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Multipotential mesenchymal stromal cells (MSC) are present as a rare subpopulation

within any type of stroma in the body of higher animals. Prominently, MSC have been

recognized to reside in perivascular locations, supposedly maintaining blood vessel

integrity. During tissue damage and injury, MSC/pericytes become activated, evade from

their perivascular niche and are thus assumed to support wound healing and tissue

regeneration. In vitro MSC exhibit demonstrated capabilities to differentiate into a wide

variety of tissue cell types. Hence, many MSC-based therapeutic approaches have been

performed to address bone, cartilage, or heart regeneration. Furthermore, prominent

studies showed efficacy of ex vivo expanded MSC to countervail graft-vs.-host-disease.

Therefore, additional fields of application are presently conceived, in which MSC-based

therapies potentially unfold beneficial effects, such as amelioration of non-healing

conditions after tendon or spinal cord injury, as well as neuropathies. Working along these

lines, MSC-based scientific research has been forged ahead to prominently occupy the

clinical stage. Aging is to a great deal stochastic by nature bringing forth changes in an

individual fashion. Yet, is aging of stem cells or/and their corresponding niche considered

a determining factor for outcome and success of clinical therapies?

Keywords: vascular niche, cell-based therapy, aging biology, cellular dysfunction, age-associated pathology,

regenerative medicine

BACKGROUND

Mesenchymal stem cells (MSC) are multipotential precursor cells that maintain and repair tissues
in the body of adult individuals. MSC have been isolated from embryonic tissues as well as from
adult up to advanced ages (Landgraf et al., 2011; Batsali et al., 2013; Beane et al., 2014a; Todeschi
et al., 2015). Yet experimental knowledge about in vivo activities in regenerating models is still
scarce (Wang et al., 2013a; Zhao et al., 2015). Besides replenishing mesenchymal tissues, MSC also
modulate haematopoiesis as well as immune response (Pontikoglou et al., 2011; Hao et al., 2012;
Law and Chaudhuri, 2013; Bianco, 2014). Conceivably residing in perivascular locations, MSC are
identified with cells better known as pericytes. This cell type is involved in maintaining blood vessel
integrity under normal conditions. During tissue damage and injury, MSC are thought to become
instantaneously activated and by evading from their perivascular niche to support wound healing
and tissue regeneration (Murray et al., 2014; Wong et al., 2015).

MSC are acknowledged for their potential to regenerate damaged tissue due to their ability to
terminally differentiate into a broad variety of cell types. Deliberately, stem cells are perceived being
ageless by nature. Yet, it is by now generally accepted that, with advancing age, a decline of stem cell
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function and activity has its share in delaying the replacement
and the turnover of damaged cells in compromised renewable
tissues (Bajek et al., 2012; Bethel et al., 2013). Also, stem
cells in their niches are exposed to threads such as reactive
oxygen species, harmful chemical agents or physical stresses,
which trigger premature senescence, provoke accelerated cell
death or cellular transformation (Li et al., 2014a). In osseous
tissues at an advanced age, both mass and mineral density of
cortical and cancellous bone steadily decreases. At the same
time, fat cells emerge within the bone marrow and muscles. Fat
cell-specific expedition of systemically deteriorating adipokines
and pro-inflammatory cytokines primes the emergence of age-
associated diseases. Hence, aged or senescent circumstances
call for advanced therapies (Reitinger et al., 2015). Scientific
approaches aiming at standardized medical treatment often
neglect these biological and patho-physiological constraints.
Nevertheless, these should be distinctly considered. Otherwise
rightly conceived and diligently established strategies are bound
to fail.

UNRESOLVED QUESTIONS REGARDING
PHENOTYPIC APPEARANCE AND
IN VITRO TECHNIQUES

Biological Properties
Stromal cell types exhibit characteristic features. The rather
large spindle-shaped cells present microvilli on their surface
and produce extracellular matrix, which together facilitates
MSC to firmly adhere to cell culture plastic (Friedenstein,
1976; Castro-Malaspina et al., 1980). This property is often
exploited to isolate and culture-purify MSC from biopsies (Owen
and Friedenstein, 1988). Variant culture conditions significantly
impact on cell adhesion and consequently isolation outcome
and MSC expansion. Therefore, inconsistencies often arise when
employing inappropriate brands of cell culture plastic and media
supplements.

MSC Immunophenotype
Another selection criterion for MSC is a tri-lineage
differentiation potential forming osseous, adipose, and
cartilaginous progenitors (Mark et al., 2013; Patrikoski et al.,
2014), and a distinguished immune phenotype positive for
CD105, CD73, and CD90, and negative for CD45, CD34, HLA-
DR, and other markers (Dominici et al., 2006; Al-Nbaheen et al.,
2013). This marker canon is not always unequivocal, as other cell
types may also fulfill these criteria. MSC-like cells often exhibit
differential marker expression depending on tissue origin and
period of culture expansion (Gronthos et al., 1999; Wagner et al.,
2005; Kaiser et al., 2007; Riekstina et al., 2008). A prominent
example is the surface marker STRO-1. Due to the availability
of a highly affine monoclonal antibody, STRO-1 has not only
gained popularity as a marker but also for use in cell enrichment
(Stewart et al., 1999). Endothelial cells may however also express
STRO-1 thus questioning the specificity of this marker (Lin
et al., 2011; Ning et al., 2011). Though, the likely equivalence
of MSC to vascular pericytes reconciles STRO-1 being a good

marker for true MSC (Feng et al., 2011; Chen et al., 2012; da
Silva Meirelles et al., 2015). Another currently debated marker
is CD34. Previously, MSC were considered CD34 negative,
yet adipose-derived MSC express CD34 (Lin et al., 2008; Baer,
2014). Likewise, CD271 and CD146 markers have also been
described (Rasini et al., 2013; Busser et al., 2015; Cuthbert
et al., 2015). During culture expansion marker expression can
change. Whether, these changes reflect the biological age of
MSC has not been thoroughly studied. Also specific markers
amenable for the quantification of MSC age are so far not
available. In appreciation of this experience, further standards in
MSC validation are needed, in particular when surface antigens
expression differs in primary vs. culture-expanded MSC.
Together with the restricting biological constraint of biological
and replicative age, also tissue origin has to be accounted.

Isolation Techniques
To enhance isolation yields, often cell purification and
fractionation by density gradient centrifugation is performed.
This procedure bears the enhanced risk of contamination
and therefore requests skilled operators. To reduce variability,
closed, semi-automated separation devices, granting higher
recovery rates, have been engineered. Their operational speed
and efficiency warrant reproducible processing thereby, easing
standardization for fulfilling compliance criteria in “Good
Manufacturers Practice” (GMP) (Ito et al., 2010; Otsuru
et al., 2013, 2015). Production of clinical-grade MSC must be
performed in accordance to GMP standards and compels not
only reproducibility, but also scalability. Working along the
same line, novel automated cell platforms have been introduced
for production of higher cell numbers in reduced times and
passages (Roberts et al., 2012; Nold et al., 2013; Rojewski et al.,
2013; Hanley et al., 2014). Gaining a pure MSC culture is
difficult in particular when attempting to erase single-lineage
committed progenitors or contaminating hematopoietic cells
(Kerk et al., 1985; Kuznetsov et al., 1997). Therefore, selection
enrichment using fluorescence-activated cell sorting (FACS) or
magnetic-activated cell sorting (MACS) has been introduced.
Although FACS was initially favored because it provides higher
purities, shear stress within the fluids compromised cell viability,
and chemotaxis (Deschaseaux et al., 2003; Rada et al., 2011; Li
et al., 2013).

Culture Conditions
Further open issues are (i) seeding densities in a defined growth
medium (Ben Azouna et al., 2012; Hagmann et al., 2013), (ii)
specification of media supplements (Aldahmash et al., 2011;
Bieback et al., 2012; Chimenti et al., 2014; Stern-Straeter et al.,
2014), and (iii) atmospheric oxygen conditions during culture
and handling (Grayson et al., 2006; Klepsch et al., 2013; Ito
et al., 2015). Not solely in culture expansion, serum is also
often used in cryopreservation. The use of animal-derived serum
bears contamination risks and lot-to-lot variability. For clinical
translation, it is therefore reasoned to replace animal-derived
supplements (Tekkatte et al., 2011). Using autologous human
serum has been proposed (Stute et al., 2004). Arguments such
as high costs and the high likelihood of factors in the blood of
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donors, which may dominantly impact on MSC growth, greatly
promoted the development of serum-free, chemically defined
media (Mimura et al., 2011; Chase et al., 2012; Li et al., 2015).
Alternatively, standardized human blood-derived products have
been proposed (Díez et al., 2015; Riordan et al., 2015). Still
unresolved and seemingly important in establishing MSC for
therapeutic application is the definition of potency assays, that
address patient’s age.

MOVING INTO CLINICS

In recent years, more than 500 clinical trials employing MSC
for the treatment of various diseases have been registered
worldwide (http://www.clinicaltrials.gov, 60 thereof in
Europe www.clinicaltrialsregister.eu). Besides applications
in musculoskeletal defects and trauma MSC are also widely
tested in pathologies, which are of immunological etiology
such as graft-vs.-host disease or multiple sclerosis, lupus,
diabetes type I, and Crone’s disease. The reason is, MSC exhibit
dominant immune-modulatory properties (Castro-Manrreza
and Montesinos, 2015). More and more details regarding the
underlying molecular mechanisms and cellular interactions
how MSC control immune competent cells are being unraveled
(Glenn and Whartenby, 2014). MSCs are also tested for liver and
heart pathologies as well as ocular diseases (Li et al., 2014b).

Clinical Trial Cohort Variability
Many approaches are still exploratory and many ongoing clinical
trials are still in Phase I Most strategies were carefully validated
in diligently designed preclinical tests. However, commencing
clinical trials firstly address safety issues thus rarely corroborating
results cannot be expected. Early phase clinical studies also often
comprise small heterogeneous groups exhibiting variant health
status, age and ethnicity. Also sex-specific differences appear to
be of relevance (Tajiri et al., 2014). For example,MSC from female
bone marrow could be smaller and lower in number (Zanotti
et al., 2014) but divided more rapidly than found for most
male MSC. They had higher clonogenic activity and exhibited
enhanced expression of the surface antigens, CD119 and CD130
(Siegel et al., 2013). Furthermore, functional differences were
reported to be sexually dimorphic. Suppression of T-lymphocyte
proliferation is moremarked in females, while male-derivedMSC
possess a more robust osteogenic activity (Siegel et al., 2013;
Ranganathan et al., 2014; Park et al., 2015). Female MSC showed
a higher resistance in endotoxic and hypoxic injury models,
inferring that improved survival in adverse micro-environments
may be dependent on sex steroids. Indeed estrogen and estradiol
exert a protective activity against apoptosis, favor proliferation,
and delay the onset of senescence (Huang et al., 2013; Li et al.,
2014c; Sung et al., 2015).

Most trials refrain from stratifying into age groups for
obvious reasons of addressing a specific pathology rather than
a gerontological principle. Animal trials are mostly done on
young animals; clinical trials are rarely concerned with young or
middle aged adults. MSC for animal experimentation are most
often isolated from young animals, instead in humans autologous
approaches are performed mostly in aged individuals. Further

concerns are the greatly varying cell isolation and expansion
procedures, as the outcome of a clinical trial is pertinently
influenced by the quality of a cellular product. In fact, the
population of cells harvested from bone marrow aspirates is very
heterogeneous, consisting only of 0.001–0.01% mesenchymal
precursor cells. To gain sufficient numbers of potential stem cells,
the isolates are purified for subsequent in vitro expansion. At that
point the uncertainty arises whether replicating cells accumulate
damage which turns them senescent (Bonab et al., 2006). Suffice
it to say that the recommendation is to restrict applications to
replicating young MSC.

MSC Aging: Cellular Changes and
Determinants
First animal studies showed, already 10 years ago, that the
transplantation of aged rat MSC was less effective (Zhang
et al., 2005). Hence, the vexed question arose whether donor
age influences the therapeutic efficacy in clinical trials (Wang
et al., 2013b). MSC derived from old patients exhibit reduced
proliferative capacity and in some cases show skewed multi-
lineage differentiation potentials, telomere shortening, or DNA
damage accumulation (Behrens et al., 2014; Efimenko et al., 2014;
Kizilay Mancini et al., 2015; Reitinger et al., 2015). They also
exhibit increased levels of reactive oxygen species and nitric
oxide, lower superoxydismutase activity senescence-associated
β-galactosidase activity, enlarged morphology, and p53 protein
upregulation. These observations confirm the doubts that aged
cells may only be acceptable for transplantation if specially
treated or selected (Kornicka et al., 2015). In cases of autologous
cell-based applications, constitution, and health status of the
patient may pertinently impact on the therapeutic outcome.
Changes in MSCmorphology, proliferation capacity, senescence,
and multi-lineage potential are linked to advanced age but could
be also induced by several disease conditions, thus compromising
their therapeutic potencies (Sethe et al., 2006; Choudhery et al.,
2014; Escacena et al., 2015).

It is aged people, who are the primary targets for stem
cell therapy. Provided putative deviations, procedures selecting
for flawless cells are potentially required before applying aged
cells in autologous therapy. Allogenic transplantation of stem
cells derived from young donors are considered to potentially
overcome aging-related limitations (Figure 1).

It is further conceivable that the epigenetic status and/or aging
as well as pathology-specific changes of cells may be different
when isolating MSC from different tissues. It is currently unclear
how to predict the optimal MSC source in order to warrant
an optimal outcome (Golpanian et al., 2015). Interventions
provoking rejuvenation of MSC have therefore been proposed.
Extracellular factors, such as oxygen tension or redox status, exert
effects on MSC aging (De Barros et al., 2013; Bigot et al., 2015;
Sart et al., 2015).

Microenvironmental conditions, epigenetic processes
including DNA methylation, telomerase activity, microRNA as
well as specific growth factor signaling actively modulate MSC
fate (Madonna et al., 2013; Jing et al., 2015; Oh et al., 2015; Okada
et al., 2015). For their role in MSC biology, all these aspects
provide challenging means to further enhance stem cell efficacy.
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FIGURE 1 | Stem-cell populations are maintained in “niches.” Stem cells and the corresponding niche entertain dynamic interactions controlling sustaining

tissues regeneration and repair, yet also regulate somatic maintenance. Here a scheme of a bone marrow niche is provided and its potential changes as a

consequence of the aging process. Chronological aging diminishes adult stem cells fitness and on the long run induces cellular and anatomical modifications within

the niche. In old age mesenchymal stem cell (MSC) population has shrunken, while the number of inflammatory and fat cells increased to a large extent. Alongside,

other extracellular factors also influence the aging process of stem cells together with their corresponding niche. Explanation of stem cells and in vitro amplifications

adds risks of replicative aging to stem cell and progenitor fates. Hence when reintroducing cells in an autologous way, which is more likely undertaken as patients are

more often of advanced age, chronologically old/replicative aged cells are applied. Conclusively, aberrations within a stem cell niche, as a consequence of aging,

impose both chronological and replicative aging on therapeutic MSC, potentially compromising the success of autologous transplantation in aged donors.

Yet to date methods need to reliably prompt efficacy before being
implemented in cell production at authorized manufacturing
sites (Oh et al., 2014). Measuring the cellular fitness of MSC
has been suggested being a invaluable prognostic value for
enhancing the therapeutic success (Wagner et al., 2010). This
complex question may however only be tackled by generating a
comprehensive database for comparative purposes that stores
information on source and MSC characteristics derived from
different disease conditions. It is very likely that a pathological
state perturbs the tissue milieu (niche) where MSC reside (Mastri
et al., 2014). A systemically challenged micro-environment will
impinge on the functional integrity of MSC, acknowledging
the widely accepted principle of a stem cell niche (Krinner and
Roeder, 2014). MSC niche interactions appear to be of mutual
benefit since MSC release a wide range of bioactive factors
that confer trophic and immune-modulatory effects, such as
cytokines and distinct forms of miRNA and tRNA species (Hsiao
et al., 2012; Baglio et al., 2015). More and more reports have
unraveled the potent features of the MSC secretome, which now
is thought to become by itself a regenerative therapeutical tool
(Sdrimas and Kourembanas, 2014; Gallina et al., 2015; Succar
et al., 2015; Tran and Damaser, 2015).

Considering the knowledge that the patient’s disease state
pertinently affects MSC functionality, the impact of medication
on MSC, be it before or after implantation, is largely neglected
and little data are available. MSC are greatly resistant to
chemotherapy agents and therefore, therapies in patients
undergoing cancer treatment are conceivable (Beane et al.,
2014b; Bosco et al., 2015; Yoon et al., 2015) but have yet

been not consistently successful (Buttiglieri et al., 2011; Choron
et al., 2015). Medications, such as immune suppressants,
glucocorticoids, psychopharmaceutics, and contrast agents may
interfere with cell viability and proliferation capacity (Georgiou
et al., 2012; Jansen Of Lorkeers et al., 2014; Schneider et al.,
2015; Tang et al., 2015; Tsuji et al., 2015). These studies provided
preliminary though valuable evidences, suggesting the need of
more consistent drug interaction studies with special attention
given to both short and long-term observations.

CONCLUSION

MSC are considered “work horses” for cell-based therapy. This
is because very little ethical concerns have been raised and
it is now widely accepted that MSC are largely resistant to
malignant transformation. Being ubiquitously present in many
tissues, MSC could be successfully isolated from cord blood, fat,
skeletal muscles, dental pulp, and several other sources (Ogura
et al., 2014). Despite all positive aspects and the remarkable
progress in stem cell research, many decisive issues remain to
be resolved. Difficult standardization on one hand, the persisting
ambiguity regarding MSC-specific markers and the technical
challenges with orthotopic transplantations are hampering
experimental validations. It is important to unambiguously prove
that stromal tissues of various origins contain stromal stem
progenitor cells. In contrast to bone marrow-derived MSC,
most experimental procedures aiming at identifying MSC in
different tissues were solely based on in vitro data regarding
non-clonal culture and multi-lineage differentiation. Therefore,
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the true stem cell character of these MSC has yet not be fully
proven (Bhartiya, 2013). For these reasons, their physiology
and functions in vivo are still scarcely known. Currently,
information regarding biological and molecular features, as
well as the dominant influences on their surrounding tissue
environment, appears insufficient (Murray et al., 2014; New et al.,
2015). In fact, sharing the same immune phenotype may be
a deceptive indicator for predicting cellular function. Further
“known unknowns” are details about migratory properties of
MSC. MSC are likely incapable of entering the circulation
(Hoogduijn et al., 2014). However, short-distance migration
into adjacent tissues is conceivable (Vanden Berg-Foels, 2014),
implying that a population of MSC in any given tissue might
indeed represent a mixture of local and “migrant” MSC.

In light of these considerations, the question whether special
MSC sources are putatively more potent in specific disease
treatments requires in depth studies, addressing comparative
measures of therapeutic efficacy and safety. Several studies albeit
designed and performed in a comparable fashion reported that
superficially equal MSC resulted in different outcomes in vivo
(Meraviglia et al., 2014; Wang et al., 2014; Reinisch et al., 2015).
To overcome the present discrepancies, US Food and Drug
Administration (FDA) suggested building a database, in which
data from MSC subjected to varying culture conditions, derived
from diverse tissues, and donors should be compiled.

Once safety of MSC administration can be granted, the next
step is to obtain consistent results on sustained curative benefit.
Inconsistency or failure in clinical outcomes might not be solely
related to MSC preparations, but also attributable to disparate
therapeutic protocols. The optimal route of MSC delivery and
dosage regime are still debated (Kean et al., 2013; Richardson
et al., 2013; Chang et al., 2014; Yavagal et al., 2014). The success of
a systemic delivery depends very much on the ability of MSC to
home to the site of injury and to access target tissues in case of a
damaged or still regenerating vascularization (Cerri et al., 2015).
Efficacious outcomes after intravenous delivery have repeatedly
been reported (Semedo et al., 2009; Cruz et al., 2015; Rapp et al.,
2015). Needless to say that topic administration could be more
successful (Antunes et al., 2014; Ishihara et al., 2014; Cerri et al.,
2015; Huang et al., 2015).

Specification and definition of efficacy is another pending
question to be answered. Multi-lineage differentiation in vitro
has often been employed to deliberately grant in vivo efficacy. As
the one has very little to do with the other, in particular because
differentiation in vitro is performed under tightly controlled
culture conditions, better methods have been conceived. In vivo,
MSC differentiation or complex functions certainly depend on
a plethora of parameters, which can be hardly reconstructed
in vitro. Direct interactions with micro-vascular structures as
well as with other cell types, such as endothelial cells appear

to play stimulating and inducing roles (Chen et al., 2015; da
Silva Meirelles et al., 2015; Tsai et al., 2015). Working along
this line, the ability of MSC to suppress T- and B-lymphocytes
proliferation and to produce lymphokines was exploited to
predict MSC efficacy in vivo (Collins et al., 2014; Del Fattore et al.,
2015). But once more controversial results have been reported
(Sajic et al., 2012).

This pointed at establishing superior methods to verify the
functional capacity of MSC prior clinical applications. Thus,
tests in living animal were proposed to distinctly assay intrinsic
capacities to differentiate into functional tissues or to exert
other desired functions. Sequential heterotopic transplantation
has proven to fulfill this need. Generation of heterotopic ossicles
has demonstrated not only skeletogenic potentials of single clone
progenitors but also self-renewal ability. It must be stressed that
in vivo functional assays also provided means and measures to
simultaneously acquire long-term safety data. There is a lack
of suitable long-lived models, which would allow the sensitive
risk assessment of MSC or its secretome in inducing malignancy
(Bruno et al., 2014; Arango-Rodriguez et al., 2015; Schweizer
et al., 2015).

A major caveat in most clinical MSC applications is the lack of
long-term follow ups. Such studies would reveal those parameters
that are essential in determining risk and safety issues in cell
therapy. Despite some recent attempts (Brizuela et al., 2014;
Caminal et al., 2014; Ciccocioppo et al., 2015; Daltro et al., 2015;
Davatchi et al., 2015), we are currently far from a systematic and
robust analysis. Only little attention has been given to acquire
information on survival after implantation, on the impact of
MSC cell therapy on other tissues or on unintended alterations
in target tissue as well as in the tissue-borne MSC population
itself. Implementation of MSC in therapies raises many practical
questions which are beyond scientific consideration. Presently
most trials are on a small-scale and mainly performed by
academic centers. To acquire reliable and precise information
on how to efficiently introduce MSC in clinical therapy, larger
trials are needed with the active involvement of industry and the
support of interdisciplinary teams.
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