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Aspirin eugenol ester (AEE) possesses anti-inflammatory and anti-oxidative effects. The

study was conducted to evaluate the protective effect of AEE on paraquat-induced

acute liver injury (ALI) in rats. AEE was against ALI by decreasing alanine transaminase

and aspartate transaminase levels in blood, increasing superoxide dismutase, catalase,

and glutathione peroxidase levels, and decreasing malondialdehyde levels in blood and

liver. A total of 32 metabolites were identified as biomarkers by using metabolite analysis

of liver homogenate based on ultra-performance liquid chromatography-tandem

mass spectrometry, which belonged to purine metabolism, phenylalanine, tyrosine

and tryptophan biosynthesis, glycerophospholipid metabolism, primary bile acid

biosynthesis, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, histidine

metabolism, pantothenate, and CoA biosynthesis, ether lipid metabolism, beta-Alanine

metabolism, lysine degradation, cysteine, and methionine metabolism. Western

blotting analyses showed that Bax, cytochrome C, caspase-3, caspase-9, and

apoptosis-inducing factor expression levels were obviously decreased, whereas

Bcl-2 expression levels obviously increased after AEE treatment. AEE exhibited

protective effects on PQ-induced ALI, and the underlying mechanism is correlated with

antioxidants that regulate amino acid, phospholipid and energy metabolism metabolic

pathway disorders and alleviate liver mitochondria apoptosis.

Keywords: aspirin eugnol ester, paraquat, metabolites, hepatotoxicity, antioxidation

INTRODUCTION

PQ is a non-selective herbicide with excellent effect, which has been widely used in the world for
many years (1–3). PQ is extremely toxic to humans (4, 5). Studies have shown that when taking
about 10ml PQ, patients can die of multiple organ failure a few hours later (6). The accumulation
of PQ can damage the main organs such as lung, kidney, liver and heart (7). It is reported that the
liver is one of themain target organs of PQ poisoning, which is often accompanied by the formation
of free radicals (8, 9). The liver is the main metabolic and detoxifying organ of the human body
(10, 11). A multiple potentially harmful stimuli challenge the liver, including free radicals. It is
well known that drugs and other substances are further transformed and metabolized after being
absorbed by the body, resulting in the production of free radicals in the liver. Excessive free radicals
produce oxidative stress on the liver, which in turn leads to oxidative damage to the liver (12).

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.589011
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.589011&domain=pdf&date_stamp=2020-12-17
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:lijy1971@163.com
https://doi.org/10.3389/fmed.2020.589011
https://www.frontiersin.org/articles/10.3389/fmed.2020.589011/full


Zhang et al. AEE Attenuates PQ-Induced Liver Injury

Currently, the molecular mechanism of hepatotoxicity
induced by PQ is not completely understood. It is known that
the redox response is one of the main factors involved in the
toxic effects of PQ (13). It has been reported that PQ molecules
can interfere with the electron transport chain and then inhibit
the synthesis of NADPH (14). Excessive production of ROS
was observed during PQ poisoning, indicating that oxidative
stress was involved in the pathological changes induced by PQ.
Excessive ROS and excessive free radicals lead to oxidative stress
by destroying DNA, proteins and lipids (15). Therefore, the
premise of the toxic effect of PQ is its induced oxidative stress.
At present, the main methods for the treatment of PQ poisoning
are immunosuppressant and hemodialysis (16). Existing clinical
treatments for severe PQ poisoning only relieve symptoms (17).
In recent decades, new drugs to treat the toxicity of PQ have
been developed. In the early stages of poisoning, the use of
antioxidants has been shown to effectively reduce the damage
of PQ to organs. Therefore, it is imperative to develop potential
effective drugs for the treatment of PQ poisoning.

AEE is a new potential pharmaceutical compound possessing
anti-inflammatory and anti-oxidative stress pharmacological
activity (18–22). The effect of AEE against H2O2-induced
oxidative stress of human umbilical vein endothelial cells is
consistent with the AEE-enhanced expression of Bcl-2 and Nrf2
(18, 23). It has been well documented that AEE could alleviate
H2O2-induced dysfunction of mitochondria, the generation of
ROS productions and the increase of apoptosis via enhancing
the expression of Bcl-2 and Nrf2 (18, 23). It is well known that
the dysfunction of mitochondria could release cytochrome C,
apoptosis inducing factor (AIF), and other factor into cytoplasm
to mediate downstream apoptotic signals causing cell apoptosis
(24, 25), while the exacerbation of reactive oxygen species (ROS)
induced by the dysfunction of mitochondria is also vital incentive
of cell apoptosis (26, 27).

MATERIALS AND METHODS

Chemicals
AEE (99.5%) was prepared in Lanzhou Institute of Husbandry
and Pharmaceutical Sciences of CAAS (Lanzhou, China). MS-
gradeacetonitrile was purchased from Thermo Fisher Scientific
(Waltham, MA, USA). Formic Acid (98.0%, for LC-MS) was
purchased from Tokyo Chemical Industry (Shanghai, China).
Catalase assay kit was purchased from Solarbio (Beijing, China).
Glutathione peroxidase (GPx), GSH and GSSG assay kit,
superoxide dismutase (SOD), and malondialdehyde (MDA)
assay kit were purchased from Beyotime (Shanghai, China).
Caspase-3 assay kit was purchased from Jianglai Chemical
Biotechnology (Shanghai, China). The antibodies of Caspase-
9, Caspase-3, Bax, Bcl-2, Cyt C, AIF, and IgG were purchased
from abcam (Shanghai, China). Alanine aminotransferase kit
and aspartate aminotransferase kit were purchased from Mlbio
(Shanghai, China).

Animal Experiment
Eighteen male specific pathogen-free SD rats (6 weeks old)
weighing 120–130 g were purchased from the Laboratory Animal

Center of Lanzhou Veterinary Research Institute (Lanzhou,
China). All animals were placed in groups in SPF-class housing
of laboratory at a controlled relative humidity (55–65%), 12 h
light/dark cycle and temperature (24 ± 2◦C). The rats were
randomly divided into three groups (n = 6): (1) control
group, in which rats were administrated equivalent saline by
intraperitoneal injection (ip); (2) PQ group, in which rats
were administrated PQ (20 mg/kg body weight, ip) (28–30);
(3) AEE groups, in which rats were pre-administrated AEE
(54 mg/kg/day body weight) by gavage once a day for 1
week before being administrated PQ. The rats in the different
groups were sacrificed after a single intraperitoneal injection
of 20 mg/kg PQ for 24 h. All experimental protocols and
procedures were approved by the Institutional Animal Care
and Use Committee of Lanzhou Institute of Husbandry and
Pharmaceutical Science of Chinese Academy of Agricultural
Sciences (Approval No. NKMYD201907018; Approval Date: 18
July 2019). Animal welfare and experimental procedures were
performed strictly in accordance with the Guidelines for the
Care and Use of Laboratory Animals issued by the US National
Institutes of Health.

Metabonomic Analysis
Hepatic Tissue Sample Preparation
The hepatic tissue samples were homogenized with ice-
cold physiological saline (10%, wt%, 1 g tissue in 10mL of
physiological saline) in an Ultra Turrax tissue homogenizer.
After vortex mixing for 3min, the samples were centrifuged at
12,000 rpm for 10min at 4◦C. The supernatant was subsequently
analyzed by UPLC-QTOF-MS/MS.

UPLC-QTOF-MS/MS Conditions
Liquid chromatography was executed on DAD 1290 UPLC
system (Agilent Technologies Inc., California, USA). Separation
was performed on an Agilent SB C18 RRHD Column (2.1 ×

150mm, 1.8µm). The temperature of the column was set to
35◦C. Injection volume was 3 µL and autosampler temperature
was set at 4◦C.Mobile phase A consisted of water containing 0.1%
formic acid and mobile phase B was acetonitrile containing 0.1%
formic acid at a flow rate of 0.3 mL/min. The gradient elution
of A was as follows: 98%A from 0 to 2min, 98–55% A from
2 to 9min, 55–30% A from 9 to 15min, 30–2% A from 15 to
22min, 2% A from 22 to 23min, 2–98% A from 23 to 24min
and held at 98% A from 24 to 27min. The mass spectrometer
was operated in both positive and negative ionizationmodes. The
fragment voltage was set to 135V and the skimmer voltage was
set to 65V. In positive ion mode, capillary voltage was 4.0 KV,
while in negative ion mode, it was 3.5 KV. The temperature and
the flow of the drying gas were 350◦C and 10 L/min, respectively.
The nebulizer pressure was set to 45 psig. Ions were scanned over
a region of 50–1000 m/z.

Metabolomics Data Analysis
The raw MS data were initially processed with the Mass Profiler
Professional (MPP) software (Agilent Technologies, USA) to
filter noise, correct the baseline, align peaks, and identity and
quantify peaks. The match tolerance of mass span is 10 ppm,
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and the match tolerance of retention time’s span is 0.10min.
The obtained data were imported into SIMCA-P (version 13.0,
Umetrics AB, Umea, Sweden), where a principal component
analysis (PCA) and partial least squares discriminant analysis
(OPLS-DA) were performed on the dataset. The quality of OPLS-
DA models was described by R2X, R2Y, and Q2, and its validity
was evaluated by performing permutation testing (with 200
permutations). The variable importance in the projection (VIP
> 1) value of the validated OPLS-DA model and the p values
from one-way ANOVA (p < 0.05) were used as the measurement
indices to select potential metabolites.Metabolites were identified
through a mass-based search followed by manual verification.
Accurate mass values of themolecular ions of interest in TOF-MS
data were searched against METLIN and Human Metabolome
Database (HMDB). Then, an MS/MS analysis was conducted
to confirm the structure of potential biomarkers by matching
the masses of the fragments. The parent ion mass tolerance is
±10 ppm and mass/charge (m/z) of products tolerance is ±10
ppm. The clustering analysis of the potential biomarkers and
pathway analysis were performed using MetaboAnalyst 4.0 and
themetabolic pathways were identified using the KEGGdatabase.

Histopathology
Liver specimens were fixed with 10% formaldehyde. After
fixation, the liver tissue was embedded in paraffin wax,
sectioned to a thickness of 5µm and stained with hematoxylin-
eosin staining.

Analysis of MDA, SOD, Caspase-3,
GSH/GSSH, and GPx
The levels of MDA, SOD and the activity of caspase-3, the
ratio of GSH/GSSH and GPx in the rat serum were assessed
using the corresponding commercial kits according to the
manufacturer’s protocols.

Protein Expression Analysis
The expression of AIF, Bax, Bcl-2, Caspase-3, Caspase-9, and
Cyt c among different treatment was assessed by Western blot
analysis. In brief, total protein of the liver was extracted using
RIPA, quantified by bicinchoninic acid (BCA) method, and
separated by precast SDS-PAGEGel (15%, 4–20%). The separated
proteins were transferred onto polyvinylidene fluoride (PVDF)
membrane using standard procedures. Blots were incubated
with the primary antibody followed by horseradish peroxidase-
conjugated secondary antibody. Results were detected using the
G: Box Chemi XRQ Imaging System (Cambridge, UK).

RESULTS

AEE Reduces PQ-Induced Liver Injury in
Rat
To verify whether AEE has a protective effect on PQ-induced
hepatotoxicity in vivo, we explored the effect of AEE pretreatment
on PQ-induced liver injury in rats. The results showed that
PQ (20 mg/kg) could significantly cause liver tissue necrosis,
cell atrophy and portal hyperemia in rats. Pretreatment with
54 mg/kg AEE for seven consecutive days by gavage markedly

attenuated the pathological injury of liver tissue induced by PQ
(Figure 1). The results showed that AEE could effectively reduce
the liver injury induced by PQ in rats.

AEE Attenuates PQ-Induced Oxidative
Stress in the Liver of Rats
The results for CAT, MDA, SOD, GPx, and GSH/GSSH ratio in
serum were shown in Figure 2. AEE significantly attenuated the
increase in MDA and prevented the decrease in CAT, SOD, GPx
activity, GSH/GSSH ratio caused by PQ in rats (Figure 2). These
results suggested that AEE could effectively inhibit oxidative
stress induced by PQ in rat liver.

Metabolomics Analysis of AEE Effect on
PQ-Induced ALI in Rats
Analysis of Liver Metabolites
In this study, an unsupervised PCA was performed with the
data from three experimental groups. In both positive and
negative modes, the first two principal components explained
61.4 and 58.9% of the total variance, respectively. As shown
in the PCA plots (Figures 3A,B,G,H), the three groups showed
obvious separation in both positive and negative ion modes.
In order to further maximize the separation and identification
of metabolites, supervised orthogonal partial least squares
discriminant analysis (OPLS-DA) was used. Then an OPLS-
DA model was established between the PQ group and other
groups to enhance the variation. The OPLS-DA score plots
presented an obvious separation between the PQ group and other
groups without any overlap in either the positive or negative
modes (Figures 3C,E,I,K). The R2X, R2Y, and Q2 values of the
OPLS-DA model showed that the models were robust and had
predictive abilities (Figures 3D,F,J,L).

Differential metabolites contributing to the separation were
identified using variable importance in the projection (VIP)
value and p value. The potential metabolites were screened
with a VIP value > l and p < 0.05. As shown in Table 1, 32
metabolites were identified as potential metabolites, including
dephospho-CoA, taurochenodesoxycholic acid, lysoPC(14:1),
chenodeoxyglycocholic acid, PA(22:2), PA(22:2), cholic acid,
5,9,11-trihydroxyprosta-6E,14Z-dien-1-oate, lysoPE(18:2),
lysoPE(20:4), lysoPE(16:0), lysoPC(16:0), L-Histidine,
pipecolic acid, glycerophosphocholine, acetylglycine, N-(2-
Methylpropyl)acetamide, D-Asparagine, hypoxanthine, inosine,
xanthosine, L-Phenylalanine, melatonin radical, ophthalmic
acid, nonyl isovalerate, glutamylarginine, glutamylleucine,
pipecolic acid, S-(PGJ2)-glutathione, L-Octanoylcarnitine,
lysoPC(16:0), argininic acid, deoxycholic acid glycine conjugate,
N-Undecanoylglycine. After AEE treatment, the levels of
these metabolites normalized either due to upregulation
or downregulation.

Metabolic Pathway Analysis
The related metabolic pathway analysis was performed on
MetaboAnalyst 4.0. The metabolic pathway analysis data are
shown as a bar chart and a bubble chart in Figure 4. There are
12 main metabolic pathways: purine metabolism, phenylalanine,
tyrosine and tryptophan biosynthesis, glycerophospholipid
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FIGURE 1 | AEE reduces PQ-induced liver injury in rat. (A) Histopathological H&E staining of rat liver tissue (scale bar = 100µm). Values are presented as the means

± SD where applicable (n = 6).

FIGURE 2 | AEE attenuates PQ-induced oxidative stress in the liver of rat. (A) The activity of malondialdehyde (MDA) in serum of different treatment groups was

detected. (B) The activity of superoxide dismutase (SOD) in serum of different treatment groups was detected. (C) The ratio of reduced glutathione/oxidized

glutathione disulfide (GSH/GSSH) in serum different treatment groups was detected. (D) The activity of catalase (CAT) in serum of different treatment groups was

detected. Values are presented as the means ± SD where applicable (n = 6). *p < 0.05 compared with the control group; #p < 0.05 compared with the PQ group.

metabolism, primary bile acid biosynthesis, aminoacyl-tRNA
biosynthesis, phenylalanine metabolism, histidine metabolism,
pantothenate and CoA biosynthesis, ether lipid metabolism,
beta-Alanine metabolism, lysine degradation, cysteine and
methionine metabolism. As shown in Figure 4, there are
significant differences in metabolic pathways, including
Methylhistidine Metabolism, Bile Acid Biosynthesis, Purine
Metabolism, Pantothenate and CoA Biosynthesis, Mitochondrial
Beta-Oxidation of Short (p < 0.05). The influence of the path is
mainly concentrated in Phenylalanine, tyrosine and tryptophan
biosynthesis, Purine metabolism, Glycerophospholipid
metabolism, and Primary bile acid biosynthesis. PQ-induced
ALI in rats is mainly reflected in redox reaction and energy
metabolism. The results showed that ALI induced by PQ caused
metabolic disorder in rats, and AEE could effectively regulate
this imbalance.

As shown in Table 1, AEE could increase the levels
of L-Histidine, D-Asparagine, and L-Phenylalanine compared
with PQ group. Some studies have shown that L-Histidine

and D-Asparagine have the effect of anti-apoptosis (31–33).
The deficiency of L-Histidine can cause apoptosis through
mitochondrial dysfunction, and as a substrate of asparagine
biosynthesis, the deficiency of D-asparagine can also promote
apoptosis (31, 32). Interestingly, higher concentrations of L-
Phenylalanine also inhibited mitochondrial function and cause
apoptosis (33). It is necessary to detect the expression of
mitochondrial apoptosis-related proteins.

AEE Decreased the Level of
Apoptosis-Related Proteins in Rat Liver
Tissue Induced by PQ
To delineate the effector pathways of PQ-induced apoptosis,
we examined the expression of mitochondrial apoptosis-
related proteins and the expression of caspases, the central
executioners of cell apoptosis. Compared with the control
group, the expression of Caspase-3, Caspase-9, Bax, Cyt C,
and AIF in the model group increased, while the expression
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FIGURE 3 | Metabolomics analysis of the effect of AEE on PQ-induced ALI in rats. (A,G) PCA score plots based on supernatant of rat liver tissue of the control, PQ

and AEE groups in positive and negative modes, ESI+: R2 = 0.614, ESI–: R2 = 0.589. (B,H) The loading plot of AEE and PQ groups in positive and negative modes.

(C,I) OPLS-DA score plots of the AEE and PQ groups in positive and negative modes, ESI+: R2X = 0.566, R2Y = 0.994, Q2 = 0.878; ESI–: R2X = 0.502, R2Y =

0.969, Q2 = 0.752. (D,J) Permutation test of the OPLS-DA model, ESI+: the intercepts of R2 = 0.926 and Q2 = −0.387, ESI–: the intercepts of R2 = 0.726 and Q2

= −0.640. (E,K) OPLS-DA score plots of the control and PQ groups in positive and negative modes, ESI+: R2X = 0.592, R2Y = 0.993, Q2 = 0.927; ESI–: R2X =

0.405, R2Y = 0.952, Q2 = 0.820. (F,L) Permutation test of the OPLS-DA model, ESI+: the intercepts of R2 = 0.915 and Q2 = −0.641, ESI–: the intercepts of R2 =

0.727 and Q2 = −0.744. Values are presented as the means ± SD where applicable (n = 6).

of Bcl-2 decreased (Figure 5). In AEE pretreatment group,
AEE could inhibit the increase of Caspase-3, Caspase-9,
Bax, Cyt C, and AIF induced by PQ, and enhance the
expression of Bcl-2. Western blotting analysis showed that
AEE reduced the apoptosis of liver cells via inhibiting the
expression of apoptosis-related proteins in rat liver tissue induced
by PQ.

DISCUSSION

AEE is synthesized by combining aspirin with eugenol based
on the prodrug principal (21). As a new potential compound
with anti-inflammatory and antioxidant stress pharmacological
activities, AEE plays an active role in many aspects (18–
21, 23, 34–38). AEE can prevent tail thrombosis induced by
c kappa-carrageenan in rats (19). At the same time, AEE
can attenuate thrombus induced with high-fat diet in rats by
regulating platelet aggregation, hemorheology, TXB2/6-keto-
PGF1α, and blood biochemistry (38). With further study, a
rat model of blood stasis was established and it was observed
that AEE could alleviate the symptoms of blood stasis in
rats (39). It was also found that AEE can inhibit agonist-
induced platelet aggregation in rats by regulating PI3K/Akt,
MAPK, and Sirt1/CD40L signal pathways (35). AEE has not
only the effects of anti-inflammation, anti-thrombosis and anti-
blood stasis, but also the effect of anti-atherosclerosis and other
cardiovascular diseases. AEE can reduce the oxidative stress of
human umbilical vein endothelial cells induced by H2O2 through

mitochondrial-lysosomal axis and Nrf2 signaling pathway, and
then reduce the oxidative damage of vascular endothelial cells
(18, 23).

PQ poisoning is caused by the selective accumulation of
PQ molecules that can cause multiple organ failure and can
cause severe damage to the liver (15). Although progress has
been made in the comprehensive treatment of PQ poisoning,
the mortality rate remains high due to the lack of effective
treatment (40, 41). The underlying mechanism of PQ poisoning
has not been fully elucidated, but it may be multifactorial.
Studies have shown that an important cause of PQ poisoning
is the excessive production of ROS (42). The overproduction
of reactive oxygen species could cause excessive oxidative
stress and oxidant injury in cells (43, 44). ALT and AST are
enzymes found in hepatocytes. When the liver cell membrane
lipid peroxidation occurs, two enzymes are easily released
into the blood. The elevated levels of AST and ALT in liver
and serum may indicate PQ-induced ALI. MDA is the end
product of lipid peroxidation and its level can be used to
assess the extent of damage from peroxidative damage (45–47).
Downregulation of AST, ALT, and MDA levels meant that AEE
could reduce lipid peroxidation damage. Antioxidant enzymes
such as SOD, CAT and GSH-Px play an important role in
ROS removal. SOD is the most important antioxidant enzyme
for removing H2O2 from O2·

− (48–50). CAT and GSH-Px
are the major enzymes that convert H2O2 to O2 and H2O
(51–54). In the model group, ROS produced by PQ increased
MDA levels and decreased SOD, GSH-Px, and CAT levels. After
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TABLE 1 | Statistics of differential metabolites in the rat liver.

No RT VIP Formula Metabolites SM m/z Fold Change

PQ/C AEE/PQ

1 1.036 1.08 C6H9N3O2 L-Histidine ESI+ 155.1546 0.86 1.03

2 1.146 2.51 C6H11NO2 Pipecolic acid ESI+ 129.157 0.78 1.16*

3 1.154 1.06 C8H20NO6P Glycerophosphocholine ESI+ 257.223 1.34 0.74*

4 1.213 3.14 C4H7NO3 Acetylglycine ESI+ 117.1033 0.77 1.63*

5 1.314 1.05 C6H13NO N-(2-Methylpropyl)acetamide ESI+ 115.1735 1.04 1.47*

6 1.817 2.46 C4H8N2O3 D-Asparagine ESI+ 132.1179 0.92 1.55*

7 3.638 1.17 C5H4N4O Hypoxanthine ESI+ 136.1115 1.37 0.92*

8 3.646 1.09 C10H12N4O5 Inosine ESI+ 268.2261 0.85 1.15*

9 4.517 2.84 C10H12N4O6 Xanthosine ESI+ 284.2255 0.98 1.85*

10 4.627 4.61 C9H11NO2 L-Phenylalanine ESI+ 165.1891 0.46 1.48*

11 4.779 2.43 C13H17N2O3 Melatonin radical ESI+ 249.2857 0.39 0.75*

12 4.959 1.73 C11H19N3O6 Ophthalmic acid ESI+ 289.2851 0.40 0.85*

13 5.379 1.24 C14H28O2 Nonyl isovalerate ESI+ 228.3709 0.91 0.80

14 5.717 1.42 C11H21N5O5 Glutamylarginine ESI+ 303.319 0.49 0.98*

15 5.802 1.26 C11H20N2O5 Glutamylleucine ESI+ 260.29 0.91 0.64

16 6.368 1.57 C6H11NO2 Pipecolic acid ESI+ 129.157 1.47 1.04*

17 6.682 1.07 C30H47N3O10S S-(PGJ2)-glutathione ESI+ 641.773 0.65 1.19*

18 9.368 1.04 C15H29NO4 L-Octanoylcarnitine ESI+ 287.3951 0.60 2.18*

19 9.419 1.46 C24H50NO6P LysoPC(P-16:0) ESI+ 479.6307 1.80 3.18*

20 10.117 1.06 C6H13N3O3 Argininic acid ESI+ 175.1857 0.79 1.78*

21 13.354 2.48 C26H43NO5 Deoxycholic acid glycine conjugate ESI+ 449.6233 0.85 0.82

22 13.969 2.42 C13H25NO3 N-Undecanoylglycine ESI+ 243.3425 0.89 1.07

23 4.995 3.96 C21H35N7O13P2S Dephospho-CoA ESI- 687.15 1.95 1.04*

24 9.331 5.39 C26H45NO6S Taurochenodesoxycholic acid ESI- 499.3 1.44 0.89*

25 10.677 1.07 C22H44NO7P LysoPC(14:1) ESI- 465.561 2.15 1.04*

26 10.776 3.14 C26H43NO5 Chenodeoxyglycocholic acid ESI- 449.6233 1.97 2.33

27 11.221 2.03 C47H89O8P PA(22:2) ESI- 813.195 1.29 1.11

28 12.143 2.50 C24H40O5 Cholic acid ESI- 408.5714 2.05 0.82*

29 14.502 1.11 C30H37NO8 5,9,11-trihydroxyprosta-6E,14Z-dien-1-oate ESI- 539.625 1.29 0.77*

30 14.897 1.61 C23H44NO7P LysoPE(18:2) ESI- 477.5717 1.33 0.92*

31 14.973 1.15 C25H44NO7P LysoPE(20:4) ESI- 501.5931 2.06 0.75*

32 15.650 1.69 C21H44NO7P LysoPE(16:0) ESI- 453.5503 1.65 1.01*

RT, retention time; VIP, variable importance in the projection; SM, scan mode; +, metabolites identified in positive mode; –, metabolites identified in negative mode. Metabolites identified

in both positive and negative modes; *p < 0.05 compared with the PQ group; C/PQ, control group compared with the PQ group; AEE/PQ, AEE group compared with the PQ group.

AEE administration, SOD, GSH-Px, and CAT increased. This
indicates that AEE could restore ALI in PQ-induced rats via
ROS scavenging.

Arginine synthesis and the metabolism of arginine and
proline involved in L-arginine may be one of the most
important metabolic pathways in which AEE plays a protective
role in PQ-induced lung injury. L-arginine is a semi-essential
amino acid needed for cell proliferation, and is the substrate
of arginase 1 (Arg-1) and inducible nitric oxide synthase
(iNOS), which is involved in the oxidative stress of the body
to external stimuli. Metabonomic results showed that the
biosynthesis pathway of L-arginine was inhibited in PQ group.
L-arginine is a scavenger of free radicals in the body (55).
L-arginine increases the activity of antioxidant enzymes and
reduces the content of MDA by promoting the production

of nitric oxide (NO), thus reducing the tissue damage caused
by oxidative stress (56). After pretreatment with AEE, the
production of L-arginine increased, which in turn promoted
the increase of SOD, GSH-Px and CAT. It is suggested that
AEE may alleviate PQ-induced lung injury in rats by scavenging
excessive ROS.

Glycerophospholipid metabolites, including PC and LysoPE
are key components of the lipid bilayer of cells, as well as
being involved in metabolism and signaling (57–59). A previous
study suggested that various PCs and LysoPEs were significantly
increased in rat acute blood stasis model and AEE could
significantly inhibit the increase of PC and LysoPE (39). AEE
increased high-density lipoprotein cholesterol serum level and
decreased low-density lipoprotein cholesterol serum level in
hyperlipidemia model induced by high-fat diet. Notably, the
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FIGURE 4 | The results of fold enrichment and path analysis of potential metabolites in the supernatant of liver tissue.

FIGURE 5 | AEE decreased the level of apoptosis-related proteins in rat liver tissue induced by PQ. (A,B) The expression of AIF protein in liver tissue of different

treatment groups was detected. (A,C) The expression of Bax protein in liver tissue of different treatment groups was detected. (A,D) The expression of Bcl-2 protein in

liver tissue of different treatment groups was detected. (A,E) The expression of Caspase-3 protein in liver tissue of different treatment groups was detected. (A,F) The

expression of Caspase-9 protein in liver tissue of different treatment groups was detected. (A,G) The expression of Cyt C protein in liver tissue of different treatment

groups was detected. Values are presented as the means ± SD where applicable (n = 6). *p < 0.05 compared with the control group; #p < 0.05 compared with the

PQ group.

elevated TG and TC serum levels were also reversed by AEE. All
of the above implied that lipid metabolism was partly restored
by AEE.

Mitochondrial damage was present due to impaired energy,
amino acid, and fatty acid metabolism. The production of
ROS can also cause mitochondrial apoptosis (60–62). Therefore,
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FIGURE 6 | The results of hepatoprotective effect of AEE on ALI rats.

apoptosis may play an important role in the pathogenesis of
liver injury. In this study, the hepatic apoptotic cell rate was
increased in the model group. The low percentage of hepatic
apoptotic cells in the AEE group suggests that AEE enhanced
antioxidant activity and attenuated apoptosis. On the other
hand, the results of Western blotting analysis suggest that the
expression levels of Caspase-9, Bax, Cyt C, Caspase-3, and
AIF were decreased, whereas that of Bcl-2 was increased in
the AEE group. Figure 6 summarizes the protective effects of
AEE on ALI rats. As shown in Figure 6, PQ could induce
excessive production of ROS in liver tissue. Excessive ROS could
further increase the excessive production of MDA and decrease
the activities of antioxidant enzymes such as SOD, CAT, and
GSH-Px. The decrease of antioxidant enzyme activity would
lead to the release of apoptotic proteins, including Caspase-9,
Bax, Cyt C, Caspase-3, and AIF. There is no doubt that when
apoptosis occurs, the energy supply of mitochondria in the cell
will be insufficient, and the synthesis and metabolism of some
amino acids will be hindered. In this study, the metabolism
and synthesis of chenodeoxycholic acid, chenodeoxycholic acid,
and cholic acid were affected to some extent. Undoubtedly,
during the amino acid metabolism process, the levels of
L-Phenylalanine and Argininic acid decreased significantly
after PQ treatment. The metabolism of amino acids would

further affect the energy metabolism of cells, especially in the
TCA cycle.

CONCLUSION

AEE exhibited protective effects on PQ-induced ALI. The
underlying mechanism was correlated with antioxidants
that regulate amino acid, phospholipid and energy
metabolism metabolic pathway disorders and alleviate liver
mitochondria apoptosis.
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