegroups.cn/static/public/atm-22-6502-3.
xlsx). These results indicated a close link between EMRGs 
and immune checkpoint biomarkers, which may contribute 
to LGG immunotherapy. 

CSCs and drug sensitivity analysis

Analysis of the CSCs of 11,774 CSC-related gene profiles 
indicated that the CSC scores were higher in cluster 1 
patients, suggesting a link between energy metabolism and 
CSC scores (Figure 3F and available online: https://cdn.
amegroups.cn/static/public/atm-22-6502-3.xlsx). Next, drug 
susceptibility was assessed in the two clusters. Furthermore, 
the energy metabolism status was closely related to the 
half maximal inhibitory concentration (IC50) scores of 
temozolomide, vinblastine, and cisplatinin LGG patients 
(Figure 3G-3I and available online: https://cdn.amegroups.
cn/static/public/atm-22-6502-3.xlsx).

Identification of the genetic prognostic markers associated 
with energy metabolism

Considering that LGG prognosis is closely related to energy 
metabolism status, an EMRG-based prognostic signature 
(EMRGPS) was constructed for prognostic evaluation. A 
Venn diagram was constructed using the DEGs between 
the four clusters, and 11 EMRGs were identified from the 
total EMRGs and four clusters (Figure 4A and available 
online: https://cdn.amegroups.cn/static/public/atm-22-
6502-4.xlsx). More importantly, these 11 EMRGs s were 
significantly associated with the overall survival of LGG. 

To verify the feasibility and stability of clinical 
prognostications using these 11 genes, we performed 
LASSO analysis and obtained six EMRGs (PYGL , 
HS3ST3B, NNMT, FMOD, CHST6, and B3GNT7) that 
were associated with the prognosis of LGG patients 
(Figure 4B,4C, available online: https://cdn.amegroups.cn/
static/public/atm-22-6502-4.xlsx). We then calculated the 
EMRGPS risk scores of the energy metabolism-related 
genes based on the Cox coefficients. A group of LGG 
patients could be categorized into low- or high-risk groups 
based on risk scores (Figure 4D, available online: https://
cdn.amegroups.cn/static/public/atm-22-6502-4.xlsx). 
As shown in the Kaplan-Meier curve, high-risk patients 
exhibited drastically poorer overall survival (Figure 4E, 

available online: https://cdn.amegroups.cn/static/public/
atm-22-6502-4.xlsx), with areas under the curves (AUCs) 
for 1-, 3-, and 5-year overall survival of 0.874, 0.835, and 
0.728, respectively (Figure 4F, available online: https://cdn.
amegroups.cn/static/public/atm-22-6502-4.xlsx).

In addition, LGG tissues showed a higher expression of 
the six EMRGs compared to healthy tissues (Figure 5 and 
available online: https://cdn.amegroups.cn/static/public/
atm-22-6502-5.xlsx). 

Identification of the independent genetic prognostic 
markers associated with energy metabolism

To further confirm the role of the above six EMRGs in 
prognostic assessment, LASSO analysis was performed, 
and each of those six genes was found to be associated 
with LGG prognosis. LGG patients could be separated 
into low- or high-risk groups according to the risk scores. 
For each of these six genes, the Kaplan-Meier assay 
indicated that high-risk patients had worse overall survival  
(Figure 6A-6F, available online: https://cdn.amegroups.cn/
static/public/atm-22-6502-6.xlsx). Also, the AUCs of these 
six genes for 1-year overall survival were 0.834, 0.852, 0.836, 
0.807, 0.786, and 0.794, respectively. For PYGL, HS3ST3B, 
NNMT, FMOD, CHST6, and B3GNT7, the predicted AUC 
1-year overall survival was 0.834, 0.852, 0.836, 0.807, 0.786, 
and 0.794, respectively; the 3-year overall survival was 0.79, 
0.773, 0.77, 0.746, 0.718, and 0.743, respectively; and the 
5-year overall survival was 0.724, 0.773, 0.662, 0.675, 0.584, 
0.675, and 0.682, respectively (Figure 6G-6L, available 
online: https://cdn.amegroups.cn/static/public/atm-22-
6502-6.xlsx). These results indicated that these six genes 
had a stable and independent predictive capacity.

Discussion 

Cancer cells acquire large amounts of ATP through efficient 
glycolysis rather than oxidative phosphorylation, even in the 
presence of oxygen, creating a favorable microenvironment 
and proliferative advantage for tumor cells, a phenomenon 
first described as the Warburg effect (28). Since then, cancer 
researchers have exerted significant efforts to understand 
the mechanisms underlying metabolic reprogramming 
(10,29). Increasing evidence suggests that the metabolism 
of cancer patients is affected by drugs targeting multiple 
cellular energetics pathways (30). Herein, based on TCGA 
database, an evaluation of how energy metabolism affects 
LGG prognosis was conducted. Clinicopathological features 

https://cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-3.xlsx
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https://cdn.amegroups.cn/static/public/atm-22-6502-4.xlsx
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https://cdn.amegroups.cn/static/public/atm-22-6502-4.xlsx
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https://cdn.amegroups.cn/static/public/atm-22-6502-5.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-5.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-6.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-6.xlsx
https://cdn.amegroups.cn/static/public/atm-22-6502-6.xlsx
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Figure 4 Prognostic predictive signatures of six EMRGs. (A) Screening of eleven candidate EMRGs. (B) LASSO coefficient profiles of 
eleven EMRGs. (C) Partial likelihood deviance was plotted vs. log lambda. (D) Risk score for each sample based on EMRGs. LGG patients 
were separated into low-/high-risk according to the risk scores. The levels of six genes associated with the prognostic features in each sample 
are displayed in red and blue, respectively. (E) Kaplan-Meier survival curves. (F) AUC of the risk score signature in the ROC analysis. 
EMRG, energy metabolism-related gene; LASSO, least absolute shrinkage and selection operator; LGG, low-grade gliomas; ROC, receiver 
operating characteristic; AUC, area under the curve; CI, confidence interval.

are closely associated with energy metabolism, suggesting 
that it is significantly related to LGG.

Tumor cells adopt aerobic glycolysis to meet their 
own demand of rapid proliferation, closely related to the 
microenvironment of tumors. Because in the process of 
rapid tumor proliferation, the number of original blood 

vessels can’t meet the needs of the tumor itself to grow, 
the oxygen supply is severely insufficient. Whereas under 
hypoxia, glycolysis rapidly generates energy needed for cell 
proliferation. Interestingly, the hypoxic microenvironment 
present at the periphery of tumor cells activates the hypoxia 
inducible factor (HIF) family of proteins and upregulates 
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glucose transporters and multiple enzymatic activities of 
the glycolytic pathway, thereby exacerbating the utilization 
of glycolysis until sufficient oxygen is provided after 
angiogenesis. Whereas afterwards the cells enter a period 
of accelerated division again resulting in hypoxia, such a 
vicious cycle causes the longer the tumor cell grows, and 
even generates invasive capacity (31). Thus enabling tumour 
cells to gain a proliferative advantage, escape immune 
surveillance or reduce the apoptosis of mutations, may all be 
selectively retained during rapid cell proliferation (32). Such 
as the P53 gene is one of the important tumor suppressors 
and an important gene related to metabolism. TP53 
mutations can lead to chromosomal/genomic mutational 
instability and thereby elevate tumor mutational burden 
(TMB). Examination of immune factors revealed that TMB 
levels were correlated with natural killer cell levels, anti-
inflammatory factor ratios, and M1/M2 macrophage ratio 
levels. So TP53 mutated tumor cells are more prone to 
immune escape, which leads to tumor cell infiltration (33).

According to the functional enrichment analysis, energy 
metabolism and inflammatory responses were intimately 
related, indicating a relationship between energy metabolism 
and the tumor immune microenvironment. Recently, 
various groups have reported several changes in the 
metabolic status of LGG, suggesting that metabolic status 
might contribute to the tumor immune microenvironment 
(34,35). Some reports have demonstrated that immunity 
is influenced by lactate accumulation during aerobic 

glycolysis in tumor cells, including enhanced cytokine 
transcription and the inhibition of monocyte-to-dendritic 
cell differentiation (36,37). Moreover, mitochondrial 
metabolic reprogramming can trigger immunogenic cell 
death (ICD) and increase the effectiveness of chemotherapy 
in cancer by increasing OXPHOS (38). Similar results 
were shown in our study: metabolic status was closely 
linked to chemo-resistance to chemotherapeutic agents, 
including temozolomide, vinblastine, or cisplatin. Our 
findings also highlighted that many of the immune 
checkpoint inhibitor biomarkers exhibited a significant 
relationship with energy metabolism, which are useful as 
biomarkers and even contribute to the progression of LGG. 
Checkpoint inhibitors for LGG have provided considerable 
achievements, which could change the paradigm of LGG 
treatment (39). As a result of this study, it is suggested that 
the energy metabolism status might influence the tumor 
microenvironment by influencing immune cell infiltration, 
which might play a key role in LGG carcinogenesis by 
influencing immunotherapy sensitivity and resistance.

Using the OCLR algorithm (40), we revealed that 
the metabolic status of LGG is closely related to CSCs, 
which are a class of undifferentiated cells with stem cell 
properties and high tumorigenicity, contributing to cancer 
heterogeneity and recurrence in LGG (41). Conventional 
treatments such as chemotherapy, radiotherapy, and 
immunotherapy have proven ineffective in combatting 
CSCs. However, the underlying mechanisms of CSC in the 
energy metabolism state of LGG patients require further 
investigation. 

It is very important to search for the early diagnosis and 
prognostic indicators of LGG. In recent years, studies have 
suggested that ATRX mutation is related to the progression 
of brain glioma. ATRX mutation is common in grade II 
astrocytoma, and most of them have p53 gene mutation 
at the same time. Without p53 gene mutation, ATRX 
deletion will not cause brain tumors. The occurrence and 
progression of brain glioma is the result of IDH mutation 
and deletion of p53 and ATRX expression. In particular, 
ATRX deletion can lead to the mutation of relevant copy 
numbers and promote the progression of glioma (42). The 
expression of TPX2 is different between normal tissues 
and LGG tissues, and the expression of TPX2 in LGG 
tissues is significantly higher than that in normal tissues, 
and TPX2 expression is a risk factor for poor prognosis 
of LGG (43). Therefore, the expression level of ATRX, 
TPX2 and other genes is closely related to the prognosis 
of LGG. Owing to the strong link between energy 
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metabolism and the clinicopathological features of LGG, 
a signature was constructed to classify patients with poor 
prognoses. Combining LASSO regression, we found that 
the signature of six genes (PYGL, HS3ST3B1, NNMT, 
FMOD, CHST6, and B3GNT7) had a substantial effect on 
survival. Among these genes, we found that PYGL, NNMT, 
and CHST6 were differentially expressed between normal/
tumor tissues. PYGL encodes glycogen phosphorylase, 
which are related to an increased risk of CRCs (44). 
HS3ST3B1 encodes heparan sulfate 3-O-sulfotransferases, 
which are involved in neuronal axonogenesis (45). NNMT, 
which encodes Nicotinamide N-methyltransferase, drives 
metabolic remodeling and is associated with chemotherapy 
and radiotherapy resistance (46,47). FMOD encodes 
fibromodulin, which regulates glioma cell migration by 
activating the FAK-Src-Rho-ROCK signaling pathway in 
glioblastoma (48). CHST6, which encodes a carbohydrate 
sulfotransferase, leads to macular corneal dystrophy (49,50). 
Finally, B3GNT7 encodes glycoconjugates, which can 
reduce the motility of lung cancer cell lines (51).

In summary, this study showed that the status of 
energy metabolism is strongly associated with the 
immune-microenvironment, IC-associated genes, CSCs, 
chemoresistance, prognosis, and recurrence of LGG. Gene 
signatures related to energy metabolism were constructed 
to predict the prognosis in LGG patients. For precision 
medicine, this feature can satisfy clinical needs for LGG 
management to a certain extent.

Conclusions 

LGG prognosis can be accurately predicted using the six 
energy metabolism-related genes (PYGL, HS3ST3B, NNMT, 
FMOD, CHST6, and B3GNT7) altogether as well as based on 
the independent predictions of each of these six genes.
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