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ABSTRACT
Aims/Introduction: Pancreatic a-cell area and the a- to b-cell area ratio (a/b) might
be associated with glucose tolerance. The aim was to clarify how these histological
parameters change as glucose tolerance deteriorates.
Materials and Methods: We analyzed pancreatic tissues obtained from pancreatec-
tomies of 43 patients. We evaluated the relationships between a-cell area or the a/b and
various clinical parameters. Additionally, we analyzed a-cell proliferation and the expression
patterns of various pancreatic transcription factors.
Results: The a/b in individuals with longstanding (previously diagnosed) type 2 dia-
betes (0.36 – 0.12) was higher than that in those with normal glucose tolerance
(0.18 – 0.10; P < 0.01), impaired glucose tolerance (0.17 – 0.12; P < 0.05) and newly diag-
nosed diabetes (0.17 – 0.12; P < 0.05). In all participants, glycated hemoglobin (HbA1c)
correlated with relative a-cell area (P = 0.010). Diabetes duration (P = 0.004), HbA1c
(P < 0.001) and plasma glucose levels (P = 0.008) were significantly correlated with the
a/b in single regression analyses, and diabetes duration was the only independent and
significant determinant in stepwise multiple regression analyses (P = 0.006). The a-cell
Ki67-positive ratio in patients with HbA1c ≥6.5% was significantly higher than that in
patients with HbA1c <6.5% (P = 0.022). We identified b-cells that expressed aristaless-
related homeobox and a-cells that did not express aristaless-related homeobox at all glu-
cose tolerance stages. Aristaless-related homeobox and NK homeobox 6.1 expression pat-
terns varied in insulin and glucagon double-positive cells.
Conclusions: The pancreatic a/b increases after type 2 diabetes onset and correlates
with diabetes duration. This change might occur through a-cell proliferation and pheno-
typic changes in pancreatic endocrine cells.

INTRODUCTION
Diabetes is regarded as a bi-hormonal disorder in which
patients show either relative or absolute insulin secretion defi-
ciency and relative or absolute excess glucagon secretion1. Glu-
cagon plays an important role in maintaining glucose
homeostasis through its regulatory effect on hepatic glucose
production2. Although glucagon secretion is suppressed by car-
bohydrate loading in healthy individuals, this is not always the
case in type 2 diabetes3.
Glucagon is secreted from the pancreatic a-cell, which is one

of the cell types that comprise the pancreatic islet. In humans,

it is controversial as to whether a-cell mass changes as glucose
intolerance proceeds. Some studies have reported that a-cell
mass was increased in patients with type 2 diabetes4,5, whereas
others have concluded that there was no significant difference
in a-cell mass between patients with type 2 diabetes and non-
diabetic individuals6–8. There is a consensus that the a- to b-
cell area ratio (a/b) in the pancreatic parenchyma and the a-
cell area ratio in islets increase in type 2 diabetes5,7,9, but the
time-course, the mechanisms underlying these histological
changes and the type of factors affecting these changes have
not been elucidated.
In humans, b-cell mass decreases during the progression of

glucose intolerance, which is thought to be primarily the resultReceived 30 August 2017; revised 13 March 2018; accepted 14 March 2018
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of altered b-cell proliferation10 and apoptosis11,12. In addition,
transdifferentiation and dedifferentiation in pancreatic endo-
crine cells might also contribute to this histological change. A
number of studies have reported transdifferentiation not only
from a- to b-cells13, but also from b- to a-cells14–16. Dediffer-
entiation of b-cells and conversion to other endocrine cell types
in forkhead box protein O1 knock-out mice14 and the conver-
sion from b- to a-cells in isolated human islets have been
observed15. However, transdifferentiation and dedifferentiation
have not been confirmed in vivo in humans.
Human islet histological analysis has been primarily carried

out using autopsy samples4,6,7 or samples obtained from pan-
createctomy. Using autopsy samples, whole pancreatic tissue
can be examined, whereas only part of the pancreas can be
examined using operative samples. Additionally, the latter
approach cannot exclude effects of various factors originating
from primary diseases, such as inflammation. However, the lat-
ter approach has some advantages. It enables us to collect clini-
cal characteristics of patients in detail11,17, and obtain fresh
tissue with which we can carry out precise examination of Ki67
staining18.
In the present study, we analyzed human pancreatic tissues

obtained from pancreatectomies in patients at various glucose
tolerance stages. We evaluated the relationships between a-cell
area or the a/b and various clinical parameters. Additionally,
we analyzed a-cell proliferation and apoptosis. Furthermore, we
assessed the expression patterns of various transcription factors
that are crucial for pancreatic endocrine cell development, par-
ticularly aristaless-related homeobox (ARX), an a-cell transcrip-
tion factor19,20, to detect the possibility of transdifferentiation
and dedifferentiation in human pancreas.

METHODS
Patients
We enrolled 43 Japanese patients (25 men and 18 women)
who had undergone pancreatic resection between 2008 and
2013 in the Department of Gastroenterological Surgery, Osaka
University Hospital, Suita, Japan, and had agreed to participate
in this study. The study protocol was approved by the ethics
committee of Osaka University (approval number 13279-4),
and was carried out in accordance with the Declaration of Hel-
sinki. Informed consent was obtained from all patients. Dia-
betes patients treated with dipeptidyl peptidase-4 inhibitors or
glucagon-like peptide-1 receptor agonists, patients with renal
failure (estimated glomerular filtration rate <30 mL/min/
1.73 m2) and patients with pancreatic endocrine tumors were
excluded from this study. The flow chart of the patients’ dispo-
sition is shown in Figure S1. The mean age was 66 – 11 years,
and the mean body mass index (BMI) was 21.5 – 2.8 kg/m2. A
total of 33 patients underwent a 75-g oral glucose tolerance test
(OGTT) 1–60 days before pancreatic resection. Glucose toler-
ance stages (normal glucose tolerance [NGT], impaired glucose
tolerance [IGT] and newly diagnosed diabetes [new-diabetes])
were categorized based on the results of the test. One patient

was diagnosed with new diabetes without the 75-g OGTT
based on his fasting plasma glucose level and glycated hemoglo-
bin (HbA1c). A total of 10 patients were diagnosed with long-
standing type 2 diabetes (long-type 2 diabetes) because of their
clinical history.

Laboratory tests
Preoperative insulin secretory capacity was evaluated by homeo-
static model assessment for b-cell function (HOMA-b)21, C-pep-
tide index22 and insulinogenic index23. Insulin resistance was
evaluated by HOMA for insulin resistance (HOMA-R)21, and
insulin sensitivity was evaluated by the Matsuda index24. These
values, as well as fasting plasma glucose levels, were determined
using the data obtained from preoperative 75-g OGTT. In
patients who did not undergo 75-g OGTT, these laboratory data,
except insulinogenic index and Matsuda index were also mea-
sured 1–60 days before pancreatic resection. Additionally,
HbA1c was measured 1–60 days before pancreatic resection.

Pancreatic tissue processing
We obtained pancreas head tissue samples from patients who
had undergone pancreatoduodenectomy, and pancreas body or
tail tissue samples from patients who had undergone distal pan-
createctomy. The pancreatic tissue sample region could not be
determined in one patient who had undergone total pancreatec-
tomy. Pancreatic samples were collected during the operation.
The tissues were isolated from near the resected margins after
intraoperative consultation, fixed immediately in formaldehyde
and embedded in paraffin for subsequent analysis. Paraffin-
embedded tissue was cut into 5-lm thick sections. We con-
firmed suitability of our samples by rejecting inflammation and
cancer elements by hematoxylin–eosin staining and fibrosis
changes from pancreatitis originating from pancreas disease by
AZAN staining. Sections with >30% fibrous area estimated by
AZAN staining were excluded from the present study17.

Immunohistochemistry
The primary and secondary antibodies and chromogenic sub-
strates used in the present study are listed in Table S1. We
used an anti-ARX antibody from Dr Patrick Collombat for
immunostaining.
As a surrogate for a-cell mass, we evaluated relative a-cell

area, which was determined by the proportion of glucagon-posi-
tive cell area in the whole pancreatic section (%; Figure S2a). We
also evaluated relative b-cell area (Figure S2b) and calculated the
a/b. Pancreatic sections were stained using the indirect
immunoperoxidase technique to measure relative a- and b-cell
areas. We used antiglucagon and anti-insulin immunoglobulins
(Igs) as primary antibodies and biotinylated Igs as secondary
antibodies. The reactions were developed with an avidin–biotin
complex and a 3,3-diaminobenzidine tetrahydrochloride sub-
strate, followed by methyl green counterstaining.
To evaluate the extent of replication and apoptosis, we car-

ried out double immunofluorescent staining for glucagon or
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insulin and Ki67 (Figure S3), and for glucagon or insulin and
cleaved caspase 3 (cCAS3), respectively. Pancreatic sections
were incubated with anti-Ki67 or cCAS3 Igs as primary anti-
bodies and biotinylated Igs as secondary antibodies, followed by
fluorescein isothiocyanate-conjugated avidin D. Sections were
then incubated with antiglucagon or insulin Igs, followed by
rhodamine-conjugated Igs.
To evaluate the ratio of immature endocrine cells, we carried

out double immunofluorescent staining for insulin and gluca-
gon. The sections were stained with anti-insulin Igs followed by
rhodamine-conjugated Igs, and then stained with anti-glucagon
Igs followed by Alexa Fluor 488-conjugated Igs.
To evaluate the endocrine cell characteristics, we carried

out triple immunostaining for insulin, glucagon and ARX or
NK homeobox 6.1 (NKX6.1) with a pair of mirror sections.
First, the sections were incubated with anti-ARX or anti-
NKX6.1 Igs as primary antibodies and biotinylated Igs as sec-
ondary antibodies, and then the reactions were developed
with an avidin–biotin complex and a 3,3-diaminobenzidine
tetrahydrochloride substrate. Next, the sections were stained
with anti-insulin Igs followed by rhodamine-conjugated Igs,
and then stained with antiglucagon Igs followed by Alexa
Fluor 488-conjugated Igs. We also carried out triple
immunostaining for insulin, glucagon and pancreas duodenal
homeobox gene 1 (PDX-1). The sections were incubated with
anti-PDX-1 Igs as primary antibodies and biotinylated Igs as
secondary antibodies, and then the reactions were developed
with an avidin–biotin complex and a 3,3-diaminobenzidine
tetrahydrochloride substrate. Next, the sections were stained
with anti-insulin Igs followed by Alexa Fluor 594-conjugated
Igs, and then stained with antiglucagon Igs followed by Alexa
Fluor 488-conjugated Igs.

Morphometric analysis
Immunohistochemical analyses were carried out on one section
per patient. The mean area of the sections used to determine
the relative a-cell area was 18.2 mm2 (standard deviation
11.1 mm2). Glucagon or insulin-positive cell area in the entire
pancreatic section was quantified digitally with the WinROOF
software program (Mitani Corporation, Fukui, Japan)13,19. We
analyzed a median of 469 (interquartile range [IQR] 443) glu-
cagon-positive cells to evaluate the Ki67-positive ratio (the per-
centage of glucagon and Ki67 double-positive cells in total
glucagon-positive cells). Additionally, we analyzed 735 (IQR
717) glucagon-positive cells to evaluate the cCAS3-positive ratio
(the percentage of glucagon and cCAS3 double-positive cells in
total glucagon-positive cells). Finally, we analyzed 441 (IQR
378) glucagon-positive cells to evaluate the insulin and glucagon
double-positive (INS+GCG+) ratio (the percentage of
INS+GCG+ cells in total glucagon-positive cells).

Statistical analysis
Normally distributed data are presented as the mean – stan-
dard deviation, and non-normally distributed data are presented

as the medians and IQR. Normally distributed data were com-
pared by one-way analysis of variance followed by a post-hoc
Tukey–Kramer analysis (three or more groups) or Student’s t-
test (two groups). Non-normally distributed data were com-
pared using the Kruskal–Wallis test followed by a post-hoc
Steel–Dwass analysis (three or more groups) or the Wilcoxon
test (two groups). Single regression and stepwise multiple
regression analyses were carried out to identify explanatory
variables for relative a-cell area, the a/b and the Ki67-positive
ratio. P-values <0.05 denoted the presence of a statistically sig-
nificant difference. All statistical analyses were carried out with
the JMP Pro 10.0.2 software program (Statistical Analysis Sys-
tem Inc., Cary, NC, USA).

RESULTS
Clinical characteristics, laboratory data, relative a-cell area and
the a/b
Table 1 lists the clinical characteristics of the patients. The aver-
age age was 66 – 11 years, and the average BMI was
21.4 – 2.9 kg/m2. Patients were diagnosed as NGT (n = 14),
IGT (n = 10), new-diabetes (n = 9) or long-type 2 diabetes
(n = 10). Primary diseases were mainly pancreatic cancer
(n = 17) and cystic lesions of the pancreas (n = 14), including
intraductal papillary mucinous neoplasm, mucinous cystic neo-
plasm and simple cyst. Other diseases included cholangiocarci-
noma (n = 4), tumor of the ampulla of Vater (n = 4),
hepatocellular carcinoma (n = 1), cholangitis (n = 1), chronic
pancreatitis (n = 1) and pancreatic metastasis from renal cell
carcinoma (n = 1). The operative procedures were pancreato-
duodenectomy (n = 29), distal pancreatectomy (n = 13) and
total pancreatectomy (n = 1). A total of 11 patients had been
treated with anticancer agents before surgery. There were no
significant differences in age or BMI between the four groups.
Diabetes duration in the long-type 2 diabetes group was
16 – 12 years. Diabetes duration of new-diabetes was defined
as 0 years. HbA1c was significantly higher in the new-diabetes
group than that in the NGT group (P < 0.05) and higher in
the long-type 2 diabetes group than that in the NGT
(P < 0.01), IGT (P < 0.01) and new-diabetes (P < 0.01)
groups. HbA1c levels in nine patients in the long-type 2 dia-
betes group were checked more than once before operation.
Among them, eight patients kept HbA1c >6.5% during several
months before operation. The remaining one patient main-
tained HbA1c around 6.5%. The fasting plasma glucose level in
the long-type 2 diabetes group was significantly higher than
those in the NGT (P < 0.01), IGT (P < 0.01) and new-diabetes
(P < 0.05) groups. The fasting C-peptide immunoreactivity (F-
CPR) level in the long-type 2 diabetes cohort was significantly
lower than that in the NGT group (P < 0.05). The C-peptide
index in the long-type 2 diabetes group was lower than those
in the NGT (P < 0.01), IGT (P < 0.05) and new-diabetes
(P < 0.05) groups. The insulinogenic index was lower in the
new-diabetes cohort than that in individuals with NGT
(P < 0.01). The Matsuda index was lower in the IGT group
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than that in the NGT group (P < 0.05). There were no signifi-
cant differences in fasting immunoreactive insulin levels,
HOMA-b, HOMA-R or C-reactive protein levels between the
four groups.
The relative a-cell area tended to increase in the long-type 2

diabetes group, but there were no significant differences
between the four groups. The relative b-cell area tended to
decrease with glucose tolerance worsening. The a/b was

0.18 – 0.10, 0.17 – 0.12, 0.17 – 0.12 and 0.36 – 0.12 in the
NGT, IGT, new-diabetes and long-type 2 diabetes groups,
respectively. The a/b in the long-type 2 diabetes group was sig-
nificantly higher than those in the NGT (P < 0.01), IGT
(P < 0.05) and new-diabetes (P < 0.05) groups.
The relative a-cell area and the a/b were not different

between patients with benign diseases (n = 18) and those with
malignant diseases (n = 25; Figure S4a,b, 0.21 – 0.12% vs

Table 1 | Patient clinical characteristics and laboratory data

Glucose tolerance stages Total

NGT IGT New-DM Long-T2

n (male/female) 14 (9/5) 10 (5/5) 9 (6/3) 10 (5/5) 43 (25/18)
Clinical diagnosis (%)
Pancreas cancer 4 (29) 5 (50) 3 (33) 5 (50) 17 (40)
Cystic lesions of the
pancreas

6 (43) 3 (30) 3 (33) 2 (20) 14 (33)

Cholangiocarcinoma 1 (7) 2 (20) 0 1 (10) 4 (9)
Tumor of the ampulla of
Vater

1 (7) 0 2 (22) 1 (10) 4 (9)

Hepatocellular carcinoma 1 (7) 0 0 0 1 (2)
Cholangitis 1 (7) 0 0 0 1 (2)
Chronic pancreatitis 0 0 1 (11) 0 1 (2)
Pancreatic metastasis of
RCC

0 0 0 1 (10) 1 (2)

Operative procedure
(PD/DP/total)

12/2/0 5/4/1 5/4/0 7/3/0 29/13/1

Preoperative anticancer
agents (yes/no)

4/10 4/6 2/7 1/9 11/32

Age (years) 64 – 11 62 – 15 67 – 6 73 – 8 66 – 11
BMI (kg/m2) 21.4 – 3.0 20.9 – 1.8 22.9 – 2.8 20.5 – 3.5 21.4 – 2.9
Diabetes duration (years) – – 0 16 – 12
HbA1c, % (mmol/mol) 5.3 – 0.6, 35 – 6 5.6 – 0.5, 37 – 6 6.2 – 0.4, 44 – 5* 7.2 – 0.9, 55 – 10**‡¶ 6.0 – 1.0, 42 – 10
Fasting plasma glucose
(mmol/L)

5.3 – 0.2 5.2 – 0.2 5.5 – 0.3 6.7 – 0.3 (n = 9)**‡§ 5.60 – 0.9 (n = 42)

Fasting immunoreactive
insulin (pmol/L)

43.6 – 35.7 36.7 – 13.5 37.0 – 22.2 18.1 (n = 1) 39.1 – 26.4 (n = 34)

F-CPR (nmol/L) 0.56 – 0.22 0.48 – 0.15 0.51 – 0.23 0.26 – 0.07 (n = 5) 0.49 – 0.21 (n = 38)
HOMA-b (%) 65.6 – 40.1 66.4 – 22.0 55.3 – 36.9 19.5 (n = 1) 61.8 – 34.5 (n = 34)
C-peptide index
(nmol/mmol)

0.103 – 0.035 0.094 – 0.030 0.093 – 0.043 0.037 – 0.008 (n = 5)**†§ 0.090 – 0.039 (n = 38)

Insulinogenic index
(pmol/mmol)

108.6 – 50.9 78.3 – 40.8 34.1 – 18.4 (n = 7)* 6.6 (n = 1) 79.6 – 51.5 (n = 32)

HOMA-R 1.54 – 1.39 1.23 – 0.56 1.32 – 0.75 0.71 (n = 1) 1.36 – 1.01 (n = 34)
Matsuda index 8.87 – 4.84 4.80 – 1.78* 4.61 – 2.01 (n = 8) 6.72 (n = 1) 6.54 – 3.94 (n = 33)
Medication – – – Diet: 1, OHA: 5, Insulin: 4
C-reactive protein (mg/dL) 0.18 – 0.33 0.15 – 0.36 0.94 – 2.02 0.16 – 0.18 0.33 – 0.97
Relative alpha-cell area (%) 0.17 – 0.09 0.16 – 0.11 0.16 – 0.17 0.25 – 0.13 0.18 – 0.13
Relative beta-cell area (%) 1.02 – 0.45 1.00 – 0.40 0.79 – 0.40 0.72 – 0.31 0.90 – 0.42
a- to b-cell area ratio 0.18 – 0.10 0.17 – 0.12 0.17 – 0.12 0.36 – 0.12**†§ 0.21 – 0.14

Data are mean – standard deviation. Statistical analyses were carried out by one-way analysis of variance followed by post-hoc Tukey–Kramer analy-
sis. *P < 0.05 vs normal glucose tolerance (NGT), **P < 0.01 vs NGT, †P < 0.05 vs impaired glucose tolerance (IGT), ‡P < 0.01 vs IGT, §P < 0.05 vs
newly diagnosed diabetes (new-DM), ¶P < 0.01 vs new-DM. F-CPR, fasting C-peptide immunoreactivity; FPG, fasting plasma glucose; HOMA-b,
homeostatic model assessment of b-cell function; HOMA-R, homeostasis model assessment of insulin resistance; Long-T2, longstanding type 2 dia-
betes; RCC, renal cell carcinoma.
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0.16 – 0.13% and 0.25 – 0.14 vs 0.19 – 0.13, respectively). Sim-
ilarly, these parameters did not differ between samples obtained
by pancreatoduodenectomy (n = 29) and those obtained by
distal pancreatectomy (n = 13; Figure S4c,d, 0.19 – 0.13% vs
0.17 – 0.17% and 0.22 – 0.15 vs 0.22 – 0.11, respectively) or
between patients who had been treated with preoperative anti-
cancer agents (n = 11) and those who had not (n = 32; Fig-
ure S4e,f, 0.17 – 0.13% vs 0.19 – 0.13% and 0.15 – 0.11 vs
0.24 – 0.14, respectively).

Relationship between relative a-cell area, b-cell area or the a/b
and clinical parameters
Figure 1 shows the single regression analyses between relative
a-cell area and various clinical parameters. In a single regres-
sion analysis, HbA1c was the only parameter that significantly
correlated with relative a-cell area. Age, BMI, diabetes duration,
fasting plasma glucose levels, insulin secretory capacity, insulin
resistance and insulin sensitivity were not significantly corre-
lated with relative a-cell area.
Figure 2 shows the single regression analyses between relative

b-cell area and various clinical parameters. In single regression
analyses, parameters representing insulin secretory capacity
including fasting immunoreactive insulin, HOMA-b and C-
peptide index were significantly correlated with relative b-cell
area, whereas there were no significant correlations between
age, BMI, diabetes duration, HbA1c and FPG, and relative b-
cell area.
Figure 3 shows the single regression analyses between the

a/b and various clinical parameters. In single regression

analyses, diabetes duration, HbA1c and fasting plasma glucose
levels were significantly correlated with the a/b. Age, BMI,
insulin secretory capacity, insulin resistance and insulin sensitiv-
ity were not significantly correlated with the a/b. Furthermore,
a stepwise multiple regression analysis carried out with the vari-
ables that correlated significantly with the a/b identified dia-
betes duration as the only independent and significant
determinant of the ratio (P = 0.006; Table 2).

Ki67- and cCAS3-positive ratio in a- and b-cells
We evaluated the Ki67-positive ratio in a- and b-cells to
examine proliferation. The median Ki67-positive ratio in a-
cells (%) was 0.00% (IQR 0.00%), 0.00% (IQR 0.03%), 0.00%
(IQR 0.05%) and 0.05% (IQR 0.17%) in the NGT, IGT, new-
diabetes and long-type 2 diabetes groups, respectively. There
were no significant differences in these ratios between the four
groups (P = 0.125), but there was a tendency for proliferation
to increase with glucose tolerance worsening (Figure 4a).
There was no significant correlation between HbA1c and the
a-cell Ki67-positive ratio by Spearman’s rank correlation coef-
ficient (P = 0.103). However, the a-cell Ki67-positive ratio in
patients with HbA1c ≥6.5%, the criteria for diabetes in Japan,
was significantly higher than that in patients with HbA1c
<6.5% (0.00% [IQR 0.15%] vs 0.00% [IQR 0.00%], P = 0.022;
Figure 4b). The correlation between diabetes duration and the
a-cell Ki67-positive ratio was not significant by Spearman’s
rank correlation coefficient (P = 0.172). The median Ki67-
positive ratio in b-cells (%) was 0.06% (IQR 0.10%), 0.10%
(IQR 0.15%), 0.11% (IQR 0.16%) and 0.06% (IQR 0.22%) in
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Figure 1 | Single regression analyses between relative a-cell area and various parameters. Age, body mass index (BMI) and glycated hemoglobin
(HbA1c) n = 43 (all patients); diabetes duration n = 19; fasting plasma glucose (FPG) n = 42; fasting immunoreactive insulin (F-IRI), homeostatic
model assessment of b-cell function (HOMA-b) and homeostatic model assessment of insulin resistance (HOMA-R) n = 34; fasting C-peptide
immunoreactivity (F-CPR) and C-peptide index n = 38; insulinogenic index n = 32; Matsuda index n = 33. Closed circles, normal glucose tolerance;
open circles, impaired glucose tolerance; closed triangles, newly diagnosed diabetes; open triangles, longstanding type 2 diabetes.
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the NGT, IGT, new-diabetes and long-type 2 diabetes groups,
respectively. There were no significant differences in these
ratios between the four groups (P = 0.451).

To examine the influence of apoptosis, we evaluated the
cCAS3-positive ratio in a- and b-cells. The median cCAS3-
positive ratio in a-cells (%) was 0.00% (IQR 0.00%), 0.00%
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(IQR 0.02%), 0.00% (IQR 0.00%) and 0.00% (IQR 0.02%) in
the NGT, IGT, new-diabetes and long-type 2 diabetes groups,
respectively. There were no significant differences in these ratios
between the four groups (P = 0.745). The cCAS3-positive ratio
(%) of the patients with HbA1c <6.5% was 0.00% (IQR 0.00%)
and the patients with HbA1c ≥6.5% was 0.00% (IQR 0.04%).
There were no significant differences in these ratios between
the two groups (P = 0.225). The median cCAS3-positive ratio
in b-cells (%) was 0.00% (IQR 0.10%), 0.00% (IQR 0.09%),
0.00% (IQR 0.08%) and 0.05% (IQR 0.13%) in the NGT, IGT,
new-diabetes and long-type 2 diabetes groups, respectively.
There were no significant differences in these ratios between
the four groups (P = 0.813).

Insulin and glucagon double-positive cells
We evaluated the prevalence of glucagon-positive cells that co-
expressed insulin to identify immature endocrine cells as neo-
genic a-cells. The median INS+GCG+ ratios were 0.73% (IQR
0.64%), 0.56% (IQR 1.51%), 0.77% (IQR 1.45%) and 1.07%

(IQR 1.11%) in NGT, IGT, new-diabetes and the long-type 2
diabetes groups, respectively (Figure 5a), and there were no sig-
nificant differences between the four groups (P = 0.560). The
median INS+GCG+ ratios (%) were 0.70% (IQR 0.55%) and
1.00% (IQR 1.16%) in individuals with HbA1c <6.5% and those
with HbA1c ≥6.5% (P = 0.255), respectively (Figure 5b).

Expression patterns of transcription factors in endocrine cells
We evaluated the expression patterns of various transcription
factors including ARX in insulin- and glucagon-positive cells to
examine processes of phenotypic change, such as dedifferentia-
tion and transdifferentiation.
Figure 6 shows triple immunostaining for glucagon, insulin

and ARX. Figure 6a–d shows a typical islet. Most a-cells
expressed ARX (green arrowheads), whereas most b-cells did
not express ARX (red arrowheads). However, some b-cells
expressed ARX (Figure 6e–h), and some a-cells did not express
ARX (Figure 6i–l). b-Cells expressing ARX and a-cells not
expressing ARX could be found at all glucose tolerance stages.
We also confirmed transcription factor expression in
INS+GCG+ cells, which are considered immature endocrine
cells. We found some INS+GCG+ cells that expressed ARX
(Figure 6m–p). Figure 7 shows triple immunostaining for glu-
cagon, insulin and PDX-1. Figure 7a–d shows a typical islet.
Most a-cells did not express PDX-1 (green arrowheads),
whereas most b-cells expressed PDX-1 (red arrowheads). Some
b-cells did not express PDX-1 (Figure 7e–h), and some a-cells
expressed PDX-1 (Figure 7i-l). Furthermore, there was an
INS+GCG+ cell that expressed PDX-1 (Figure 7m–p). Figure 8

Table 2 | Results of stepwise multiple regression analysis with a- to
b-cell area ratio as the dependent variable

R2 AICc BIC P-value

Duration (years) 0.381 -21.7 -20.8 0.006

Neither glycated hemoglobin nor fasting plasma glucose were signifi-
cant determinants in this analysis. AICc, second-order Akaike’s informa-
tion criterion; BIC, Bayesian information criterion.
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shows triple immunostaining for insulin, glucagon and ARX or
NKX6.1, a b-cell transcription factor, in a pair of mirror sec-
tions. There were some INS+GCG+ cells that expressed ARX,
but not NKX6.1 (Figure 8a–h), and some INS+GCG+ cells that
expressed NKX6.1, but not ARX (Figure 8i–p). Furthermore,
there were INS+GCG+ cells that expressed both ARX and
NKX6.1 (Figure 8q–x).

DISCUSSION
In the present study, we analyzed human pancreatic tissues
obtained from pancreatectomies, and revealed that the a/b was
significantly correlated with HbA1c, fasting plasma glucose
levels and type 2 diabetes duration, and that diabetes duration
was the only independent and significant determinant of the
ratio. We also showed that the a/b was significantly higher in
individuals with long-type 2 diabetes than that in the NGT,
IGT and new-DM groups, and there were no significant differ-
ences in this ratio between the NGT, IGT and new-diabetes
groups. These results suggest that the a-cell mass relative to b-
cell mass increases after type 2 diabetes onset, and that this rel-
ative increase depends on the period of chronic hyperglycemia.
Additionally, we showed that the a-cell area was significantly

associated with HbA1c. The a-cell Ki67-positive ratio in
patients with HbA1c ≥6.5%, the criteria for diabetes in Japan,
was significantly higher than that in patients with HbA1c
<6.5%. Thus, one of the potential mechanisms of the increase
in a-cell mass related to chronic hyperglycemia might be a-cell
proliferation, which might also partly contribute to the increase
in the a/b. It has been previously reported that adult human

a-cells can proliferate remarkably during type 1 diabetes
progression25. One of the factors promoting a-cell proliferation
is interleukin-626,27. Blood interleukin-6 levels in patients with
type 2 diabetes are reported to be higher than those in healthy
controls28. Macrophages and granulocytes, which produce and
secrete interleukin-6, are found in islets of Goto–Kakizaki rats29,
which are often used as a non-obese diabetic model. In con-
trast, glucagon-like peptide-1 accelerated b-cell proliferation and
reduced a-cell proliferation by downregulating retinoblastoma
protein30. The decreased incretin effect associated with impaired
glucose tolerance31 might also promote a-cell proliferation.
We thought that a-cell proliferation affects the increment of

a-cell mass to some extent, but other mechanisms might also
be involved in the increase of a-cell mass, because the a-cell
Ki67-positive ratio was very low. We examined the ratio of glu-
cagon-positive cells in ductal epithelium as neogenic cells, but
there were no significant differences between the NGT, IGT,
new-diabetes and long-type 2 diabetes groups, respectively (data
not shown). Then, we considered that phenotypic changes in
pancreatic endocrine cells might be another potential mecha-
nism underlying the increase in a-cell mass relative to b-cell
mass. In fact, chronic hyperglycemia resulted in a reduction in
insulin-positive cells and an increase in glucagon-positive cells
through b-cell transdifferentiation in a diabetic mouse model32.
Pancreatic endocrine phenotypic changes and the resulting
change in the balance between a- and b-cell mass might easily
occur when diabetes duration becomes longer. We examined
ARX and PDX-1 expression in pancreatic endocrine cells to
investigate the possibility of dedifferentiation and
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ª 2018 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd J Diabetes Investig Vol. 9 No. 6 November 2018 1277

O R I G I N A L A R T I C L E

http://onlinelibrary.wiley.com/journal/jdi Pancreatic a- to b-cell ratio in diabetes



transdifferentiation in islet cells. We identified insulin-positive
cells expressing ARX (or not expressing PDX-1) and glucagon-
positive cells not expressing ARX (or expressing PDX-1). Insu-
lin-positive cells expressing ARX (or not expressing PDX-1)
suggest transdifferentiation from b-cells to a- or other islet cells.
Glucagon-positive cells not expressing ARX (or expressing
PDX-1) suggest transdifferentiation from a-cells to b- or other
islet cells. In fact, misexpression of the Arx gene in mouse b-
cells promoted the conversion of b-cells into glucagon- or pan-
creatic polypeptide-producing cells33. In contrast, Arx gene
ablation in mouse neonatal a-cells resulted in an a-to-b-like
conversion through a bi-hormonal state34, and Arx gene inhibi-
tion in mouse a-cells promoted the conversion of a-cells into
b-like cells at any age35. Taken together, our findings suggest

that pancreatic endocrine cells have potential plasticity not only
in mice, but also in humans.
Furthermore, we examined ARX expression in INS+GCG+

cells and identified various types of INS+GCG+ cells. Some cells
expressed ARX, but not NKX6.1, whereas others expressed
NKX6.1, but not ARX. There were also some INS+GCG+ cells
that expressed both transcription factors. INS+GCG+ cells are
thought to be immature cells36, such as neogenic cells, in the
process of differentiating into a- or b-cells, cells dedifferentiat-
ing from a- or b-cells, or cells transdifferentiating from a- or
b-cells to other cell types. Furthermore, pancreatic endocrine
cell phenotypic changes, including neogenesis, dedifferentiation
and transdifferentiation, might occur multidirectionally. Those
phenotypic changes, if any, might partly contribute to
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Figure 6 | Representative images of insulin (INS), glucagon (GCG) and aristaless-related homeobox (ARX) staining in newly diagnosed diabetes.
Triple immunostaining is shown for INS (red), GCG (green), 40 ,6-diamidino-2-phenylindole (DAPI; blue) and ARX (brown). (a–d) Typical islets. Green
arrowheads show a-cells that express ARX, and red arrowheads show b-cells that do not express ARX. (e–h) An insulin-positive and glucagon-
negative cell that expresses ARX. (i–l) An insulin-negative and glucagon-positive cell that does not express ARX. (m–p) An insulin and glucagon
double-positive cell that expresses ARX. Bars, 25 µm.
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pancreatic endocrine cell volume and the change in the balance
between these pancreatic endocrine cells with worsening glucose
tolerance. Although we could not evaluate the precise number
of the various types of INS+GCG+ cells described above at four
stages of glucose tolerance in the present study, further investi-
gation will confirm this hypothesis.
The present study had certain limitations that should be con-

sidered when interpreting the results. First, although we
excluded samples with confirmed strong inflammation by
hematoxylin–eosin staining and fibrosis changes by AZAN
staining, pancreatic inflammation derived from primary pancre-
atic (mainly malignant) diseases might affect the relative a-cell
area and the a/b. Second, 25 patients had malignant diseases,
and their preoperative BMI was 21.3 – 3.2 kg/m2, which was
relatively low. A total of 11 of these patients received anticancer
agents preoperatively. The relative a-cell area and the a/b were
not different between patients with benign diseases and those
with malignant diseases or between patients who had been trea-
ted with anticancer agents and those who had not. However,

we could not completely exclude an effect of malignant diseases
and anticancer agents on pancreatic histology or glucose toler-
ance. Third, we did not discriminate pancreas head tissue sam-
ples from pancreas body or tail tissue samples and, therefore,
analyzed these samples together. We could not exclude an
influence of the sampling site on pancreatic histology. In a pre-
vious report, a- and b-cell area fractions, as well as the a/b,
were not significantly different between islets obtained from the
pancreas head, body and tail5. Furthermore, the relative a-cell
area and the a/b did not differ between samples obtained by
pancreatoduodenectomy and those obtained by distal pancrea-
tectomy in the present study. Thus, we believe that the sam-
pling site would not affect our conclusions. Finally, the
numbers of participants in some laboratory data in the long-
type 2 diabetes group were too small, because some parameters
could not be calculated due to exogenous insulin use in this
group. This might make it difficult to carry out sufficient analy-
ses. Importantly, despite these limitations, we were able to eval-
uate the detailed glucose tolerance status in conjunction with
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Figure 7 | Representative images of insulin (INS), glucagon (GCG) and pancreas duodenal homeobox gene 1 (PDX-1) staining in longstanding
type 2 diabetes. Triple immunostaining is shown for INS (red), GCG (green), 40 ,6-diamidino-2-phenylindole (DAPI; blue) and PDX-1 (brown). (a–d) An
insulin-positive and glucagon-negative cell that does not express PDX-1. (e–h) An insulin-negative and glucagon-positive cell that expresses PDX-1.
(i–l) An insulin and glucagon double-positive cell that expresses PDX-1. Bars, 25 µm.
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pancreatic histological analyses using fresh tissue samples from
humans.
In conclusion, the pancreatic a/b increased after type 2 dia-

betes onset and correlated with diabetes duration, whereas rela-
tive a-cell area correlated with HbA1c. This pancreatic
endocrine histological change might occur through a-cell prolif-
eration, which might be associated with the duration and

degree of chronic hyperglycemia, and phenotypic changes in
pancreatic endocrine cells.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Figure S1 | Flow chart of disposition of patients.
Figure S2 | Representative images of (a) glucagon) and (b) insulin staining by a 3,3-diaminobenzidine tetrahydrochloride substrate
in patients with normal glucose tolerance.
Figure S3 | Representative images of glucagon and Ki67 staining in patients with longstanding type 2 diabetes.
Figure S4 | Relative (a) a-cell area and the (b) a- to b-cell area ratio in patients with benign disease and those with malignant dis-
ease. Relative (c) a-cell area and the (d) a- to b-cell area ratio in samples obtained by pancreatoduodenectomy and those obtained
by distal pancreatectomy. Relative (e) a-cell area and the (f) a- to b-cell area ratio in patients who had been treated with preopera-
tive anticancer agents and those who had not.
Table S1 | (a) Primary antibodies, (b) secondary antibodies and (c) chromogenic substrates used.
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