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ABSTRACT 

Breast cancer is a major public health problem for women in the Iran and many other parts of the 
world. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) plays a pivotal role in 
breast cancer care, including detection, diagnosis, and treatment monitoring. But segmentation of 
these images which is seriously affected by intensity inhomogeneities created by radio-frequency 
coils is a challenging task. Markov Random Field (MRF) is used widely in medical image 
segmentation especially in MR images. It is because this method can model intensity 
inhomogeneities occurring in these images. But this method has two critical weaknesses: 
Computational complexity and sensitivity of the results to the models parameters. To overcome 
these problems, in this paper, we present Improved-Markov Random Field (I-MRF) method for 
breast lesion segmentation in MR images. Unlike the conventional MRF, in the proposed approach, 
we don’t use the Iterative Conditional Mode (ICM) method or Simulated Annealing (SA) for class 
membership estimation of each pixel (lesion and non-lesion). The prior distribution of the class 
membership is modeled as a ratio of two conditional probability distributions in a neighborhood 
which is defined for each pixel: probability distribution of similar pixels and non-similar ones. Since 
our proposed approach don’t use an iterative method for maximizing the posterior probability, above 
mentioned problems are solved. Experimental results show that performance of segmentation in this 
approach is higher than conventional MRF in terms of accuracy, precision, and Computational 
complexity.       
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1. INTRODUCTION 

Breast cancer is one of the leading causes of cancer 
death in Iran. The mammogram is the most effective tool 
in early breast cancer detection; however, it is not 100% 
effective. The sensitivity of the mammogram depends on 
density, age, and hormone status of the patients and 10-
30% breast cancer are not detected. Its positive predictive 
value is less than 35%[1]. Hence we need to use other 
imaging modality such as MRI [2]. The MRI modality is 
used simultaneity as an appropriate scenario with 
mammography, especially for women at high risk. Some 
studies have shown that MRI is superior to x-ray 
mammography and sonography in order to determine 
breast cancer tumor volume [3]–[5].  
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Several segmentation techniques are presented in the 
literature [6],[7] such as Region-based segmentation 
techniques [8],[10],  c ontour-based segmentation [11], 
[12] and classification-based segmentation methods 
including  supervised and unsupervised algorithms [13]- 
[17]  

Among the many existing segmentation methods, the 
accurate segmentation of MR images seems a challenging 
task. One of the important persistent difficulties is the 
spatial inhomogeneity of the MR signal with which  many 
methods at the present deal. The Markov Random Fields 
have been used in many image processing problems 
including image restoration and segmentation [18]-[20].   

Since Markov Random Field models spatial interaction 
between neighboring pixels, it can overcome spatial 
inhomogeneity in MR images. Hence it is used widely in 
medical image segmentation. But this method has also 
some weakness: Computational complexity and sensitivity 
of the results to the models parameters. In order to address 
these difficulties, we have developed a new Markov 

Submitted: 2011-08-02 
Accepted: 2011-11-03 

mailto:Na.norozi@gmail.com(Narges


 

157 Vol 1 | Issue 3 | Sept-Dec 2011  Journal of Medical Signals & Sensors 
 

Random Filed (I-MRF) segmentation method.  
This proposed method doesn't need an image with 

primary labels and never used the iterative methods such 
as SA or ICM to maximize posterior probability. For these 
reasons, the computational complexity of algorithm is 
reduced. We also use texture features to measure the 
similarity between pixels in this paper, because textures 
are one of the most important image attributes and can 
distinguish the objects with different patterns. Gibbs et al. 
[21] used texture analysis in diagnosis of benign and 
malignant breast lesions.  

This paper is organized in different parts and sections.  
: In section 2; we introduce conventional MRF and Finite 
Gaussian Mixture, the proposed algorithm will be 
explained in section 3, section 4 investigate the 
experimental results of our approach and compare them 
with by conventional MRF, and finally; discussion and 
conclusion comes in section 5.  

2. METHODS  

A. Image Dataset 
In this paper, we used the PIDER Breast MRI dataset 

(https://imaging.nci.nih.gov/ncia). This dataset includes 
breast MRI images from 5 patients and their Ground Truth 
(GT) segmentation that have been identified by a 
radiologist manually. GT is used as a r eference for 
performance evaluation of segmentation methods in our 
experiments.  

B. ROI selection 
Since Automatic segmentation of medical images is a 

challenging task and still unsolved problem for many 
applications, and also experience of a r adiologist can 
increase performance of algorithm, we present an 
interactive segmentation approach according to the 
identified region of interest (ROI). In our approach, at first 
an experienced radiologist examines and draws ROIs on 
MR image data with the help of image analysis software, 
and then we give these ROIs as an input image to 
algorithm. 

Since The ROI is defined by placing a box whit limited 
size (that completely contains the region of breast lesion), 
the segmentation complexity is reduced. A sample of ROI 
is shown in Figure 1. 

 

 
Figure 1: Region of Interest  

C.  The FGM and the MRF Models  
Markov random field (MRF) model is not a 

segmentation method in itself, but it is a statistical model, 
which can be used for segmentation methods. It works 

with the fact that a pixel belongs to the class in which the 
neighbors’ pixels. It means that the probability of 
selecting an outlying pixel is very low. MRF provides an 
approach to model the variety of image properties and 
often works with clustering segmentation such as K-
means algorithm under a Bayesian prior model [22]-[25]. 
It segments the images by maximizing the   posterior 
probability with the help of the ICM[26] or SA[27]. For a 
better understanding the Markov Random Field model, we 
defined the Finite Gaussian Mixture (FGM) at first. 

In statics, A Gaussian mixture model is a probabilistic 
model that assumes all the data points are generated from 
a mixture of a finite number of Gaussian distributions 
with unknown parameters.  Suppose 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} 
is a random observation data set.  𝑥𝑖 is a d-dimensional 
random variable. 𝑝𝑖(𝑥|𝜃𝑖) is the corresponding probability 
density function, in witch 𝑥𝜖 𝑅𝑑 is the value of 𝑥𝑖 and 𝜃𝑖 
is the parameter. 

In segmentation application, the FGM assumes that the 
entire image can be expressed as overlaps of Gaussian 
distributions of its features. The FGM parameters are 
learned by sequentially applying the Expectation 
Maximization (EM) algorithm.  
Suppose that xi is the observed intensity of pixel. And let 
L, I and γ denote the sets of tissue class L= {lesion, non-
lesion}, pixel index I = {1,2, . . . , N}, and model 
parameters 𝛾 = {𝜃𝑙| 𝑙𝜖𝐿} respectively. For every l ∈ L 
and i ∈ I,  

                      𝑙𝑖 ∈ 𝐿                                            (1) 

             𝑃(𝑥𝑖|𝑙) = 𝑓(𝑥𝑖;𝜃𝑙)                          (2) 

Finite Gaussian Model is defined by mean 𝜇𝑙 and variance 
𝜎𝑙 as follows: 

𝑓(𝑥𝑖;  𝜃𝑙) =
1

�2𝜋𝜎𝑙2
exp�−

(𝑥𝑖 − 𝜇𝑙)2

2𝜎𝑙2
�     (3) 

It is a mathematically simple model and can be 
computed efficiently. But one of the limitations is not 
considering spatial information. This method only uses 
the intensity histogram for segmentation, and therefore, it 
is sensitive to noise and other artifacts. The Markov 
Random Field is proposed to overcome this weakness 
[28].  

MRF adds the term 𝑃 (𝑙) to Equation 3, and solves the 
segmentation problem with maximizing the Equation 4.  
𝑃(𝑙), Indicates the prior probability distribution of class 
tissue 𝑙.  
      𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑙|𝑥)

𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑥|𝑙)𝑃(𝑙)
𝑙                       (4)    

In other words, the only difference between FGM and 
MRF model lies in whether the spatial constraint is 
encoded. To estimate the𝑃 (𝑙), based on the Hammersley-
Clifford [29] theorem we can write: 
 

𝑃(𝑙) = 𝑍−1 exp�−𝑈(𝑥)� , 𝑎𝑛𝑑 𝑈(𝑥) = �𝑉𝐶(𝑥)  (5)
𝑐∈𝐶

 

  
Where Z is a normalizing constant, 𝑈(𝑥) is the energy 
function, and 𝑉𝐶 denotes a clique potential. 

https://imaging.nci.nih.gov/ncia
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3. PROPOSED APPROACH  

Although MRF models have provided better results by 
taking into account the spatial relationship between 
neighboring pixels, its computation overhead is much 
larger than the FGM and other method segmentation [30]. 
This can be easily understood because the MRF model 
uses an iterative optimization method such as SA or ICM 
to find appropriate distribution of labels.  

In this new method, we apply the ratio of two 
conditional probability distributions to estimate the prior 
distribution. Hereby, we eliminate the need to use iterative 
method that lead to high computational complexity.   

In this new method, we apply the ratio of two 
conditional probability distributions to estimate the prior 
distribution. In this way, the essentiality of using a 
repetitive method, which causes to enhance the 
complexity of computation, is omitted.  

As mentioned in section2, a M RF model can be 
defined as: 

𝑙∗ = (𝑃(𝑙|𝑥𝑖) = 𝑃(𝑥𝑖|𝑙)𝑃(𝑙))𝑙𝜖𝐿
arg𝑀𝑎𝑥          (4)  

  If we define 𝐷𝑖 as a neighborhood for each pixel𝑥𝑖, then 
the Equation 4 can be rewritten as follow: 
   

 𝑙∗ = �𝑃(𝑙|𝑥𝑖 ,𝐷𝑖) = 𝑃(𝑥𝑖|𝑙,𝐷𝑖)𝑃(𝑙|𝐷𝑖)�𝑙𝜖𝐿
arg𝑀𝑎𝑥

  (6)  
       

According to 𝛾 , we can use Bayes' formula to write:  
                  𝑃(𝑙|𝐷𝑖) ≈  𝑃(𝜃𝑙|𝐷𝑖)                                       (7) 

The main idea of the MRF model is that a pixel is more 
likely to be of a certain tissue type if the neighboring 
pixels are also of the same type. Based on this 
assumption, we use Equation 8 instead of Equation 5 to 
estimate the prior distribution  𝑃(𝜃𝑙|𝐷𝑖) .  

 
𝑃(𝜃𝑙|𝐷𝑖) = 𝑃(𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙) 𝑃(𝐷𝑛𝑜𝑛−𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙)⁄     (8)  
 
Where Dsimilar and  Dnon−similar are the sets of similar 

and non-similar pixels to the xi respectively. 
If we assume that the pixels are independent, then term 

𝑃(𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙) can be calculated as follows: 
𝑃(𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙) = ∏ 𝑥𝑗

𝑠𝑖𝑚𝑖𝑙𝑎𝑟−𝑙𝑒𝑛𝑔𝑡ℎ
𝑗                         (9) 

These sets are represented by a simple graphical model 
in Figure 2.  

According to the main assumption in MRF, when 
conditional probability 𝑃(𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙) has a high value in 
Equation 8, the posterior probability of tissue 𝑙 is 
maximized. In this method, we also use potential 
information of non-similar pixels by 𝑃(𝐷𝑛𝑜𝑛−𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙).  

To estimate the 𝑃(𝐷𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙) and 𝑃(𝐷𝑛𝑜𝑛−𝑠𝑖𝑚𝑖𝑙𝑎𝑟|𝜃𝑙) 
in Equation 8, we need to create the sets of Dsimilarand 
Dnon−similar . Many of the presented methods in breast 
lesion segmentation used only the intensity value as a 
feature for each pixel, which is subject to image noise, 
patient motion, and MR artifacts [31]-[32]. 

 

 
Figure 2: similar and non-similar sets 

 
A.   Similarity measure 
  

On the other hand, since textures are one of the most 
important characteristics of an image, and also 
radiologists rely on textures to make diagnostic decisions, 
Features extraction basis from texture is most widely used 
in medical image processing [33]. Texture feature 
attempts to identify gray level variations between adjacent 
pixels in the image [34]. 

In this paper, we use three categories of texture feature: 
First order statistical parameters based on histogram, 
second order statistical parameters based on Co-
occurrence, and Run-Length matrixes. For each pixel in 
the region of interest, we used a block 5*5 whose feature 
values are assigned to central pixel of block. Histogram 
statistics (six features) describes the intensity distribution 
within the block such as mean and standard deviation. The 
equation of these texture features are listed in appendix.  

 Co-occurrence matrices [35] which measure the joint 
probability of two adjacent Pixels along a given direction 
with co-occurring values i and j are calculated for 0°, 45°, 
90°, and 145°. An average co-occurrence matrix is then 
computed for each texture block since no directional 
variations in texture are expected. We calculate 22 
features form Co-occurrence matrices that measure joint 
probability of two nearest pixels in four directions. 

The run-length matrix masseurs the abrasiveness of a 
texture in a given direction θ. Direction is the number of 
runs of pixels with a gray-level and a run length. A gray-
level run is defined as a set of consecutive pixels with the 
same gray value in the given direction [36]. 11 features 
obtained from Run-Length matrix for same direction θ= 
0°, 45°, 90°, and 145°. Totally, we extracted 39 texture 
features for each pixel.  

After extracting the features for each pixel, we use 
Equation 10 to determine similarity between central pixel 
and their neighboring pixels. In this Equation  the pixel i 
is similar to j, when hi,j ≥ 0.61. 
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            ℎ𝑖,𝑗 = exp�−
𝑑𝑖,𝑗2

2𝜎2
� �                           (10)  

𝜎2 , Indicates the variance of pixel values in D and 𝑑𝑖,𝑗    is 
Euclidean distance between pixel i ,j . 

.   
4. EXPRIMENTAL RESULT  

In this section, the performance of proposed method is 
investigated using PIDER Breast MRI dataset 
(https://imaging.nci.nih.gov/ncia). This dataset includes 
breast MRI images and their Ground Truth (GT) 
segmentation that have been identified by a radiologist 
manually.  

GT is used as a reference for performance evaluation of 
segmentation methods in our experiments. 16 breast 
images from dataset are used as the test images. Due to 
space limitation, we only show the result of 5 images out 
of 16 test images in separate Tables. The ROIs of these 
images and their GTs have been shown in two first rows 
of Table 6. Finally the result of the all 16 test images is 
demonstrated in Table 5. 

  
B.  Evaluation criteria 
    Many different measures for evaluating the 
performance of an algorithm have been proposed such as 
volume overlap ratio, specificity, sensitivity, precision, 
accuracy, and etc. First, we give a definition of some 
expressions in Table 1. 
 

TABLE 1 
DEFINITION OF SOME EXPRESSIONS 

  

 
 

1.  Accuracy 
This criterion is used to measure the similarity between 

assigned labels by computer algorithm and real labels   
given by a radiologist. 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
                         (11) 

 
2. Precision 

Unlike accuracy, precision criterion is used to measure 
reproducibility or repeatability of assigning a label in the 
same condition. 

      𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                            (12)     

 
3. Specificity 

This criterion measures the proportion of negatives 
which are correctly identified. 

         𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                      (13) 

4. Sensitivity  
This criterion measures the proportion of actual 

positives which are correctly identified. These two latest 
measures are closely related to the concepts of errors.  

 
              𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃

𝑇𝑃+𝐹𝑁
                                         (14)   

5. Volume overlap ratio 
In this study, we also use the overlap ratio to quantify 

how well the computer results and the radiologist’s 
delineation agrees. If Pc denote the set of lesion pixels 
which is came from the computer algorithm result and Pr 
denote the set of lesion pixels which is came from the 
radiologist’s segmentation, the volume overlap ratio 
(VOR) is defined as: 
                                    
                         VOR = Pc∩Pr

Pc∪Pr
                                           (15)   

In which the ∩ operator is logical AND, ∪ is the 
logical OR. It takes value between [0 1], when it is zero. It 
means that there is no overlap, and one means the exact 
overlap [37]. 

6. Computational complexity 
The Computational complexity criterion is used to 

measure the time required to implement each of the 
algorithms for segmentation an image.  

 The segmentation methods described in this paper is 
numerically implemented using Matlab 7.9 (R 2009b).    

 
7. Other Criterion 

We also describe the accuracy with other parameters:   
True Positive Volume Fraction (TPVF), True Negative 
Volume Fraction (TNVF), false positive volume fraction 
(FPVF), and false negative volume fraction (FNVF). 
These parameters are defined as follows [38]:                        
  TPVF(Pr, Pc) = |Pc∩Pr|

|Pr|
                                         (16)                                          

  FPVF(Pr, Pc) = |Pc−Pr|
|Pr|

                                         (17)                                     

  FNVF(Pr, Pc) = |Pr−Pc|
|Pr|

                                         (18)                        
  TNVF(Pr, Pc) = 1 − FPVF(Pr, Pc)                      (19) 
 
We just use the two of these volume fractions and the sum 
of them; TPVF and TNVF. 
 
 
C.  Performance evaluation for conventional MRF 
 

   We performed several kinds of experiments. At first, 
we evaluate the performance of conventional MRF in 
breast MRI image segmentation. In this section, we used 
SA algorithm to maximize the a posterior probability. 
Since the initialization has a significant impact on rapidly 
of the convergence of the SA procedure and on the quality 
of the final estimates, a Thresholding method has been 
used for this purpose.   

 Condition as determined by ‘radiologist’ 

Lesion Unlesion 

   Test 

outcome 

Lesion True positive (TP) False positive (FP) 

Unlesion False negative (FN) True negative (TN) 

https://imaging.nci.nih.gov/ncia
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As it is evident in Table 3 and 5, MRF has provided 
good segmentation results by 4000 iterations, but its 
computing time is very high.  

The segmentation results of Conventional MRF have 
been shown in the row 3 of Table 6.   
   
D.  Performance evaluation for Improved-MRF 
 

Before doing the experiments to investigate proposed 
method, to determine the appropriate size of 
neighborhood, some analyses were down. First we defined 
the neighborhood with different size of 3,5…27. 
Afterward, the sum of two volume fractions (TPVF+ 
TNVF) and computing time were calculated for proposed 
approach in each neighboring size.  

Figure 3 and 4 shows the results of experiment. The 
computing time and volume fractions of presented method 
are increased by the growing of neighborhood size. As is 
clear, the neighborhood with size 21*21, provides a 
proper balance between time and sum of (TPVF+ TNVF). 
For these reason we used this size of neighborhood to 
evaluate our method. 

 
Figure 3:  Complexity of Algorithm In Different Size Of 

Neighborhood   

 
Figure 4: sum of two volume fraction TPVF and TNVF in 

each size of Neighborhood   
According to Table 4 and 5 the results of I-MRF are 

much better than conventional MRF in terms of accuracy 
and computing Time. The segmentation results of 
Conventional MRF have been shown in the row 4 o f 
Table 6.   

  
To evaluate the performance of the classifiers, 

Receiver operating characteristic (ROC) analysis also is 

performed. ROC is based on statistical decision theory 
and it has been applied widely to the evaluation of clinical 
performance. The area under the ROC curve is referred Az 
index. It is used as a measure of the classification 
performance. A higher Az indicates better classification 
performance because a larger value of True Positive (TP) 
is achieved at each value of False Positive (FP). The value 
of AZ is 1.0 when the diagnostic detection has perfect 
performance, which means that TP rate is 100% and FP 
rate is 0%. The values of AZ have been shown in Table 2. 

 
TABLE 2 

THE VALUES OF AZ 
 

Methods Area under the curve(𝐴𝑧) 
I-MRF 0.9724 
Conventional MRF 0.9663 

 
The ROC diagram is shown in the Figure 5. 

 
Figure 5: ROC curve for Supervised and IMPST methods 

               
5. CONCLUSION AND DISCUSSIO  

Markov Random field approaches are widely studied 
for medical image segmentation, especially in MR 
images. It is because this method can model intensity 
inhomogeneities occurring in these images. But this 
method has two critical weaknesses: Computational 
complexity and sensitivity of the results to the models 
parameters. To overcome these problems, in this paper, 
we propose a new Markov Random Filed method for 
breast lesion segmentation in MR images and illustrate its 
effectiveness.   

This approach can produce better results compared to 
conventional MRF, in terms of accuracy and computing 
time because: 

1- In conventional MRF, the energy function is 
calculated only based on the labels of neighboring 
pixels that assigned randomly. But in our approach 
labeling each pixel is performed with high 
accuracy due to better characterization of 
neighborhoods. 

2- Although MRF models have provided good results 
by taking into account the spatial relationship 
between neighboring pixels, but its complexity is 
very high. The Improved-MRF eliminates the need 
to use iterative method and initializing that lead to 
high computational complexity.  
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Also we believe that the idea of using the ratio of two 
probability distribution of similar and non-similar pixels 
in a neighborhood may be contributive to other 
application such as Microcalcification segmentation in 
breast MR images, as well. In addition,  T he factor that 
influences the performance of proposed algorithm is the 
simple policy that has been used to determine similarity 
between central pixel and their neighboring pixels 
(Equation (10)).in fact we used an empirical threshold. If 
we use the better and more sophisticated policy in order to 
determine similarity between pixels, definitely we will get 
better results. In future work we intend to use the Gossip 
protocol for this purpose. 

         
6. APPENDIX  

The list of three categories (First order statistical 
parameters based on histogram, second order statistical 
parameters based on co-occurrence matrix, Run-Length 
Matrix) textural features have been used in this paper is 
given as follows: 

Statistic: 
1. Mean 
2. Skewness 
3. Absolute Deviation 
4. Variance 
5. Kurtosis 
6. Standard Deviation 
Co-occurrence Matrix: 
Notation: 

𝑝(𝑖, 𝑗): (𝑖, 𝑗)-th entry in a normalized gray-tone spatial-
dependence matrix. 
𝑝𝑥(𝑖): is the i-th entry in the marginal-probability   matrix 
obtained by summing the rows of 𝑝(𝑖, 𝑗), =∑ 𝑝(𝑖, 𝑗)𝑁

𝑗=1  
N: is the number of distinct gray levels in the equalized 

image. 
 𝑃𝑥+𝑦(𝑛) = ∑ ∑ 𝑃(𝑖, 𝑗) 𝑤𝑖𝑡ℎ 𝑛 = 2,3, … ,2𝑁𝑗

𝑖+𝑗=𝑛
𝑖  

 𝑃𝑥+𝑦(𝑛) = ∑ ∑ 𝑃(𝑖, 𝑗) 𝑤𝑖𝑡ℎ 𝑛 =𝑗
|𝑖−𝑗|=𝑛

𝑖

0,1, … ,𝑁 − 1 
 
1. Uniformity / Energy / Angular Second Moment: 

 𝑓1 = ∑ ∑ (𝑖, 𝑗)2𝑖𝑖  
2. Contrast/Inertia: 

 𝑓2 = �𝑛2𝑃𝑥−𝑦(𝑛)
𝑁−1

𝑛=0

                                             

3. Correlation     

 𝑓3 =
∑ ∑ (𝑖𝑗)𝑃(𝑖,𝑗)− 𝜇𝑥2𝑗𝑖

𝜎𝑥2
  

4. Variance:     
  𝑓4 = ∑ (𝑖 − 𝜇𝑥)2𝑃𝑥(𝑖)𝑖  

5. Homogeneity/Inverse difference moment 
             𝑓5 = ∑ ∑ 1

1+(𝑖−𝑗)2
𝑃(𝑖, 𝑗)𝑗𝑖  

6. Sum Average    
        𝑓6 = ∑ 𝑛𝑃𝑥+𝑦(𝑛)2𝑁

𝑛=2     
7. Sum Variance 

 𝑓7 = �(𝑛 − 𝑓6)2𝑃𝑥+𝑦(𝑛)
2𝑁

𝑛=2

 

8. Sum Entropy 

 𝑓8 = −�𝑃𝑥+𝑦(𝑛) log (𝑃𝑥+𝑦(𝑛))
2𝑁

𝑛=2

     

9. Entropy 
𝑓9 = −��𝑃(𝑖, 𝑗)𝑙𝑜𝑔𝑃(𝑖, 𝑗)

𝑗𝑖

     

10. Difference variance  
𝑓10 = � �𝑛 − 𝜇𝑥−𝑦�

2𝑃𝑥−𝑦(𝑛)
𝑁−1

𝑛=0
 

Where 𝜇𝑥−𝑦 is the mean of 𝑃𝑥−𝑦 
Where µx and σx are the mean and standard deviations 
     Px , Respectively. 
11. Difference entropy 

 𝑓11 = −�𝑃𝑥−𝑦(𝑛) log (𝑃𝑥−𝑦(𝑛))
𝑁−1

𝑛=0

     

12. Information measures of correlation (1) 
    

𝑓12 =
 𝑓9 + ∑ ∑ 𝑃(𝑖, 𝑗)log (𝑃𝑥(𝑖)𝑃𝑥(𝑗)𝑗 )𝑖

−∑ 𝑃𝑥(𝑖)𝑙𝑜𝑔𝑃𝑥(𝑖)𝑖
 

13. Information measures of correlation (2) 
   

 𝑓13 = �1 − 𝑒−2(𝐻𝑥𝑦−𝑓𝑔) 
Where 𝐻𝑥𝑦 = -∑ ∑ 𝑃(𝑖, 𝑗)log (𝑃𝑥(𝑖)𝑃𝑥(𝑗)𝑗 )𝑖  
14.Maximal correlation coefficient 

𝑓14 = �𝑆𝑒𝑐𝑜𝑛𝑑 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑄 
Where Q(i, j) = ∑ �𝑃(𝑖, 𝑘)𝑃(𝑗, 𝑘)�𝑘 (𝑃𝑥(𝑖)⁄ 𝑃𝑥(𝑘)).  
15. Autocorrelation 
16. Cluster Shade 
17. Cluster Prominence 
18. Maximum probability 
19. Sum of Squares 
20. Inverse difference 
21. Inverse difference normalized (INN) 
22. Inverse difference moment normalized (IDN)  
Run-Length Matrix: 
1. Short run emphasis: 
 𝑓1 =  1

𝑛𝑟
∑ ∑ 𝐼(𝑖, 𝑗) 𝑗2⁄𝑗𝑖  

2. Long run emphasis: 
 𝑓2 =  1

𝑛𝑟
∑ ∑ 𝐼(𝑖, 𝑗)  × 𝑗2𝑗𝑖  

3.  Gray level nonuniformity : 
 𝑓3 =  1

𝑛𝑟
∑ (∑ 𝐼(𝑖, 𝑗𝑗 )2𝑖 )      

4.  Run-length nonuniformity : 
 𝑓4 =  1

𝑛𝑟
∑ (∑ 𝐼(𝑖, 𝑗𝑖 )2)𝑗        

5. Run Percentage (RP) 
 𝑓5 =  𝑛𝑟

𝑛𝑝
 

6. Low Gray-Level Run Emphasis (LGRE):  
 𝑓6 =  1

𝑛𝑟
∑ ∑ 𝑝(𝑖,𝑗)

𝑖2
= 1

𝑛𝑟
∑ 𝑝𝑔(𝑖)

𝑖2
𝑀
𝑖=1

𝑁
𝑗=1

𝑀
𝑖=1    

7. High Gray-Level Run Emphasis (HGRE) 
𝑓7 =  

1
𝑛𝑟
� �

𝑝(𝑖, 𝑗)
𝑖2

=
1
𝑛𝑟
� 𝑝𝑔(𝑖).

𝑀

𝑖=1

𝑁

𝑗=1

𝑀

𝑖=1
𝑖2         
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8. Short Run Low Gray-Level Emphasis (SRLGE) 
𝑓8 =  

1
𝑛𝑟
� �

𝑝(𝑖, 𝑗)
𝑖2 . 𝑗2

𝑁

𝑗=1

𝑀

𝑖=1
                              

9. Short Run High Gray-Level Emphasis (SRHGE) 
 𝑓9 =  1

𝑛𝑟
∑ ∑ 𝑝(𝑖,𝑗).𝑖2

𝑗2
𝑁
𝑗=1

𝑀
𝑖=1  

10. Long Run Low Gray-Level Emphasis (LRLGE) 
 𝑓10 =  1

𝑛𝑟
∑ ∑ 𝑝(𝑖,𝑗).𝑗2

𝑖2
𝑁
𝑗=1

𝑀
𝑖=1  

11. Long Run High Gray-Level Emphasis (LRHGE): 
 𝑓11 =  1

𝑛𝑟
∑ ∑ 𝑝(𝑖, 𝑗). 𝑖2. 𝑗2𝑁

𝑗=1
𝑀
𝑖=1      

Nomenclature of Symbols and Acronym: 
DCE-MRI : Dynamic contrast-enhanced magnetic 
resonance imaging 
MRF: Markov Random Field 
I-MRF: Improved-Markov Random Field 
ICM: Iterative Conditional Mode  
SA: Simulated Annealing  
FGM: Finite Gaussian Mixture  
GT: Ground Truth  
TP: True positive  
FP: False positive  
FN:  False negative  
TN: True negative  
VOR:  volume overlap ratio  
TPVF: Positive Volume Fraction  
TNVF: True Negative Volume Fraction  
FPVF:  false positive volume fraction 
FNVF:  false negative volume fraction  
ROC: Receiver operating characteristic 
L: set of tissue type  
I : set of pixel index  
𝛾: set of Model Parameters  
𝑃(𝑥𝑖|𝑙) : Probability distribution function 
𝑃 (𝑙) : Prior probability distribution 
Z : normalizing constant 
𝑈(𝑥) : Energy function 
𝑉𝐶 : A clique potential 
𝜃𝑙 : Model parameters for tissue 𝑙 
𝜇 : Mean 
𝜎 : Variance  
𝑥 : Random variable  
𝐷𝑖 : A neighborhood for each pixel 𝑥𝑖 
Dsimilar : set of similar pixels to the pixel  𝑥𝑖 
Dnon−similar: set of non-similar pixels to the pixel  𝑥𝑖 
𝑑𝑖,𝑗  : Euclidean distance between pixel i ,j 
∩: Logical AND 
∪: Logical OR 
AZ: area under the ROC curve 
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SEGMENTATION RESULTS FOR CONVENTIONAL MRF  

 
TABLE 4 

SEGMENTATION RESULTS FOR IMPROVED-MRF 

Improved-
MRF  

Valium overlap ratio& sensitivity (true positive rate ) & accuracy & specificity (True Negative Rate) & precision (positive 
predictive value)  & true positive volume fraction & true negative volume fraction &sum of true volume fraction 

&Time consuming 
VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF Time 

Test image 1 66.18 88.59 93.75 94.57 72.34 0.88 0.66 1.55 174.83 
Test image 2 68.07 88.69 92.64 93.49 74.54 0.88 0.70 1.58 112.26 
Test image 3 860.3 96.34 95.37 94.95 88.93 0.96 0.88 1.84 201.06 
Test image 4 81.25 91.94 94.55 95.44 87.48 0.92 0.87 1.79 187.40 
Test image5 83.45 85.82 95.85 99.08 96.08 85.82 97.16 1.83 139.2 

TABLE 5 
SEGMENTATION RESULTS FOR CONVENTIONAL MRF AND PROPOSED METHOD (ALL 16 TEST IMAGES) 

 
Table 6 

SEGMENTATION RESULTS FOR CONVENTIONAL MRF AND PROPOSED METHOD 

 

conventional 
MRF 

Valium overlap ratio& sensitivity (true positive rate ) & accuracy & specificity (True Negative Rate) & precision (positive 
predictive value)  & true positive volume fraction & true negative volume fraction &sum of true volume fraction 

&Time consuming 
VOR (%) TPR (%) ACC (%) SPC (%) PPV (%) TPVF TNVF TPVF+TNVF Time 

Test image 1 51.77 85.66 88.98 89.51 56.68 0.86 0.35 1.20 1232.1 
Test image 2 60.17 77.73 90.908 93.73 72.70 0.78 0.71 1.49 953.1 
Test image 3 70.02 89.83 88.62 88.11 76.05 0.90 0.71 1.61 1216.9 
Test image 4 67.92 91.61 88.88 87.93 72.43 0.92 0.65 1.56 1442.5 
Test image 5 75.93 79.83 94.06 99.62 98.48 79.83 98.81 1.76 1021.3 

 Conventional MRF Improved-MRF 
Mean Stddev Max Min Mean Stddev Max Min 

VOR (%) 69.55 11.57 85.52 44.86 73.31 9.36 86.03 55.45 
TPR (%) 83.80 8.65 92.96 63.44 90.05 6.53 98.16 74.01 
ACC (%) 92.12 3.36 97.63 86.79 93.10 3.09 96.18 86.08 
SPC (%) 93.92 4.57 99.77 87.93 93.76 3.79 99.08 86.30 
PPV (%) 80.66 13.51 99.15 56.68 79.74 9.36 96.80 63.80 

TPVF 0.84 0.09 0.93 0.63 0.90 0.06 0.98 0.74 
TNVF 0.77 0.18 0.99 0.34 0.76 0.13 0.97 0.46 

TPVF+ TNVF 1.61 0.20 1.85 1.20 1.66 0.15 1.84 1.41 
Time 1246.9 440.63 1960.6 656.2 159.81 47.79 269.21 100.99 

 
Segmentation Result 

Test Image 1 Test Image 2 Test Image 3 Test Image 4 Test Image 5 
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