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Abstract: Background: Several types of extracellular vesicles (EVs) secreted by various immune
and non-immune cells are present in the human plasma. We previously demonstrated that EV
abundance and microRNA content change in pathological conditions, such as HIV infection. Here, we
investigated daily variations of large and small EVs, in terms of abundance and microRNA contents in
people living with HIV (PLWH) receiving antiretroviral therapy (HIV+ART) and uninfected controls
(HIV−). Methods: Venous blood samples from n = 10 HIV+ART and n = 10 HIV− participants
were collected at 10:00 and 22:00 the same day. Large and small plasma EVs were purified, counted,
and the mature miRNAs miR-29a, miR-29b, miR-92, miR-155, and miR-223 copies were measured
by RT-PCR. Results: Large EVs were significantly bigger in the plasma collected at 10:00 versus
22:00 in both groups. There was a significant day–night increase in the quantity of 5 miRNAs in
HIV− large EVs. In HIV+ART, only miR-155 daily variation has been observed in large EVs. Finally,
EV-miRNA content permits to distinguish HIV− to HIV+ART in multivariate analysis. Conclusion:
These results point that plasma EV amount and microRNA contents are under daily variation in
HIV− people. This new dynamic measure is disrupted in PLWH despite viral-suppressive ART. This
study highlights a significant difference concerning EV abundance and their content measured at
22:00 between both groups. Therefore, the time of blood collection must be considered in the future
for the EV as biomarkers.

Keywords: extracellular vesicles; HIV−1; microRNA; miR-29a; miR-29b; miR-92; miR-155; miR-223;
circadian clock
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1. Introduction

During the last decade, extracellular vesicles (EVs) have been identified in many
biological fluids and have gained importance as cell-to-cell communicators [1,2]. Based
on their cellular origin and/or biological function or based on their biogenesis, EVs are
classified as exosomes, microvesicles, and apoptotic bodies [3–6]. EV harbor specific
subsets of bioactive cargos representing their originating cell types and pathophysiological
conditions [4,7]. Importantly, attention has been focused on EV as non-invasive biomarkers
for the diagnosis and prognosis of diseases [8–12]. Moreover, emerging roles for therapeutic
opportunities regardless of multifaceted biological functions are observed [9]. They have
been reported to carry cellular components that have functional effects on neighboring or
distant cells, including mRNA and microRNA, other noncoding RNA, cytoplasmic and
membrane proteins, and lipids [7].

The microRNAs (miRNAs) are a class of short RNAs that play a crucial role in almost
all biological pathways by regulating post-transcriptional silencing of target genes [13–15].
The miRNAs produced by cells can be transported from donor cells to recipient cells by EV,
lipoproteins, and ribonucleoproteins [16–18]. The miRNAs in the EV are stable in biological
fluids since they are protected by a double lipid layer [19,20]. The presence of miRNAs
within EV isolated from circulating body fluids has stimulated many studies aiming to
investigate EV diagnostic and prognostic potential as the fact that vesicular miRNA content
is affected by the pathological state of the cells or tissues [21,22].

Based on their implication on the physiological process, some studies have described
temporal variation of EV in circulating blood. The amount of EV in blood at a given time
results from a delicate balance between production and uptake of EV by various tissues
and organs and could be influenced by multiple factors, including exercise, time since last
meal, gender, age, and circadian rhythm [23,24].

Circadian rhythms are approximately 24 h exhibited by most organisms, from unicel-
lular to vertebrates [25]. Circadian variations drive physiological and cellular adaptations
in various processes and regulate or optimizes the function of cells, organs, systems, and
behavior throughout the 24 h duration of a day [26]. Many physiological and behavioral
processes, including hormone secretion and regulation, metabolism, immune responses,
and sleep-wake cycles, are modulated by the circadian clock [26,27]. Circadian variations
of the immune response, from the trafficking of immune cells to the activation of innate
and adaptive immunity, to host–pathogen interactions, have been described [28–30]. Cells
of the innate immune system, such as neutrophils, macrophages, and monocytes, whose
number changes dynamically over the day, exhibit circadian patterns of migration from
the blood to tissues [28,29,31–33]. Furthermore, the diurnal variation in T cell proliferation
and distribution modulate T cell interaction with antigen-presenting cells and influence im-
mune responses to antigens and bacterial infections [30,34,35]. In addition, circadian clocks
impact the nature and amplitude of inflammatory responses induced by pathogens [29,30].
Some pathogens are described to induce a circadian disruption, thus promoting their
expression and may contribute to pathogenesis. Yang et al., reported that hepatitis B virus
encoded X (HBx) perturbed several clock genes and transcriptional levels with increased
transcription of Clock, Per1, and Per2 and significantly lower levels of Per1-3 and Cry2
mRNA [36]. Human Immunodeficiency Virus (HIV) and Simian Immunodeficiency Virus
infection have been associated with the disruption of circadian-regulated physiological
processes [37], a disturbance of the circadian rhythm of T and B lymphocytes [38,39], and a
resetting of the circadian clock [40].

Given the impact of diurnal variations on numerous blood-borne factors and the
increasing interest in circulating blood EV and miRNAs as new biomarkers for the patho-
logical state, it is necessary to elucidate their physiological nychthemeral variations. Some
studies reported diurnal variations of circulating extracellular vesicles and miRNAs in
human plasma. Danielson et al., observed variations in the relative size and concentration
of EVs in healthy adult plasma across the course of a day and suggesting that there are
diurnal variations in the number and size distribution of circulating EV populations [23].
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Investigating a panel of 92 miRNAs in plasma samples from young male healthy volunteers
repeatedly sampled nine times during 24 h, Heegaard et al., demonstrate that a third of the
measurable plasma miRNAs exhibit a rhythmic behavior and are distributed in two main
phase patterns [41].

Despite the circadian variation of EV size and concentration and cell-free miRNAs in
plasma, the day-to-night variation of EV miRNA content has not been investigated mainly
in the state of HIV infection. It is now well known that EV and microRNAs are essential
players in HIV infection immunopathogenesis [42–46], and the potential of these molecules
and EV as biomarkers for HIV infection management has recently emerged [47,48]. Based
on their dimension, EVs are classified as small and large vesicle [6] and all subtypes must
be checked and taken account for biomarkers analysis.

In this manuscript, we investigated the daily variation of a panel of five miRNAs
inside large and small EVs purified from HIV− and PLWH participants plasma. We aimed
to describe the daily variations of EV size, abundance, and microRNA contents and how
HIV infection impacts this variation. We focused on miRNAs previously reported to play
an important role in HIV physiopathological mechanisms, such as miR-29a and b, miR-92,
miR-155, and miR-223 [49].

2. Results
2.1. Days versus Night EV Abundance Variation Was Disrupting in PLWH

To evaluate daily variation in EV abundance for both type of EVs (large and small),
blood from HIV+ART and HIV− study participants were sampling at 10:00 and 22:00
the same day. Large and small EVs were purified from proteinase K pretreated plasma,
and their size was evaluated by dynamic light scattering (DLS) (Figure 1A). We observed
that size of large EVs from HIV+ART (387.6 ± 104.9 nm at 10:00 versus 204.7 ± 41.08 nm
at 22:00; mean ± standard deviation) as well as uninfected (220.4 ± 38.27 at 10:00 vs.
182.1 ± 48.63 nm at 22:00), were significantly increased at 10:00 compared to 22:00 for
both group of participants (Figure 1B). In contrast, small EVs in both groups ((HIV+ART:
10:00 = 99.75 ± 16.75 vs. 22:00 = 114.5 ± 31.52 nm) and (uninfected: 10:00 = 98.02 ± 21.89
vs. 22:00 = 107.6± 24.63 nm)), show nonsignificant difference (Figure 1C). Large EVs size at
10:00 was significantly higher in HIV+ART but no difference was seen at 22:00 and in small
EVs (Figure 1B,C). As we have previously shown, large EVs size at 10:00 was positively
correlated with CD4 T cell count in HIV+ART subjects (r = 0.73, p = 0.0202; Figure 1E) [47].
Small EVs size at 10:00 was respectively correlated with HIV infection duration (r = 0.75,
p = 0.0154; Figure 1F) and ART duration (r = 0.85, p = 0.0029; Figure 1G). All together, these
results show that only large EV was subject to circadian variation in both groups and HIV
infection does not disturb this physiological state. Moreover, there is an interdependence
between small EVs size at 10:00 and HIV infection or ART duration.

Knowing that EV size varied between a.m. and p.m. as well as cells
numbers [28,29,31–33], we then evaluated plasma EV abundance variation during the
nychthemeral cycle. Large and small EVs purified from plasma sampled at 10:00 and 22:00
the same day were stained with DID a lipophilic fluorescent tracer dye for EV lipidic bilayer
and carboxyfluoresceine diacetate succinimidyl ester (CFSE) a cell-permeable dye then
analyzed in a cytofluorometer (Figure 1A). Results showed that large EVs were significantly
more abundant at 22:00 in HIV− and this variation between 10:00 and 22:00 was lost in
HIV+ART subjects (Figure 1G). Regarding small EVs, no difference was seen in uninfected
subjects and in contrast to HIV+ART subjects where EVs were more abundant at 10:00 than
22:00 (Figure 1H). Relatively to HIV+ART, large EVs (p = 0.0029) and small EVs (p = 0.0007)
were significantly more abundant in HIV− at 22:00 (Figure 1G,H). Unexpectedly, no cor-
relation was found between HIV+ART EVs abundance and CD4, CD8 T cell count, or
CD4/CD8 ratio. Taken together, these results show that plasma EV abundance is dynamic
during the day/night cycle and that HIV infection disturbs large and small EV abundance
diurnal variations.
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and HIV− study participants. Large and small EVs were purified from proteinase K pretreated 
platelets-free plasma of uninfected (HIV−, n = 10) and HIV infected ART-treated subjects 
(HIV+ART n = 10) sampled at 10:00 and 22:00 the same day as illustrated in panel (A). The Size 
distribution of large (B) and small (C) EVs was evaluated using dynamic ligth scatering. Large 
EVs size at 10:00 correlation with CD4 T cell count in HIV+ART (D), small EV size at 10:00 correla-
tion with HIV infection duration (E,F) with ART duration. Then, purified EVs were stained with 
lipophilic fluorescent tracer dye DiD and carboxyfluoresceine diacetate succinimidyl ester (CFSE) 
to count total vesicles (A). Large (G) and small (H) EVs abundance variation between 10:00 and 
22:00 in HIV− and HIV+ART participants. Wilcoxon matched-pairs signed-rank test, Mann–Whit-
ney test and Spearman r correlation test were used for statistical analysis. 

2.2. Significant Daily Variation of microRNA in Large EV in Control Subject 
Investigating day to night variations of a panel of five miRNAs in plasma EV, 10 HIV 

uninfected patients were sampled at 10:00 and 22:00. Total RNA was extracted from pu-
rified plasma EV, and mature EV-miRNAs were quantified by RT-qPCR. The analysis 
shows a significant variation with an increase in the quantity of all five miRNAs miR-29a 

Figure 1. Daily variations in the size and abundance of plasma large and small EVs in HIV+ART and HIV− study
participants. Large and small EVs were purified from proteinase K pretreated platelets-free plasma of uninfected (HIV−,
n = 10) and HIV infected ART-treated subjects (HIV+ART n = 10) sampled at 10:00 and 22:00 the same day as illustrated in
panel (A). The Size distribution of large (B) and small (C) EVs was evaluated using dynamic ligth scatering. Large EVs size at
10:00 correlation with CD4 T cell count in HIV+ART (D), small EV size at 10:00 correlation with HIV infection duration (E,F)
with ART duration. Then, purified EVs were stained with lipophilic fluorescent tracer dye DiD and carboxyfluoresceine
diacetate succinimidyl ester (CFSE) to count total vesicles (A). Large (G) and small (H) EVs abundance variation between
10:00 and 22:00 in HIV− and HIV+ART participants. Wilcoxon matched-pairs signed-rank test, Mann–Whitney test and
Spearman r correlation test were used for statistical analysis.

2.2. Significant Daily Variation of microRNA in Large EV in Control Subject

Investigating day to night variations of a panel of five miRNAs in plasma EV, 10 HIV
uninfected patients were sampled at 10:00 and 22:00. Total RNA was extracted from
purified plasma EV, and mature EV-miRNAs were quantified by RT-qPCR. The analysis
shows a significant variation with an increase in the quantity of all five miRNAs miR-29a
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(Figure 2A), miR-29b (Figure 2B), miR-92 (Figure 2C), miR-155 (Figure 2D), and miR-223
(Figure 2E) in large EV of the 22:00 samples compared to the 10:00 ones. In small EVs, no
significant variation was seen for five miRNAs quantities (Figure 2F–J).
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Figure 2. Daily variations of microRNA expression in plasma large and small EVs of HIV− and
HIV+ART study participants. Total RNA was extracted from large and small EVs purified from
proteinase K pretreated platelets-free plasma of uninfected (HIV−, n = 10) and HIV infected ART-
treated subjects (HIV+ART, n = 10) sampled at 10:00 and 22:00 the same day. Matures miRNAs were
reverse transcribed and quantified as described in the Materials and Methods section. Large EVs
(A–E) and small EVs (F–J) miRNA expression level at 10:00 and 22:00 were presented. Wilcoxon
matched-pairs signed rank test and Mann–Whitney test were used for statistical analysis.

To better understand EV miRNA day to night variation, EV-miRNA quantity was
expressed as copies per vesicle as described in the methods section. Unlike the total amount
in large EVs, no variation was seen in five miRNAs expression per vesicle between 10:00
and 22:00 (Figure 3A–E). In small EVs, we observed a trend to have more miRNA per
vesicle at 10:00 than 22:00 and this variation was significant for 3 of 5 miRNA (Figure 3F,G).
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Figure 3. Daily variations of microRNA level expression as copies per large and small vesicle of HIV− and HIV+ART study
participants. Copy number of each miRNA molecule per large and small vesicle is expressed for HIV− and HIV+ART
study participants large EVs (A–E) and small EVs (F–J) at 10:00 and 22:00. Wilcoxon matched-pairs signed rank test and
Mann–Whitney test were used for statistical analysis.

Regarding the miRNA expression in large EVs compared to small EVs, we observed
a globally opposite tendency to have more miRNA in the small EVs at 10:00 and in large
at 22:00 (Figure S1A,C,E,I). This variation is significant for miR-29b at 10:00 samples
and for miR-29a, miR-223 at 22:00 samples. The miR-155 is identified as being the only
one characterized by enrichment in the large EV in 10:00 and 22:00 (Figure S1G). Together,
these findings suggest a physiological variation of the miRNA quantities in EV during the
day/night cycle particularly in large EVs as observed with larger EVs abundance. Moreover,
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these results denote preferential enrichment of EV subtype in miRNA depending on the
time of the day.

2.3. Increasing Amount of miR-155 in Large and Small EV at Night in PLWH ART-Treated

We next investigated what happened in EV-miRNA day-night variation in PLWH.
Ten ART-treated PLWH with undetectable HIV viral load were sampled at 10:00 and 22:00,
EVs were purified from platelet-free plasma, and miRNAs were quantified as carried out
for the control subjects. In large EVs, compared to the 10:00 sample, only miR-155 quantity
increases significantly in the 22:00 sample (Figure 2D). As shown in Figure 2A–C, and E,
no variation was seen in the amount of miR-29a, miR-29b, and miR-223 between the 10:00
and 22:00 samples. In small EVs, the trend to have more miRNA at 22:00 was significant
for miR-29b, miR-92, and miR-155 (Figure 2F–I). Concerning miRNA expression level per
large EVs, no variation was observed between the 10:00 and 22:00 samples for all five
miRNAs (Figure 3A–E). In contrast, small EVs miRNA level per vesicle was significantly
more abundant in 22:00 sample for miR-29a, miR-29ab, miR-92, and miR-155 (Figure 3F–I).
Comparing miRNA quantity in small and large EVs, as observed in control patients, miR-
155 was also more enriched in large EVs at 10:00 and 22:00. The amount of miR-29a and
miR-29b were enriched in small vesicles at 22:00 (Figure S1B,D).

2.4. Disturbance of the Circadian Pattern of EV-miRNA Content in PLWH ART-Treated

By comparing EV-miRNA expression patterns in HIV+ART and HIV uninfected, we
observed that in large EVs the miRNA variation between 10:00 and 22:00 was lost in
HIV+ART excepted for miR-155 (Figure 2A–E). Regarding miRNA quantity at 10:00 and
22:00, miR-29a (Figure 2A), miR-29b (Figure 2B), miR92 (Figure 2C), miR-155 (Figure 2D),
and miR-223 (Figure 2A) were significantly more abundant in HIV− large EVs compared
to HIV+ART at 22:00. Likewise, only miR-223 level per large vesicle was higher in HIV−
at the same time. About small EVs miRNA quantity, an opposite trend was observed with
more miRNA in HIV+ART small EVs at 22:00. This trend was significant for miR-29a
(Figure 2F), miR-92 (Figure 2H), and miR-155 (Figure 2I). Concerning miRNA expression
per small vesicle, all five miRNAs were significantly higher in HIV+ART compared to
HIV− at 22:00. Surprisingly, no significant difference was seen in large and small EVs
miRNA quantity between HIV− and HIV+ART at 10:00 (Figure 2A–J).

Considering the quantity of all five miRNAs in multivariate analysis, we noted a
different relationship profile between variables at 10:00 and 22:00 in HIV− (Figure 4A,B)
and HIV+ART (Figure 4C,D). In HIV−, we observed a strong positive correlation between
the quantity of different miRNAs in large and small EVs at 10:00 and 22:00. Moreover, we
observed a negative correlation between the quantities of miRNAs in large and small at a.m.
and p.m. In HIV+ART, there is a weak correlation between the quantity of these miRNAs
in large and small both at 10:00 and 22:00. Moreover, considering together the expression of
5 miRNAs in large and small EVs at 10:00 and 22:00 in principal component analysis, HIV−
and HIV+ART subjects are clustered for the most part (Figure 4E and Figure S2A,B). This
analyzes permits the separation of HIV− from HIV+ART based on EV-miRNA content.
These results highlight temporal oscillation of EVs miRNA contents patterns and suggest
that HIV infection disrupts EV-miRNA day-night variation by inversing miRNA circadian
pattern in small EVs. These results raise the question of sampling time for comparisons
between HIV− infected and control subjects.
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Figure 4. Principal component analysis of daily variations in EV mRNA expression in HIV+ART and HIV− study
participants. Correlation graph of large and small EVs miR-29a, miR-29b, miR-92, miR-155, and miR-223 content at 10:00
and 22:00: (A,B) present graph results for HIV− and (C,D) graph for HIV+ART. Correlation graph of 10 control subjects
(individuals 1–10) and 10 HIV infected subjects (individuals 11–20) according to their large and small EVs miRNA content
at 10:00 and 22:00.

2.5. Small EVs miR-155 a Biomarker of Immune Activation in PLWH ART-Treated

In the relationship between EV-miRNA content and immune parameters used for
clinical follow-up of PLWH such as CD4, CD8 T Cell, and CD4/CD8 ratio, a correlational
analysis was performed for control and HIV+ART subjects (Table 1). The analysis showed
that CD4/CD8 ratio correlated with the 5 miRNAs level in large EVs at a.m. This correlation
was significant for miR-29b (r = 0.84, p = 0.0064) and miR-92 (r = 0.84, p = 0.0071) and was
not seen among HIV+ART subjects. Some correlations between clinical parameters and
miRNAs expression per vesicle have been observed. However, these correlations do not
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agree with those observed with the total amounts of miRNAs. Concerning age, it was
inversely correlated with large EVs miR-29a copies per vesicle (r = −0.76, p = 0.0218) and
positively with small EVs miR-29a copies per vesicle (r = 0.81, p = 0.0112) in 10:00 samples.
The large (r = −0.76; p = 0.0218) and small (r = −0.76, p = 0.0143) EVs miR-92 copies per
vesicle at 22:00 was inversely correlated with age. The miR-155 level per large vesicle
(r = 0.74, p = 0.0267) and per small vesicle at 10:00 (r = −0.71, p = 0.0377) was respectively
positively and inversely correlated with age. Regarding HIV+ART subjects, only small EV-
miR-155 level at 22:00 (r = 0.75, p = 0.0255) was positively correlated with CD8 T cell count.
Taken together, these results showed some relationships between EV-miRNA contents and
clinical parameters in physiological conditions, and which are lost with immune disorders
induced by HIV infection. The relationships between EV-miRNA content and age provided
evidence of the role of miRNAs in senescence. Molecular studies of aging and miRNAs
would provide a more comprehensive understanding. The relationships between vesicular
miR-155 at 20:00 and CD8 T cell count strengthens data on the implication of miR-155 in
immune activation and inflammation during HIV infection and, therefore, its implication
in HIV infection immunopathological mechanism and perhaps a functional biomarker.
Further, these observations highlight that in addition to miRNA total quantification, EV-
miRNA expression per vesicle could also be a most remarkable biomarker.

Table 1. Correlation between plasma extracellular vesicles miRNA content and patients’ clinical parameters.

microRNAs Clinical Parameters

EVs miRNA Content
Large EVs Small EVs

a.m. p.m. a.m. p.m.

miR-29a Age r = −0.76; p = 0.0218 * r = 0.81; p = 0.0112 *
CD4 T cell count r = 0.59; p = 0.0806 r = −0.65; p = 0.0490 *
CD4/CD8 ratio r = 0.61; p = 0.0873

miR-29b
CD4/CD8 ratio r = 0.84; p = 0.0064

miR-92
Age r = −0.79; p = 0.0143 * r = −0.76; p = 0.0218 *

CD4 T cell count r = −0.90; p = 0.0008 * r = 0.76; p = 0.0149 *
CD4/CD8 ratio r = 0.84; p = 0.0071

miR-155
Age r = −0.71; p = 0.0377 * r = 0.74; p = 0.0267 *

CD8 T cell count r = 0.75; p = 0.0255
CD4/CD8 ratio r = 0.61; p = 0.0873

miR-223
Age r = −0.78; p = 0.0156

CD4 T cell count r = −0.61; p = 0.0667 *
CD4/CD8 ratio r = 0.66; p = 0.0595 r = −0.62; p = 0.0776 *

* Correlations with miRNA copies per vesicle; Bold correlation: HIV+.

3. Discussion

Previously, our team showed that EVs found in the plasma of ART-naive patients
were larger and more broadly distributed than those from any other group of subjects, but
no difference was seen between control and ART-treated patients with suppressed viral
load [48]. In this study, we highlight a difference in plasma EV contain between successful
ART-treated patient and uninfected control in regard of time sampling.

We observed an increasing trend in EV abundance at p.m. This trend was significant
only for large EVs in control subjects and was not so among PLWH. Surprisingly, large
and small EVs abundance was greater in control patients than in HIV+ART at p.m. This
observation contrasts with our previous results in a.m. samples and a study that describes
that HIV infection induces an increased number of circulating EV that originate from
a broad population of persistently activated immune cells [50]. However, in the study
that confirmed an increased production of EV during HIV infection, the sampling was
done essentially during the day [50]. Physiologically, the number of the major leukocyte
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subsets in blood, including neutrophils, monocytes, CD4 T cell, CD8 T cell, NK cells, and
eosinophils varies throughout the day, reflecting bone marrow output and emigration from
the blood into tissues [51–53]. This spatiotemporal distribution of leukocyte subsets is
driven by the circadian expression of pro-migratory molecules expressed on the leukocytes
and the endothelium [52,53]. Systemic circadian signals and cell-intrinsic molecule clocks
contribute to the oscillatory expression of these pro-migratory molecules [52]. Comparative
evaluation of the expression level of these pro-migratory molecules in controls and PLWH
could confirm our observations. Our finding could suggest that HIV infection causes
disruption of the circadian clock system and are supported by results of other studies which
reported that HIV alters circadian rhythms through the light entrainment pathway [40]
with as consequence a disturbance of the circadian rhythm immune cells such as T and B
lymphocytes [38,39].

We also showed that size of large EVs are greater at 10:00 than 22:00 for HIV− and
HIV+ART-treated group. Contrary to our results, Danielson et al. [23] noticed that EV
collected in the evening had the most extensive range of sizes than morning EV. Comparing
to control, HIV+ART large EVs were larger at 10:00. In this study, no difference was
observed between control and HIV+ART at any time regardless of small EVs size. Similarly,
Chettimada et al. [54], reported no significant difference in EV size in control subjects,
viremic and aviremic HIV−positive groups. The difference in reported results could be
explained at least by three factors, including (1) samples are not always taken at the same
time of day, (2) other factors not considered can influence EV size, (3) difference in EV
purification methods such as ultracentrifugation or precipitation with or without proteinase
K pretreatment for example. It should be noted that our method (Figure 1A) sequentially
separates two subpopulations of different sizes EV from proteinase K pretreated plasma
while the other studies focus either on exosomes or total plasma EV. For more comparability
between studies, it would be interesting to harmonize the patient sampling periods and
EV purification methods.

Our results show interdependence between small EVs size at 10:00 and HIV infection
or ART duration. The size of small EVs increases with the duration of infection and ART
treatment. Emerging evidence suggests direct links between autophagy and exosome
biogenesis through shared molecular machinery and a subset of the autophagy machinery
may contribute to exosome biogenesis [55,56]. During HIV infection, the antiviral and
immune properties of autophagy are severely dysregulated through a plethora of direct
and indirect mechanisms [57,58]. In particular, the HIV proteins TAT, NEF, and ENV are
involved in this regulation by either blocking or stimulating autophagy through direct
interaction with autophagy proteins and/or modulation of the mTOR pathway [59–62].
Likewise, ART drugs [63–65] and aging [66,67] have been associated with dysregulation
of autophagy. These different factors associated with dysregulation of autophagy may
contribute to autophagosome and multivesicular bodies fusion [68] and induce larger
EV release.

Concerning EV miRNA content, knowing that cell-free miRNAs exist in the blood-
stream incorporated into EVs [19] and associated with high-density lipoproteins [16] and
Ago2 protein [18], we first evaluate the impact of proteinase K digestion step on EV miRNA
quantification. As reported by over studies, the added of proteinase K step (Figure S3) sig-
nificantly decreases the amount of miR-155 and miR-U6 in purified large EVs. This suggests
that the proteinase K treatment is required for the efficient removal of extra-vesicular RNA
and supports our EV purification method (Figure S4) in accord with MISEV2018 recom-
mendation. In large EVs, all five miRNAs show an increase in the 22:00 samples and follow
the same distribution as the abundance of vesicles between 10:00 and 22:00. Compared to
controls, there is an abolition of the a.m.–p.m. variation in the amount of miR-29a, miR-29b,
miR-92, and miR-223 in HIV+ART. In the controls’ small EVs, despite the tendency to have
more EV at p.m., no significant difference was seen for miRNA between a.m. and p.m.
In HIV+ART subjects, small EVs were more abundant at a.m. and contrast with miRNA
quantity variation. In addition to showing an increase for miRNA in HIV+ART at p.m.,
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this opposite variation between small EVs abundance and miRNA quantity suggests that
some EVs are miRNA-free, and methods to identify and purify EV that contain miRNAs
must be developed for better characterization of these EVs. Globally, we observed an
inverse trend in large and small EVs miRNA content variation at a.m. and p.m. between
control and HIV+ART. Evidence shows that the expressions of the mature or precursor
forms of some miRNAs exhibit circadian and/or diurnal rhythms and are suggested to be
involved in circadian rhythm regulation and physiological function [69,70]. The miRNAs
miR-155, miR-27b-3p, miR-211, and miR-142 have been described to regulate the rhythmic
expression of Bmal1 mRNA and protein levels [69,71,72]. HIV infection has been asso-
ciated with irregularities in physiological functions related to circadian rhythm [37,73].
HIV Tat is known to directly affect the mammalian master circadian pacemaker located in
the hypothalamic suprachiasmatic nucleus, which underlies lentiviral circadian rhythm
dysfunction, and this effect of Tat occurs only during the subjective night [40,74]. Moreover,
HIV infection was described to induce a change in the cellular miRNA profile and could
explain observed variations [75,76].

Our results show a variation in miRNAs quantity according to EVs subpopulation,
daytime, and HIV infection status. To our knowledge, few studies have been reported on
the physiological rhythmicity of plasma miRNAs, and it is not well known if any of the
cellular and extracellular miRNA exhibits diurnal variation. The time-of-day dependent
distribution of 26/79 plasma miRNAs in healthy volunteers with some miRNAs peaking
at night and some during the day have been reported by Heegaard et al. [41]. The miRNAs
miR-155 and miR-223 were described to have a peak respectively at night and day [41].
This tendency to have a variation in the quantity of miRNA depending on the daytime
and type of EV underlines the need to consider the different subpopulations of EV and the
sampling time in the various explorations of their biomarker role. Further research will be
needed to understand the mechanism of circadian generation and regulation of cellular
and cell-free miRNA expression as well as cellular origin.

When we compare both groups, we realize that despite ART duration of more than
ten years with an undetectable viral load among PLWH, the normalization of the CD4
T cell count contrasts with a higher number of CD8 T cells and a low CD4/CD8 ratio
in PLWH. Data have shown that immune dysfunction and chronic inflammation are not
completely resolved during ART despite suppression of viral replication and restoration of
CD4 T cell count in peripheral blood [77]. These data highlight the need for new and more
functional biomarkers to manage immune activation that increases the risk of non-AIDS-
linked morbidities, including cancer and cardiovascular diseases, metabolic syndrome in
PLWH under ART [77,78]. Exploring the landscape of immune cell components in EVs,
particularly T cell fraction that play a key role in HIV infection we observed that large
and small EVs bearing CD8 marker were more abundant than CD4 vesicles (Figure S5).
This preponderance of CD8 vesicles associated with the persistence of a high number of
CD8 despite the ART interpellates us on the role of these CD8 vesicles in the persistence of
immune activation in PLWH despite ART and undetectable viral load. This could help us
to fully understand the immune activation in PLWH for better management.

The microRNA miR-155 is the only miRNA that shows the same direction of variation
between 10:00 and 22:00 in large and small EVs of HIV+ART. Moreover, it was also the
only miRNA that showed a correlation with the count of CD8 T cells a stigma of immune
activation. In PLWH, Jin et al. [79] showed the same correlation between the miR-155 level
and CD8 T cell count as observed in our study. They stipulate that miR-155 is a biomarker
of T-cell activation and immune dysfunction in HIV−1-infected patients [79]. Effectively,
miR-155 has been documented to enhance CD8 T cell expansion during acute viral infection
and cancer [80–82]. During chronic infection, miR-155 was described to be a key regulator
of T cell responses by fostering the development, accumulation, and long-term durability
of a large population of terminally differentiated PD-1 T cells [82,83]. Overexpression of
miR-155 in virus-specific CD8 T cells enhanced expansion and long-term persistence during
chronic viral infection [83]. In HIV infection, expression of miR-155 is increased and higher
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expression correlates with the increased disease [84]. Likewise, miR-155 was described to
participate in the regulation of the biological clock. Curtis et al., identified that miR-155
controls Bmal1 mRNA and protein levels in myeloid cells, and leading to alterations in
clock function and circadian control of inflammation [69]. Based on this different data, this
multifunctional miRNA [85] could become a valuable tool for the diagnosis and prognosis
of immune activation and chronic inflammation in HIV infection. Moreover, it could be a
therapeutic tool regarding its action on SOCS-1 [86,87], and TRIM32 [88].

4. Conclusions

We have shown that the abundance, size, and miRNA content of plasma EV of HIV−
and HIV+ART donors varies during the day and are more striking in HIV− participants.
Results reveal that daily variations in EV abundance and microRNA contents are disrupted
in PLWH despite the suppression of HIV replication during ART. This disturbance could
explain the mechanism of mRNA and/or protein level changes observed in PLWH and con-
firm that the timing of biological sample collection matters for analyzing and interpreting
study results in comparing HIV uninfected and infected subjects. These different results
indicate that EV in plasma are dynamic structures, with their number, size, and miRNA
content changing continuously with the circadian rhythm and must be considered in the
validation of EV and their content as biomarkers. An improved understanding of EV pro-
duction and their miRNA content circadian variation can dictate pathological outcomes and
how the timing of therapeutic interventions likely determines clinical efficacy in the hope
of their future use as therapeutic tools in circadian medicine and circadian immunotherapy.

5. Materials and Methods
5.1. Population Understudy

PLWH treated with ART (HIV+ART) and having undetectable plasma viral load
(≤40 copies per mL) (n = 10) and HIV uninfected subjects (HIV−, n = 10) were recruited
at Centre de Recherche du CHU de Montréal (CHUM). The characteristics of the patients
are summarized in Table 2. This study received approval from the ethics review boards of
Centre de Recherche du CHU de Montréal, Québec, Canada. All subjects were anonymous
volunteers and provided written informed consent to participate in the study. Peripheral
blood from venipuncture was collected in EDTA-containing tubes, and all participants
were sampled at 10:00 and 22:00 on the same day.

Table 2. Clinical data of the study participants.

Characteristics HIV+ART (n = 10) HIV− (n = 10) p-Value

Years with HIV (years) 16.10 ± 6.03 NA NA
Duration of ART (years) 11.80 ± 7.38 NA NA

Age (years) 52.80 ± 4.78 50.00 ± 11.77 0.9685
CD4 T-cell (cells/µL) 579 ± 156 601 ± 199 0.9705
CD8 T-cell (cells/µL) 789 ± 214 288 ± 151 0.0003

CD4/CD8 ratio 0.74 ± 0.24 2.47 ± 1.28 <0.0001
Data are presented as the means ± standard deviation. NA, not applicable; ART, antiretroviral therapy.

5.2. Purification of Extracellular Vesicles

Purification of EVs was performed, as we described previously [47]. Briefly, blood
obtained by venipuncture with EDTA as an anticoagulant was centrifuged for 10 min at
400× g at room temperature to obtain plasma then the plasma was centrifuged again for
10 min at 3000× g to obtain platelet-free which is stored at −80 ◦C until analyze. Platelet-
free plasma (250 µL) was treated with proteinase K (1.25 mg/mL, Ambion™, Thermo
Fisher Scientific, Waltham, MA, USA) for 10 min at 37 ◦C. Large EVs were purified by
centrifuging proteinase K pretreated plasma for 30 min at 17,000× g at room temperature.
The resulting supernatant was mixed with 63 µL of ExoQuick-TC™ (SBI via Cedarlane,
Burlington, ON, Canada) in an Eppendorf tube and held at room temperature for 30 min.
Micro-filtered (0.22 µm pore size membrane) 1× phosphate-buffered saline (PBS) (WISENT
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Bioproducts, Saint-Jean-Baptiste, QC, Canada) was added to the pellet of large EVs, and
centrifuged for 30 min at 17,000× g. The supernatant was discarded, and the washed large
EV pellet was re-suspended in 250 µL of PBS and kept at 4 ◦C. Small EVs were obtained
from the ExoQuick-TC™ precipitation after centrifuging for 30 min at 1500× g. The small
EVs pellet were washed by adding PBS and centrifuging at 1500× g for 5 min. The washed
small EV pellet was re-suspended in 250 µL of PBS by vortex mixing and kept at 4 ◦C. In
our EV purification method, we incubated plasma with proteinase K (1.25 mg/mL) before
17,000× g centrifugation. This pre-treatment of plasma with proteinase K is described to
critical reduce the amount of non-EV proteins (albumin and the apolipoproteins A-1 and
B), which can be co-purify with EV [89,90]. This digestion step destroys proteins and their
cargo (mRNA, miRNA), and they were removed with the washing step. In our analysis,
we observed that the proteinase K step significantly affects EV size distribution measured
by DLS (Figure S4).

5.3. Extracellular Vesicles Size Measurement

The size of EV was determined by hydrodynamic radius measurement using a Zeta-
sizer Nano S (Malvern Instruments, Ltd., Malvern, United Kingdom). This technique is
based on the light scattering intensity due to the Brownian motion of EVs, characterized by
a diffusion constant [91]. The size distribution is obtained from the distribution of diffusion
constants using the Einstein–Stokes equation [91]. The measurements were made at a fixed
position with an automatic attenuator and at a controlled temperature. For each sample,
100 µL of EV suspension was used, and two measurements were averaged.

5.4. EV Flow Cytometry Analysis

Purified EV were stained with lipophilic fluorescent carbocyanine dye DiD (DiIC18(5)
solid: 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine 4-chlorobenzenesulfonate
salt, Invitrogen™, Carlsbad, CA, USA), and carboxyfluoresceine diacetate succinimidyl
ester (CFSE) (Invitrogen™, Carlsbad, CA, USA) cell-permeable dye. DiD and CFSE were
prediluted respectively 1/100 and 1/500 with 0.22 µm filtered solution of PBS 1X + EDTA
(100 mM for final concentration). Then, 40 µL of DiD diluted solution (for final dilution
1/200 (1 ug/mL)) was added to 10 µL of EVs then mixed and incubated for 5 min at 37 ◦C.
After incubation, 50 µL of diluted CFSE was added (for final dilution 1/1000 (1 ug/mL))
and incubated for 15 min under the same condition. Next, 400 µL of filtered PBS 1X +EDTA
and 5 µL of 15 µm count beads (Polybead® Microspheres 15.00 µm, Polysciences, Inc.,
Warrington, PA, USA) were added, vortex mixing, and counting by flow cytometry. A
method described previously [47,92] for microparticle analyses was used for EVs analysis
by flow cytometry in a FACS Canto II Special Order Research Product cytofluorometer
equipped with forward scatter coupled to a photomultiplier tube (FSC-PMT) with the
“small particles option” (BD Biosciences, Franklin Lakes, NJ, USA). Gating strategy for
the identification and analysis of EV are shown in supplementary data (Figures S6–S8).
We further explored the presence of CD63 an endosome-specific tetraspanins marker in
large and small EVs and then characterizing the cellular source of circulating large and
small EVs in a pooling sample. The purified EVs were stained with lipophilic fluorescent
tracer dye DiD or CFSE and next labeled antibodies directed against EVs surface markers:
CD4 (17-0048-42), CD8 (11-0089-42), CD14 (11-0149-42) from eBioscience), CD15 (555402
from BD biosciences), CD16 (12-0168-73) and, CD19 (12-0198-42) from eBioscience), CD41
(ab19690 from Abcam), CD63 (IM1165U from Beckman Coulter), and CD235a (11-9987-80
from eBioscience) for flow cytometry analysis (Figure S5).

5.5. MicroRNA Quantification

EV suspension (100 µL) was diluted 3:1 in TRIzol LS (Ambion, Life Technologies,
Carlsbad, CA, USA) and held at −80 ◦C. From EVs, total RNA was extracted, mixed with
10 µL of diethylpyrocarbonate water, and quantified (1 µL) using a BioDrop-µLITE kit
(Isogen Life Science, Utrecht, The Netherlands). Them, 100 ng of RNA was treated with



Pathogens 2021, 10, 518 14 of 18

RNase-free DNase I (Ambion™ Life Technologies) then reverse transcribed using a HiFlex
miScript RT II kit according to the manufacturer’s instructions (Qiagen, Hilden, Germany).
Mature miR-29a (#MS00003262), miR-29b (#MS00006566), miR-92 (#MS00006594), miR-155
(#MS00031486) and miR-223 (#MS00003871) were detected by quantitative polymerase
chain reaction (qRT-PCR) using an miScript primer assay kit and miScript SYBR Green
PCR kit (Qiagen). Amplification of mature microRNA as cDNA was performed in a CFX
Connect real-time PCR Detection System (BIO-RAD, Hercules, CA, USA) using 40 cycles of
94 ◦C for 15 s, 55 ◦C for 30 s, and 72 ◦C for 30 s. Reaction specificity was confirmed using
the melt curve procedure (65–95 ◦C, 0.5 ◦C per 5 s) at the end of the amplification protocol
according to the manufacturer’s instructions. A standard curve was used for absolute
quantification of microRNA.

5.6. Procedure for Calculating miRNA Copy Number per Vesicle

This procedure was described previously [47]. Large EVs were separated from 250 µL
of plasma, which was then mixed with 63 µL of ExoQuick-TC™. Total RNA was extracted
from 100 µL of the small EV and large EV fractions. Small EV yielded about 390 ng of
RNA (from the 1.25× dilution due to ExoQuick-TC™) and large EV yielded 321 ng (from
100 µL), which indicates that the plasma contained 4.9 ng/µL associated with small EV
and 3.2 ng/µL associated with large EV. Based on RT-qPCR, miRNA was expressed in
copies/ng of RNA. EVs counts (obtained by cytofluorometry) were expressed per µL of
plasma. Multiplying the miRNA copies/ng of RNA by the RNA per µL of plasma gave
miRNA copies/µL. Dividing this result by EVs count per µL gave miRNA copies/EVs in
1 µL of plasma. By multiplying the result by a factor of 1000, we obtain the unit number of
miRNA copies per vesicle in 1 mL of plasma.

5.7. Statistical Analysis

The time-dependent distribution of the individual observations at 10 a.m. and 10 p.m.
was presented as before–after. We used a parametric and non-parametric test for compar-
isons based on normal distribution tests. A principal component analysis was performed
to study the relationship between variables. All correlation coefficients were calculated
using Spearman rank correlation and p values were 2-tailed. Statistical analyses were
performed using GraphPad Prism 8 (GraphPad Inc, San Diego, CA, USA) and RStu-
dio packages (Integrated Development for R. RStudio, PBC, Boston, MA, USA, URL
http://www.rstudio.com/ accessed on 3 February 2021). A p value ≤ 0.05 was deemed
statistically significant.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10050518/s1, Table S1: Summary of vesicle size, count, and microRNA content
data. Figure S1: Daily variations of microRNA expression in plasma large and small EVs of HIV−
and HIV+ART study participants. Figure S2: Principal component analysis of daily variations in EV
mRNA expression in HIV+ART and HIV− study participants. Figure S3: Effect of proteinase K on
the recovery of plasma EVs obtained from HIV−1 patients. Figure S4: Impact of proteinase K use in
extracellular vesicles size distribution. Figure S5: Large and small EVs quantification and cellular
origin. Figure S6: Gating strategy for identifying and analysis of DID and CFSE positive extracellular
vesicles in Flow cytometry. Figure S7: Large EVs DID and CFSE positive analysis in Flow cytometry.
Figure S8: Small EVs DID and CFSE positive analysis in Flow cytometry.
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