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INTRODUCTION
Treatment of acute myeloid leukemia (AML) with cura-

tive intent often utilizes allogeneic hematopoietic stem cell 
transplantation (alloSCT), which relies on the graft-versus-
leukemia effect (GvL), whereby donor-derived T cells elimi-
nate residual leukemia cells (1). Although the immunologic 
mechanisms of GvL are complex, relapse of AML after allo-
geneic transplantation has been linked to the loss of major 
histocompatibility complex class II (MHCII) expression (2–4). 
Notably, treatment of AML blasts with IFNγ restored MHCII 
expression, and no new DNA coding mutations were detected 
in comparative analyses of pre- and post-alloSCT relapsed 
samples (3, 4). Thus, the reduced expression of MHCII at 
relapse appears to have a regulatory basis. Decreased expres-
sion of the MHCII transcriptional coactivator CIITA was 
observed in some cases (4), but loss of MHCII expression was 

also seen despite unchanged or elevated expression of CIITA 
(3), suggesting alternative mechanisms of immune escape.

RESULTS
Network Decomposition by  
Combinatorial Regression

To identify the transcriptional regulators of MHCII in 
AML, we sought to reverse engineer a transcription regula-
tory network from public genome-scale data sets (Fig.  1A). 
In principle, the expression of a gene in a given context 
may be computationally inferred from the identities of its 
transcriptional regulators, their cellular abundance, and the 
gene-regulatory function that represents the quantitative 
relationship between a transcription factor (TF) and its target 
gene (5, 6). We began by defining a list of core regulatory (CR) 
TFs for AML lineage specification (7). Genes encoding CR TFs 
are typically marked by extended, closely spaced enhancers 
with markedly high histone acetylation and cofactor recruit-
ment, termed superenhancers (SE; ref. 8). Among a chroma-
tin immunoprecipitation sequencing (ChIP-seq) data set for 
the enhancer histone mark H3K27ac in a panel of 49 primary 
human AML samples (9), we identified 1,298 SEs present in 
at least 10 (∼20%) samples (Supplementary Fig.  S1A–S1C). 
These common SEs were proximal to 2,748 genes, of which 
220 encoded TFs. Because CR TFs are typically essential for 
lineage survival (10, 11), we focused this list further by asking 
which of the 220 SE-associated TFs were dependencies selec-
tive for AML versus other malignancies. We interrogated data 
from the Broad Cancer Dependency Map project, a collection 
of genome-scale CRISPR knockout screens of 18,119 genes 
in 769 cell lines, including 19 AML lines (12, 13). Applying 
a skewed-LRT test (14) to compare guide RNA drop out 
between AML and non-AML cell lines, we identified 40 TFs 
selectively essential in AML (Supplementary Fig.  S1D). We 
then intersected the 40 essential TFs with the 220 SE-driven 
TFs, resulting in a list of 19 putative CR TFs (Fig. 1A).
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Figure 1.  CORENODE identifies a tetrad of TFs regulating MHCII genes in AML. A, Study schematic. B, Heat maps of edge scores (ES) and directional 
derivatives (DD) representing computationally established edges between target genes (columns) and TFs (rows, sorted by average ES). Higher ES 
corresponds to higher confidence edges, and DD predicts amplitude and directionality (positive vs. negative) of TF-target regulation. C, 3- and 4-mer 
CORENODE fits for the gene HLA-DRA with indicated goodness-of-fit metrics. D, A graphic illustration of DD. MYB expression is plotted against the 
CORENODE-fitted HLA-DRA expression using an IRF8/MEF2C/MYB 3-mer. Red sticks indicate MYB slopes aggregated from the 4 MYB-containing terms 
(linear, quadratic, and two cross-terms) in each sample. Aggregation of all MYB slopes for all samples produces MYB DD. E, Leave-one-out (LOO) error 
improvement between 3-mers [4 per gene (4 combinations of 4 TFs taken 3 at a time)] and the 4-mer (1 per gene, combining all 4 TFs) for 6 MHCII genes. 
F, Gene expression in two populations of the Beat AML data set. The blue population (n = 46) represents patient samples with below-median expression of 
IRF8 and MEF2C and above-median expression of MYB and MEIS1, and the red population (n = 56) represents patient samples with the opposite pattern 
of TF expression. The elements of the box plots are as follows: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.
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We sought next to define the gene-regulatory functions link-
ing CR TFs to all expressed genes. We developed CORENODE 
(COmbinatorial REgression for NetwOrk DEcomposition), a 
coexpression-based network decomposition algorithm where 
TF–target gene connections, or edges, are inferred from natu-
rally occurring variation in gene expression within a reason-
ably large set of samples. We hypothesized that the expression 
of each gene could be estimated from the expression of a 
small subset, possibly 3 to 5 TFs, of the entire CR TF set. 
Given that the intersection of dependency and SE profiling 
data nominated only 19 TFs, it was computationally feasible 
to design a comprehensive combinatorial regression approach 
to fit expression of each target gene against all possible com-
binations of the CR TFs (Fig.  1A; Supplementary Fig.  S1A). 
Using the protein-coding transcriptomes of 510 primary AML 
samples from the Beat AML study (15), we regressed the 
mRNA expression values of all genes in the expressed genome 
against mRNA expression values of the 19 CR TFs taken 3 at 
a time, using linear, quadratic, and cross terms. Use of 3-mers 
provided the best balance between fit quality and overfitting 
risk genome-wide. Thus, for every target gene, we generated 
969 gene-regulatory functions corresponding to all possible 
3-mer combinations of the 19 TFs. We chose the top 5% of 
best-fitting 3-mers and calculated an edge score (ES) for each 
TF–target gene pair as the number of times the TF appeared 
in the top 5% of best fits. Finally, we estimated the direction 
and amplitude of positive or negative regulation by aggregat-
ing response slopes for each TF across all samples and 3-mers, 
which was termed directional derivative (DD). Details of the 
computational algorithm are found in the Supplementary 
Note and online data browser (https://corenode.shinyapps.
io/corenode/). Genome-wide ES and DD outputs are found 
in Supplementary Data S1 and S2, respectively.

A Transcription Factor Tetrad Regulates MHCII 
Genes in AML

CORENODE prioritized four TFs (IRF8, MYB, MEF2C, 
and MEIS1) as candidate regulators of the MHCII and several 
additional genes involved in antigen presentation that have 
been associated with immune escape in AML (CD74, IFI30, 
HLA-DMA, HLA-DMB, and CD86; ref.  3; Fig.  1B). MYB and 
MEIS1 were predicted to negatively regulate the expression of 
these genes, whereas IRF8 and MEF2C were predicted to be 
positive regulators (Fig. 1B–D). In parallel work, we used addi-
tional data sets and criteria to define an extended AML core 
regulatory circuit of 31 members (16). For additional valida-
tion, we repeated CORENODE regressions with this extended 
set of TFs, as well as a 37-member set that included all selec-
tively essential AML TFs above a minimal expression cutoff 
and regardless of the SE status. In all cases, the same 4 TFs 
were predicted to be the top regulators of MHCII expression 
(Supplementary Fig.  S2A–S2D). Combining these TFs in a 
single 4-mer resulted in a modest improvement of the regres-
sion fits (compared with 3-mers) without overfitting (Fig. 1C 
and E; Supplementary Fig. S3A; Supplementary Data S3).

We examined how variation in the expression of the TF 
tetrad correlated with changes in MHCII expression in two 
independent data sets, Beat AML and TCGA, including 510 
and 151 patients, respectively (15, 17). In both data sets, 
the expression of MHCII and other genes associated with 

immune escape in patients with high (above the median) 
IRF8/MEF2C and low (below the median) MYB/MEIS1 was 
up to 17-fold higher than in patients with the opposite pat-
tern of TF expression (Fig. 1F; Supplementary Fig. S3B). To 
validate the impact of these TFs on MHCII regulation, we 
inactivated each TF with CRISPR/Cas9 editing followed by 
RNA-seq in an AML cell line (Supplementary Fig.  S4A and 
S4B; Supplementary Data S4). Consistent with predictions of 
CORENODE, loss of IRF8 and MEF2C led to reduced expres-
sion of MHCII and other genes associated with immune 
escape, whereas loss of MYB and MEIS1 was associated with 
increased expression (Fig. 2A). We confirmed these findings at 
the protein level by measuring the cell-surface expression of 
MHCII molecules after TF knockout in a panel of AML cell 
lines (Fig. 2B). Overall, MYB and IRF8 had a major impact on 
MHCII expression, whereas the effects of MEIS1 and MEF2C 
were more subtle and variable between cell lines, suggesting 
context-specific roles of MEIS1 and MEF2C as fine-tuners 
of MHCII expression. One cell line with a particularly high 
baseline MHCII expression (MONOMAC1) demonstrated 
decreased, rather than increased, MHCII expression after 
MYB knockout (Fig.  2B; Supplementary Fig.  S4B), but we 
found this effect to be epistatic with CIITA and reversed after 
a CIITA knockout (see below). Treatment of AML cells with 
the MYB inhibitor mebendazole (18) resulted in a modest 
induction of MHCII expression (Supplementary Fig.  S4C), 
consistent with the effect of MYB knockout.

The MHCII locus contains several SEs whose H3K27 acety-
lation correlates with the expression of MHCII genes in pri-
mary AML cells (Supplementary Fig.  S5A). Using ChIP-seq, 
we confirmed binding of the TF tetrad at the MHCII SEs 
(Fig. 2C; Supplementary Fig. S5B). Spike-in controlled ChIP-
seq analysis detected a significant increase in H3K27 acetyla-
tion at these SEs after MYB knockout, despite the expected 
global decrease of H3K27 acetylation elsewhere across the 
genome (Fig. 2C; Supplementary Fig. S5B and S5C). In con-
trast, IRF8 knockout was accompanied by the loss of H3K27 
acetylation. Furthermore, the SEs associated with IRF8 and 
MEF2C in primary AML blast cells positively correlated with 
MHCII SEs, whereas SEs controlling MYB and MEIS1 nega-
tively correlated (Fig.  2D; Supplementary Fig.  S5D). These 
data provided further evidence of antagonistic functions of 
these TFs in MHCII regulation.

We next examined how changes in the MHCII gene expression 
after alloSCT correlated with expression of the TF tetrad. We 
accessed the published RNA-seq data from paired AML samples 
at initial presentation and relapse after alloSCT, where decreased 
MHCII expression was observed in 6 of the 7 examined patients 
(3). Despite a substantial variability of baseline expression, we 
observed significant downregulation of IRF8 and, to a lesser 
extent, MEF2C in all patients with reduced MHCII expression at 
relapse (Fig. 2E). In contrast, MYB and MEIS1 were upregulated 
in 5 of 6 patients at relapse, which was of borderline statistical 
significance. Each of these changes would be expected to lead to 
reduced expression of MHCII genes.

A Combinatorial Transcriptional  
Mechanism of Immune Escape

To this point, our computational predictions and knock-
out experiments demonstrated that perturbation of any one 

https://corenode.shinyapps.io/corenode/
https://corenode.shinyapps.io/corenode/
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of the 4 candidate TFs was sufficient to effect a change in 
MHCII expression, and examination of AML relapses revealed 
changes in the abundance of these TFs in the direction con-
sistent with reduced MHCII expression. However, the degree 
of observed TF change was often modest and, in the case 
of MYB and MEIS1, not evident in all post-alloSCT samples 
(Fig. 2E). This observation led us to hypothesize that immune 
escape may be enacted by combinatorial changes in the tetrad. 
To assess whether the observed changes in TF expression 
adequately accounted for the magnitude of MHCII down-
regulation at the time of relapse, we used the CORENODE 
gene-regulatory functions to predict the change in MHCII 
expression from the pre- and post-relapse expression values 
of the TF tetrad. For additional statistical robustness, we 
analyzed all paired samples from the two available studies (3, 
4), including patients regardless of therapy (chemotherapy 
vs. alloSCT) or the direction of MHCII change. In both data 
sets, the predicted changes in MHCII expression closely cor-
related with the actual changes observed at the time of relapse 
(Fig. 2F and G). Given that the gene-regulatory functions were 
derived from an unrelated data set, these findings provided 
validation for the computational model and confirmed the 
combinatorial action of CR TFs in MHCII regulation.

Immune Escape Is Regulated Independently of the 
IFNγγ/CIITA Pathway

MHCII expression in myeloid cells is regulated by IFNγ, 
which acts via the Jak/STAT/IRF pathway to induce the expres-
sion of CIITA, a specific transcriptional coactivator of the 
MHCII genes (19–21). Accordingly, expression of MHCII genes 
correlates with CIITA expression (Fig.  3A; Supplementary 
Fig. S6A). Therefore, we asked if the TF tetrad regulates MHCII 
expression via the IFNγ/CIITA pathway. Indeed, CORENODE 
identified MEF2C, MEIS1, and IRF8 as candidate regula-
tors of CIITA (Fig.  1B). Knockouts of IRF8 and MEF2C led 
to decreased CIITA expression, whereas a MYB knockout was 
associated with increased expression (Fig.  2A). Thus, at least 
three of the four TFs appear to participate in MHCII expres-
sion by modulating CIITA. However, post-alloSCT silencing of 
the MHCII genes was not consistently associated with reduced 
CIITA expression (Fig. 2E), pointing to an independent mecha-
nism of MHCII regulation. In addition, ChIP-seq confirmed 
binding of the entire tetrad at the MHCII locus (Fig. 2C; Sup-
plementary Fig.  S5B), consistent with a possibility of direct 

action. These conflicting observations prompted us to inves-
tigate further CIITA-dependent and -independent actions of 
the tetrad. First, we repeated CORENODE regressions of 
MHCII genes using 4-mers and 5-mers where CIITA was used 
as an additional regression term. The inclusion of CIITA in the 
model resulted in a marked improvement of goodness-of-fit 
for all genes in the MHCII locus without overfitting (Fig. 3A 
and B). Furthermore, t and P values of individual regression 
terms, representing the probability of their independent con-
tribution to the overall fit (see Supplementary Note), indicated 
that the TFs were independent variables, with the strongest 
contributions from MYB and CIITA (Fig. 3C; Supplementary 
Data S5 and S6). This analysis suggested that members of the 
TF tetrad—and particularly MYB—regulate MHCII in a CIITA-
independent manner. To confirm this inference, we asked if 
the negatively acting TF MYB regulates MHCII expression 
in the absence of CIITA coactivation. We generated a panel 
of CIITA knockout cell lines (Supplementary Fig.  S6B). As 
predicted, baseline expression of MHCII proteins was reduced 
in CIITA-deficient cells (Fig.  3D). Nonetheless, loss of MYB 
led to increased MHCII expression (Fig. 3D and E), consistent 
with a CIITA-independent mechanism of MHCII regulation. 
Notably, MYB knockout in wild-type MONOMAC1, a cell 
line with a very high baseline expression of CIITA and MHCII, 
decreased MHCII expression, whereas knockout of MYB in 
CIITA-deficient MONOMAC1 cells increased MHCII expres-
sion (Figs. 2B and 3D; Supplementary Fig.  S4B). This result 
suggests context-specific epistasis between MYB and CIITA and 
confirms the role of MYB as a CIITA-independent repressor of 
MHCII in AML.

Finally, we asked if the induction of MHCII expression by 
IFNγ is mediated by the tetrad TFs. We treated AML cells with 
IFNγ and measured the expression of the tetrad TFs, CIITA, and 
HLA-DRA by RT-qPCR. Although IFNγ  dramatically induced 
the expression of HLA-DRA and CIITA, its effects on the tetrad 
TFs were modest (Fig. 3F). Furthermore, IFNγ induced expres-
sion of MHCII in AML cells with an IRF8 knockout (Fig. 3G). 
Collectively, our data indicate that the tetrad TFs regulate 
MHCII expression independently of the IFNγ/CIITA pathway.

IRF8 and MYB Antagonistically Regulate a  
Graft-Versus-Leukemia Effect Response Module

We sought to place the MHCII genes in the context of 
genome-wide transcriptional regulation by the 19 CR TFs. 

Figure 2.  IRF8, MEF2C, MYB, and MEIS1 regulate MHCII expression in AML. A, Transcriptional response of the indicated genes measured by 
mRNA-seq 72 hours after TF knockout. The experiment was performed in biological triplicates. Error bars represent standard error. MEF2C knockout 
changes were not significant after genome-wide adjustment for multiple hypothesis testing. Among MEIS1 knockout–induced changes only HLA-DRA 
and HLA-DQB1 had q-values <0.1. All shown MYB and IRF8 knockout–induced changes had q-values of <0.05. B, Changes in the surface expression of 
the MHCII molecules detected by immunostaining with a pan-specific anti–HLA-DP/DQ/DR antibody following TF knockout. An AAVS1 (“safe harbor”) 
targeting sgRNA was used as a control. The bar plots represent average values obtained from 3 replicates normalized to the AAVS1 control. Asterisks 
indicate P values calculated by a two-tailed t test comparing MHCII fluorescence between gene knockout and the AAVS1 control at the same time point. 
*, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. C, H3K27 acetylation and TF binding in the HLA-DRA locus. Green tracks are H3K27ac metatracks composed of 
overlaying semitransparent area plots representing two biological replicates of the indicated TF knockouts compared with AAVS1 control. The average 
profile is represented by a thick line. Gray tracks represent the binding of the indicated TFs. All of the shown ChIP-seq experiments were performed in 
MV411 except for CIITA, which was downloaded from ref. (38) and represents a lymphoid cell line. Refer to Supplementary Fig. S4 for a map of H3K27 
acetylation and TF binding in the entire MHCII locus and genome-wide analysis of H3K27ac changes. D, Similarity matrix of SE scores associated with the 
TF tetrad and MHCII genes using data from ref. (9) E, mRNA expression in six paired primary and post-alloSCT samples from ref. (3). F and G, CORENODE 
accurately predicts MHCII expression changes at relapse. The plots depict predicted by CORENODE vs. observed log2 fold change in MHCII expression 
in paired samples from ref. (3). F, and ref. (4). G, between initial presentation and relapse. For each patient (color-coded as indicated) each data point 
reflects predicted and observed changes in the expression of one MHCII gene. The IRF8/MYB/MEIS1/MEF2C 4-mer was used in F, and CIITA was added 
as a fifth term in G resulting in a better fit.
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We began by evaluating the global accuracy of CORENODE 
in predicting transcriptional regulation. To this end, we 
generated a list of high-confidence targets of each CR TF by 
applying a minimal ES cutoff of 15, and cross-plotted DDs 
for each target gene versus the actual response observed on 
RNA-seq after knockout of the corresponding TF in MV411 
cells. A significant correlation was observed between pre-
dicted and actual changes in gene expression following TF 
loss (Fig. 4A; see Supplementary Note for a detailed discus-
sion). Having confirmed CORENODE’s precision in predict-
ing genomic regulation, we built a map of high-confidence 
edges in the AML transcription regulatory network, revealing 
distinct functional modules of CR TFs and coregulated genes 
(Fig.  4B). The model highlighted several TFs (MYB, FLI1, 
STAT5B, CEBPA, IRF8, and SPI1) as genome-wide regula-
tors, whereas other TFs (GFI1, MEIS1, RUNX1, RUNX2, 
MEF2C, and MEF2D) were projected to regulate more nar-
row transcriptional programs. In addition, the model pre-
dicted partially antagonistic functions for some TFs on a 
pairwise comparison (Supplementary Fig.  S7A and S7B). 
We focused attention on the antagonistic actions of MYB 
and IRF8. CORENODE highlighted a module of 58 genes 
predicted to be upregulated by IRF8 and downregulated by 
MYB (Fig. 4C; Supplementary Data S7). The predicted out-
come conformed closely to the actual responses following 
TF knockouts (Fig.  4D). The module was highly enriched 
for genes participating in multiple aspects of alloreactivity 
(Fig. 4E; Supplementary Fig. S8A), including response to IL2 
and IFNγ (MAP2K1, OAS1, IFI30, MX1, and TNFRSF1B), T-cell 
stimulation (CD86, BTN3A1, TNFSF8, and SH2B3), adhesion 
(ITGB7 and TGFBI), inflammasome formation (NLRP1), and 
transcription regulation (NOD2, SPI1, MALT1, CBX7, and 
MAFB). Importantly, the module was downregulated in 5 
of 6 patients with reduced MHCII expression after alloSCT, 
with the exception of the sole patient (142074) who displayed 
decreased MYB expression at relapse (Fig.  4F). In contrast, 
patients with relapse after chemotherapy displayed inconsist-
ent changes in the expression of the module (Supplementary 
Fig. S8B). Thus, antagonistic actions of MYB and IRF8 facili-
tate immune evasion by silencing a broad transcriptional 
program that regulates the interaction between AML blasts 
and donor T cells (Fig. 4G).

Immune Escape Is Uncoupled from  
the Myeloid Differentiation State

Members of the TF tetrad have previously been implicated 
in the regulation of normal and malignant myelopoiesis: 

MYB and MEIS1 restrain myeloid differentiation, whereas 
IRF8 and MEF2C promote it (22–25). Additionally, AML cells 
form a functional hierarchy of differentiation states arising 
from a leukemia stem cell (LSC; ref.  26), and activation of 
immune pathways is a hallmark of monocytic development 
(27). Thus, we hypothesized that reduced expression of IRF8 
and MEF2C and increased expression of MYB and MEIS1 at 
relapse reflect the evolution of leukemia into a less differenti-
ated state. To test this hypothesis, we computed a myeloid 
differentiation index from the mRNA expression of 19 cell 
type–specific markers, which correctly reproduced both the 
normal myeloid trajectory and the functional AML hierarchy 
(Supplementary Fig. S9A and S9B). However, MHCII expres-
sion correlated poorly with myeloid differentiation in the 
Beat AML and TCGA data sets, and changes in the MHCII 
expression at relapse could not be predicted from the changes 
in the myeloid differentiation index (Fig. 4H; Supplementary 
Fig. S9C and S9D). We conclude that reduced MHCII expres-
sion at relapse is regulated independently from the myeloid 
differentiation state.

Transcriptional Plasticity Underlies Relapse
We examined the expression of MHCII genes in AML 

cells at the single-cell level. We analyzed single-cell tran-
scriptomes obtained from patient 452198 at presentation 
and post-alloSCT relapse (3). Plotting all cells together 
using t-distributed stochastic neighbor embedding (t-SNE) 
revealed distinct clusters of AML cells corresponding to 
initial presentation and relapse (Fig.  5A). Although most 
AML cells displayed high MHCII expression at presenta-
tion, approximately 1 in 40 cells had low or undetectable 
MHCII similar to those seen at relapse (Fig. 5B and C). Some 
of these MHCII-low cells coclustered with the relapsed cell 
population, indicating similar global transcription patterns 
(Fig. 5C). The MHCII-low cells displayed significantly higher 
MYB and lower IRF8 compared with the cells expressing 
MHCII highly at presentation (Fig.  5D). The average MYB 
expression in the MHCII-low cell population at presenta-
tion was still lower, and IRF8 was still higher than the 
average of these TFs at relapse. However, up to 1 in 6 cells 
in the MHCII-low population (approximately 1 in 250 of 
all AML cells at presentation) expressed undetectable IRF8 
and markedly elevated MYB that matched or exceeded the 
average MYB expression seen at relapse (Fig. 5C). Although 
expression of MEIS1 was increased and expression of MEF2C 
was decreased in most cells at relapse, we found no statisti-
cally significant change in their expression in the MHCII-low 

Figure 3.  CIITA-dependent and -independent regulation of MHCII genes by the TF tetrad. A, 1-mer CORENODE fit using CIITA (linear + quadratic term) 
as the only predictor of HLA-DRA expression, as well as 4- and 5-mer CORENODE HLA-DRA fits with indicated goodness-of-fit metrics. B, LOO improve-
ment between TF 4-mers (6 fits, 1 per HLA gene) and 5-mers that include CIITA in addition to the 4 TFs. C, Heat map visualization of regression term P 
values representing the probability of the term’s t-value being zero. Lower P values, visualized by denser color on the heat map, reflect a higher probabil-
ity and magnitude of the term’s independent contribution to the overall fit (see Supplementary Note for details). The statistics are calculated separately 
for each gene using the 5-mer composed of the TF tetrad and CIITA. D and E, Changes in the surface expression of HLA-DP/DQ/DR following CIITA ± MYB 
knockouts, detected by immunostaining with a pan-specific anti-HLA-DR/DP/DQ antibody. The bar plots (D) represent average fluorescence values 
obtained from 3 replicates with independent isotype controls and normalized to the AAVS1 control. Asterisks indicate P values calculated by a two-tailed 
t test comparing MHCII fluorescence between gene knockout and the AAVS1 control at the same time point. *, P ≤ 0.05; **, P ≤ 0.01; ***, P ≤ 0.001. The 
FACS histogram (E) represents one of 3 replicate experiments performed in MV411. F, Changes in the expression of the tetrad TFs, CIITA and HLA-DRA 
induced by treatment of MV411 cells with 10 ng/mL IFNγ, measured by TaqMan ΔΔCt RT-PCR normalized to HPRT1 as internal control, in four biological 
replicates. G, Induction of MHCII expression (measured as in D) by 10 ng/mL IFNγ in wild type (AAVS1 control) and IRF8 knockout MV411 cells.
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Figure 4.  Global transcription network decomposition by CORENODE. A, CORENODE validation by TF knockout followed by mRNA-seq. DD values 
(predicted response) for high-confidence MYB and IRF8 edges (ES ≥ 15 and [DD] ≥ 0.2) are plotted against actual log2 fold change in mRNA expression 
measured by RNA-seq 72 hours after MYB knockout (observed response). Spike-in control was used to account for the global transcriptional collapse 
after MYB knockout (refer to Supplementary Note for a detailed discussion). B, A graphic representation of the AML transcription regulation network 
reconstructed from the CORENODE output. The circle represents clusters of target genes coregulated by the TFs, as illustrated by TF-cluster edges. 
The proximity of the TFs to the clusters reflects their specificity toward them (for example, MYB regulates all clusters, whereas MEIS1 regulates only 
one cluster). A geometrically optimal map with the shortest aggregate distance of the TF-cluster edges was produced by solving for the unweighted 
Weber problem (see Supplementary Note). C, CORENODE identifies a gene module predicted to be repressed by MYB and activated by IRF8. Visualized 
are DD scores of all genes with high confidence (ES ≥ 15) MYB and/or IRF8 edges; 58 of these genes (highlighted in red) are predicted to be negatively 
regulated by MYB and positively regulated by IRF8. D, Transcriptional responses of the 58 genes comprising the GvL module depicted in C to MYB and 
IRF8 knockouts measured by RNA-seq are cross-plotted, confirming the predicted directionality of regulation for the vast majority of genes. Spike-in 
normalization was not used for this plot (see Supplementary Note). E, Gene set enrichment analysis of the MYB-IRF8 (GvL) module genes in C using 
Enrichr (43). F, Decreased expression of the GvL module in paired primary and post-alloSCT patient samples from ref. (3) with reduced MHCII expression 
at relapse. P values were calculated by a paired two-tailed t test. Each data point represents one gene with the dotted line linking expression values at 
presentation and after alloSCT. The shaded areas reflect probability density of the data smoothed by a kernel density estimator. G, Schematic of the 
proposed regulation of the MHCII and other GvL genes in AML by the TF tetrad. H, MHCII expression at relapse does not correlate with the myeloid 
differentiation state. The index of myeloid differentiation is plotted against combined MHCII expression in each paired sample and the direction of 
change between initial presentation and relapse is marked by arrows.
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cells at presentation, indicating that stable changes in these 
TFs were acquired later in the course of leukemia evolution 
(Fig.  5D). We conclude that a minor population of cells 
with reduced MHCII expression driven by altered MYB and 
IRF8 expression was present in this patient at the time of 

initial presentation and likely contributed to the subsequent 
relapse. For additional validation, we examined scRNA-seq 
data from six diagnostic AML samples from another report 
(28). MHCII-low cells were universally present in all patients 
at the time of initial diagnosis (Fig.  6A). IRF8 and MEF2C 

Figure 5.  Single-cell RNA-seq reveals an adaptive mechanism of transcriptional evolution underlying relapse. A, scRNA-seq of AML cells obtained at 
initial presentation (AMLP) and post-alloSCT relapse (AMLR). Data from patient 452198 were downloaded from ref. (3) and clustered according to their 
genome-wide expression patterns using t-SNE. Cell lineages were inferred from the expression of lineage markers. B, Distribution of MHCII expression in 
AML cells. Individual cells are placed in bins according to their aggregate MHCII expression and cell frequency is plotted for each bin. C, t-SNE plots start 
with the same plot as in A but highlight cells from the initial presentation that fit the designated criteria. D, Single-cell expression of the TF tetrad in AML 
cells with low and high aggregate MHCII expression at presentation compared with relapse. P values were calculated by a two-tailed t test. The elements 
of the boxplots are as follows: black center line, median; red center line, mean; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range. 
The shaded areas reflect the probability density of the data smoothed by a kernel density estimator.
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were significantly lower in MHCII-low cells than in MHCII–
high cells (Fig. 6B). MYB and MEIS1 were higher in MHCII-
low cells in 4 of 6 patients (Fig.  6B). Importantly, in the 
2 samples where MHCII-low cells displayed paradoxically 
lower expression of MYB and MEIS1, this was compen-
sated by a much greater fractional decrease in IRF8 and 
MEF2C. Overall, these observations are consistent with the 
results of bulk RNA-seq of post-alloSCT samples (Fig.  2E) 
and lend further support to a combinatorial transcriptional 
mechanism of immune escape. Importantly, AML cells with 
transcriptionally driven low MHCII expression appear to 
be common at the time of initial diagnosis in all exam-
ined patients, suggesting a unifying potential mechanism of 
immune escape and eventual relapse.

DISCUSSION
By developing a network decomposition approach that 

captures combinatorial TF interactions, we identified a tetrad 
of core TFs that regulate immune escape of AML cells after 
alloSCT, where IRF8 and MYB appear to act as major regula-
tors of MHCII expression, acting antagonistically. Remarka-
bly, the transcriptional activator MYB acts as a strong negative 
regulator of MHCII genes. Consistent with our observations, 
Myb-deficient mouse B cells exhibit elevated MHCII expres-
sion (29). Our data reinforce the status of MYB as an impor-
tant therapeutic target in AML (30) and further indicate that 
even partial MYB inhibition may represent a viable strategy to 
prevent or reverse immune escape after alloSCT. Indeed, the 
tool compound mebendazole, which appears to inhibit MYB 
by targeting it for proteosomal degradation (18), increases 
MHCII expression, albeit modestly. However, a complete MYB 
knockout results in an extremely potent induction of MHCII 
expression, and it is likely that a potent direct MYB inhibitor 
would produce a similarly dramatic effect. Although IRF8 
is an established effector of IFNγ  and has been reported to 
control MHCII expression in myeloid cells (31–33), we dem-
onstrate that both IRF8 and MYB regulate MHCII expres-
sion largely independently of the IFNγ/CIITA axis. Notably, 
various IRF paralogs (IRF1, IRF2, IRF4, and IRF8) have been 
implicated as transcriptional effectors of the IFNγ/Jak/STAT 
cascade, inducing MHCII expression both directly and via 
CIITA (19, 24, 31, 33, 34). We suspect that the IRF paral-
ogs exhibit context-specific and partially redundant roles in 
MHCII regulation. Although binding of the tetrad TFs at 
the MHCII locus suggests that they may directly regulate the 
expression of MHCII genes, TF occupancy is a poor predic-
tor of direct regulation (35, 36), and additional studies are 
needed to elucidate the mechanism by which the tetrad TFs 
regulate MHCII expression. Furthermore, the MHCII locus 
is a point of convergence of complex regulatory mechanisms 

(20), and it is likely that there are other important regulators 
of MHCII expression contributing to immune escape. Indeed, 
CORENODE is limited to a preselected set of regulators and 
is unable to capture posttranscriptional regulation. While 
this manuscript was in revision, a study by Gambacorta and 
colleagues reported epigenetic silencing by the polycomb 
repressive complex 2 (PRC2) as a mechanism of MHCII loss 
in post-alloSCT relapse (37). It would be interesting to exam-
ine whether altered expression of the tetrad TFs identified 
in our study contributes to the recruitment of PRC2 to the 
MHCII locus.

Beyond reducing MHCII expression, antagonistic actions 
of MYB and IRF8 facilitate immune escape by enacting 
a broader program of transcriptional changes resulting in 
reduced expression of multiple genes involved in antigen 
presentation, cytokine response, and T-cell costimulation. 
Notably, to the extent that these core TFs are essential for 
AML survival, post-SCT relapse appears to rely on relatively 
modest changes in their expression that cooperatively medi-
ate immune evasion without affecting cell viability. A small 
population of such cells with reduced MHCII expression 
due to altered TF expression is present at the time of initial 
diagnosis and likely contributes to relapse under in vivo selec-
tion. Whether transcriptional heterogeneity is hard-wired 
(for example, by mutations in noncoding regulatory DNA 
elements) or driven by stochastic TF fluctuations remains to 
be elucidated. Nonetheless, we speculate that the immune 
pressure imposed by allogeneic transplantation selects AML 
cells with a pattern of CR TF expression that provides an 
optimal balance between immune escape and overall fitness. 
Such “transcriptional evolution” by the selection of cells with 
favorable transcriptional states mediated by altered combina-
torial patterns of key TFs may drive the progression of other 
tumors and eventual relapse.

METHODS
External Data Sets

RNA-seq BAM files for 510 patients from the Beat AML project (15) 
were provided by Oregon Health & Science University and processed 
through the CCLE RNA processing pipeline (STAR/RSEM, described at 
https://github.com/broadinstitute/ccle_processing). Reads were normal-
ized to transcripts per million (TPM) and filtered for protein-coding 
genes. The expression values were transformed to log2(TPM  +  1). The 
genes were ranked by average expression across the samples and 9,000 top 
expressed genes were chosen for further analysis (Supplementary Fig. S1).

H3K27ac ChIP-seq data from primary AML samples (9) were 
downloaded from Sequence Read Archive (SRA) under accession 
number SRP103200 and processed using the AQUAS pipeline 
(https://github.com/kundajelab/chipseq_pipeline) with minor mod-
ifications and according to the ENCODE3 guidelines. Reads were 
aligned to the hg19 genome build using BWA-ALN and peaks were 

Figure 6.  Single-cell RNA-seq reveals the universal presence of MHCII-low cells at diagnosis displaying an aberrant expression of the TF tetrad. A, 
scRNA-seq of AML cells obtained at initial presentation and relapse after alloSCT (patient 452198) or chemotherapy (all other patients). Data were 
downloaded from ref. (28) and clustered according to their genome-wide expression patterns using t-SNE. Cells from initial presentation and relapse are 
plotted together and highlighted according to the relapse status and MHCII expression, indicating the universal presence of MHCII-low cells (aggregate 
MHCII counts <300) in all patients at the time of initial presentation. B, Differences in the tetrad TF expression in the MHCII-low versus MHCII–high cells 
at the time of initial presentation. Asterisks indicate P values calculated by a two-tailed t test; **, P ≤ 0.01; ***, P ≤ 0.001; n.s., P > 0.05. MEIS1 was not 
expressed in sample 869586.

https://github.com/broadinstitute/ccle_processing
https://github.com/kundajelab/chipseq_pipeline
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called using MACS2. For SE calling, each sample was processed using 
ROSE2 (https://github.com/linlabbcm/rose2), excluding 2,500 bp 
around TSSs (−t 2,500) and the hg19 Encode blacklisted regions. SE 
regions were then merged and ROSE2 was run again for each sample 
on the merged regions, producing the SE signal matrix, which was 
then normalized by a median signal for each sample.

CIITA ChIP-seq data (38) were downloaded from the GEO 
database (http://www.ncbi.nlm.nih.gov/geo/) under the accession 
number GSE52941.

TCGA mRNA (FPKM) data for 151 patients with AML was down-
loaded from the NCI Genomic Data Commons site using the GDC-
query routine from the R package TCGAbiolinks (39); the procedure 
was last verified on September 18, 2019. TCGA mRNA gene informa-
tion was converted from ENSG codes to hgnc symbols using the 
Bioconductor program biomaRt (40, 41). mRNA FPKM expression 
values were converted to TPM.

RNA-seq and associated metadata for normal hematopoietic pro-
genitors and AML samples (42) for myeloid index analysis were down-
loaded from GEO GSE74246, converted to FPKM using transcript 
lengths acquired through the Bioconductor package “biomaRt” and 
then converted to TPM.

Paired processed RNA-seq data from the two available studies  
of patients with AML at the time of initial presentation and  
relapse (3, 4) were downloaded from https://www.nejm.org/doi/full/ 
10.1056/NEJMoa1808777 and https://www.ebi.ac.uk/arrayexpress/ 
experiments/E-MTAB-7456/samples/.

Genetic dependency data are available for download at the Broad 
DepMap portal database (https://depmap.org/portal/download/). 
Data release 20q1 was used for this study. For the purpose of this 
study, we considered a gene to represent a selective AML depend-
ency if it had a probability of dependency of ≥0.5 in 3 or more AML 
cell lines and not be considered a pan-lethal dependency based on 
the LRT score. This approach resulted in a total of 225 selective 
AML dependencies.

Gene set enrichment analysis was performed using the Enrichr 
database (43).

Cell Culture
AML cell lines were purchased from the American Type Cul-

ture Collection (https://www.atcc.org) within the past 10 years. The 
MV411 cell line was authenticated within the last year by confirming 
the presence of the t(4;11) translocation. Other cell lines were not 
independently authenticated. Cells were cultured in the RPMI-1640 
media (Gibco 11875085) containing 10% FBS (Thermo Fisher A4766) 
and regularly tested to be free of Mycoplasma spp.

CRISPR-Cas9 Gene Knockouts
Synthetically modified sgRNA constructs were purchased from 

Synthego (refer to Supplementary Table  S1 for sgRNA sequences). 
Ribonucleoprotein (RNP) assembly was performed by mixing 2 to 
3 sgRNAs (a total of 120 pmol/L) with 8.5  μg recombinant Cas9 
(Invitrogen A36499). The resulting RNP mix was electroporated into 
0.3  ×  106 cells using a Lonza 4D Nucleofector, program DJ-100, in 
20  μL Nucleocuvette strips (Lonza V4XC-2032). Unless otherwise 
noted, cells were incubated in media for 72 hours postelectropora-
tion before subsequent analyses. Knockout efficiency was confirmed 
by Western blotting (Supplementary Fig.  S4A). The following anti-
bodies were used: actin (Santa Cruz sc-47778), IRF8 (Cell Signaling 
5628s), MEF2C (Cell Signaling 5030s), MYB (Abcam ab45150). A 
guide RNA targeting the AAVS1 “safe harbor” locus was used as a 
negative control (44).

Genome-Wide Occupancy Analysis
ChIP-seq was performed as previously described (45) and in 

accordance with the Encode guidelines (46). Briefly, 10  ×  106 (for 

histone ChIPs) or 100 × 106 (for TF ChIPs) exponentially growing 
MV411 cells were fixed with 1% formaldehyde for 10 minutes at 
room temperature and then quenched with 125 mmol/L glycine 
for 5 minutes. Nuclei were isolated using the Nuclei EZ Kit (Sigma-
Aldrich NUC101) and resuspended in 10 mmol/L Tris-HCl, pH 
8.0, 1 mmol/L EDTA, 0.1% SDS with 1×  HALT protease inhibitor 
(Thermo Fisher; 87786). Chromatin was fragmented by sonica-
tion on an E220 Covaris-focused sonication machine using the 
parameters of 140 mV, 5% duty factor, 200 cycles/burst for 14 
minutes, and cleared by centrifugation. The following antibodies 
were used for ChIP: H3K27ac (Abcam ab4729), IRF8 (SantaCruz 
sc365042X), MYB (Abcam ab45150), MEIS1 (Abcam ab19867), and 
MEF2C (GeneTex GTX105433). ChIP-seq libraries were prepared 
using Swift S2 Acel reagents (Swift 21096) on a Beckman Coulter 
Biomek i7 liquid handling platform from approximately 1 ng of 
DNA according to the manufacturer’s protocol and using 14 cycles 
of PCR amplification. Sequencing libraries were quantified by Qubit 
fluorometer and Agilent TapeStation 2200. Library pooling and 
indexing were evaluated by shallow sequencing on Illumina MiSeq. 
Subsequently, libraries were sequenced on NovaSeq targeting 40 
million 100 bp read pairs by the Molecular Biology Core facilities 
at the Dana-Farber Cancer Institute. Sequencing reads were pro-
cessed using the AQUAS pipeline (https://github.com/kundajelab/
chipseq_pipeline) with minor modifications and according to the 
ENCODE3 guidelines. Reads were aligned to the hg38 genome 
build using BWA-ALN and peaks were called using MACS2. Quality 
control of the ChIP-seq data were performed using the nf-core pipe-
line (https://github.com/nf-core/chipseq), targeting FRiP scores 
of >0.3.

For quantitative ChIP-seq analysis of H3K27 acetylation, we 
used Drosophila chromatin/antibody spike-in control as previously 
described (47). Briefly, 4 μg of anti-H3K27ac antibody, 2 μg of spike-
in antibody, and 20 ng of spike-in chromatin (Active Motif 61686 and 
53083, respectively) were added to chromatin prepared from 2.5 × 106 
MV411 cells 72 hours after RNP-mediated TF knockout. The rest 
of the ChIP-seq experiment was performed in the standard fashion. 
After ChIP-seq reads were mapped to the Drosophila genome and the 
hg38 human genome in parallel, human tag counts were normalized 
to Drosophila tag counts.

Global Transcriptome Analysis
For RNA-seq experiments, the total cellular RNA was extracted 

using the QuickRNA kit (Zymo Research R1054). Purified total RNA 
was mixed with the ERCC synthetic spike-in control (Invitrogen 
4456740). RNA-seq libraries were prepared on a Beckman Coulter 
Biomek i7 liquid handling platform using Roche Kapa mRNA Hyper-
Prep strand-specific sample preparation kits (Roche; 08098123702) 
from 200 ng of purified total RNA according to the manufacturer’s 
protocol. Library quantification and Illumina sequencing were per-
formed as described in the ChIP-seq section above.

RT-qPCR
The total cellular RNA was extracted using the RNeasy Plus 

Mini Kit (Qiagen; 74134). Target gene expression was quantified 
by a TaqMan  ΔΔCt experiment using TaqPath 1-step master mix 
(Thermo Fisher A28525) and HPRT1 as an internal control. The fol-
lowing TaqMan assays were used: CIITA, Hs00172106_m1; MYB, 
Hs00920556_m1; MEIS1, Hs00180020_m1; MEF2C, Hs00231149_ 
m1; IRF8, Hs00175238_m1; HPRT1, Hs99999909_m1; HLA-DRA,  
Hs00219575_m1).

Measurement of MHCII Expression by FACS
For MHCII analysis, 1 × 106 cells were first incubated for 10 min-

utes with 0.5 μg of Human Fc block (BD Biosciences; 564219). Cells 
were then split and stained for 20 minutes with either a pan-specific 

https://github.com/linlabbcm/rose2
http://www.ncbi.nlm.nih.gov/geo/
https://www.nejm.org/doi/full/10.1056/NEJMoa1808777
https://www.nejm.org/doi/full/10.1056/NEJMoa1808777
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7456/samples/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7456/samples/
https://depmap.org/portal/download/
https://www.atcc.org
https://github.com/kundajelab/chipseq_pipeline
https://github.com/kundajelab/chipseq_pipeline
https://github.com/nf-core/chipseq
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FITC-conjugated Mouse Anti-Human HLA-DR, DP, DQ antibody 
(BD Biosciences 555558, clone Tu39), or FITC-conjugated Mouse 
IgG2a,  κ  Isotype Control (BD Biosciences 555573). Data were ana-
lyzed in FlowJo (FlowJo LLC). Surface MHCII expression was cal-
culated by subtracting the isotype control fluorescence from the 
pan–HLA-DR, DP, and DQ fluorescence.

Western Blotting
Whole-cell lysates were prepared in RIPA buffer (Boston Bio-

Products BP-115-500) with a protease inhibitor cocktail (Thermo 
Fisher; 23225). Lysates were boiled in Laemmli buffer (Bio-Rad 
1610737), separated by SDS-PAGE, and transferred and blocked 
using standard methodology. HRP-conjugated anti-mouse and anti-
rabbit IgG secondary antibodies were used for imaging (Bio-Rad; 
1706515 and 1706515) with an enhanced chemiluminescence sub-
strate (PerkinElmer NEL104001EA) according to the manufacturers’ 
instructions. The following primary antibodies were used: anti-MYB 
(Abcam ab45150), anti-MEF2C (Cell Signaling; 5030S), anti-MEIS1 
(Abcam; ab19867), anti-IRF8 (Cell Signaling; 5628S).

Statistical Analysis
Details of the statistical analyses pertaining to CORENODE are 

found in the Supplementary Note. All experiments were done in at 
least three replicates. Two-tailed Student t test was used to com-
pare the mean fluorescence of antibody-stained cells following TF 
knockout. Changes in gene expression in patient samples between 
initial diagnosis and relapse were ascertained using a Wilcoxon 
signed-rank test. Statistical analysis of ChIP-seq and RNA-seq data 
were performed using the DESeq2 package (48) with genome-wide 
adjustment for multiple hypothesis testing.

Myeloid Differentiation Index
To identify markers of myeloid development, genome-wide mRNA 

expression values in “HSC” and “monocyte” samples from ref.  (42) 
were processed to yield the mean and variance of expression by the 
gene. For each gene, the two variances were pooled [pooled variance =  
mean (HSC variance, monocyte variance)]. A separation index was 
then defined for each gene as the difference between the HSC and 
monocyte mean expressions divided by the square root of the pooled 
variance. Markers were chosen as the 19 genes with the highest sepa-
ration indices. Lymphoid markers were identified with the same pro-
cedure, comparing HSC samples to the T-cell and B-cell samples. To 
compute the myeloid index, each sample’s expression of the marker 
genes as determined above was converted to a z-score using the mean 
of all eight HSC and monocyte expressions and the pooled variance 
for that gene, and further normalized to a ± 1 scale by dividing by the 
maximum absolute value of all z-scores. For genes where the mean 
monocyte score was higher than the mean HSC score, normalized 
scores were multiplied by (−1). The normalized scores for the set 
of marker genes were summed to define the myeloid index for each 
sample. The same procedure was used for the lymphoid index, with 
appropriate cell-type substitution. Plotting normal and leukemia 
cell types according to the myeloid and lymphoid indices yielded the 
expected development vectors as shown in Supplementary Fig.  S6. 
The same markers were then used to define a myeloid index for 
the samples from the other data sets (3, 4, 15, 17). The HLA index 
was defined as the mean expression (in log2[TPM  +  1]) of the nine 
HLA-D genes.

Data and Materials Availability
The CORENODE code (written in R) is found at https://app.box.

com/s/a3x7f4zwcgv3f4jgshphe4opsen13mwf. Genome-wide matrix 
of CR TF ESs and DDs can be found in Supplementary Data S1 and 
S2, respectively. Genome-wide CORENODE output, including n-mer 

fits and scores, is found at https://corenode.shinyapps.io/corenode/. 
Statistics on 5-mer CORENODE fits for the MHC type II genes is 
displayed in Supplementary Data S3. Gene-dependency scores from 
the CRISPR–Cas9 screen are available at https://depmap.org/portal/
download/. ChIP-seq and RNA-seq data have been deposited to the 
SRA database under accession no. PRJNA751732. DESeq2 outputs 
from the RNA-seq experiments are found in Supplementary Data S4. 
CORENODE statistics for MHC type II 5-mer regressions are found 
in Supplementary Data S5. Plots of CORENODE n-mer regression 
fits for MHC type II genes are found in Supplementary Data S6. 
Expression of the GvL module in primary and post-allo-SCT relapse 
samples is found in Supplementary Data S7.
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