
ORIGINAL RESEARCH
published: 02 June 2021

doi: 10.3389/fneur.2021.608322

Frontiers in Neurology | www.frontiersin.org 1 June 2021 | Volume 12 | Article 608322

Edited by:

Yasuo Terao,

Kyorin University, Japan

Reviewed by:

Francesco Di Lorenzo,

Santa Lucia Foundation (IRCCS), Italy

Alfredo Berardelli,

Sapienza University of Rome, Italy

*Correspondence:

Fu-Yu Lin

linfuyu95@gmail.com

Ming-Kuei Lu

mingkuei.lu@gmail.com

Specialty section:

This article was submitted to

Dementia and Neurodegenerative

Diseases,

a section of the journal

Frontiers in Neurology

Received: 25 September 2020

Accepted: 07 May 2021

Published: 02 June 2021

Citation:

Yang Y-C, Chang F-T, Chen J-C,

Tsai C-H, Lin F-Y and Lu M-K (2021)

Bereitschaftspotential in Multiple

System Atrophy.

Front. Neurol. 12:608322.

doi: 10.3389/fneur.2021.608322

Bereitschaftspotential in Multiple
System Atrophy
Yi-Chien Yang 1,2, Fang-Tzu Chang 1,2, Jui-Cheng Chen 1,2,3,4, Chon-Haw Tsai 1,2,4,5,

Fu-Yu Lin 1,2* and Ming-Kuei Lu 1,4,5*

1Department of Neurology, China Medical University Hospital, Taichung, Taiwan, 2 School of Medicine, College of Medicine,

China Medical University, Taichung, Taiwan, 3Department of Neurology, China Medical University Hsinchu Hospital, Hsinchu,

Taiwan, 4Neuroscience and Brain Disease Center, China Medical University Hospital, Taichung, Taiwan, 5 Ph.D. Program for

Translational Medicine, College of Medicine, China Medical University, Taichung, Taiwan

Objective: Multiple system atrophy (MSA) is a neurodegenerative disorder manifesting

as parkinsonism, cerebellar ataxia, and autonomic dysfunction. It is categorized into

MSA with predominant parkinsonism (MSA-P) and into MSA with predominant cerebellar

ataxia (MSA-C). The pathophysiology of motor control circuitry involvement in MSA

subtype is unclear. Bereitschaftspotential (BP) is a feasible clinical tool to measure

electroencephalographic activity prior to volitional motions. We recorded BP in patients

with MSA-P and MSA-C to investigate their motor cortical preparation and activation for

volitional movement.

Methods: We included eight patients with MSA-P, eight patients with MSA-C, and

eight age-matched healthy controls. BP was recorded during self-paced rapid wrist

extension movements. The electroencephalographic epochs were time-locked to the

electromyography onset of the voluntary wrist movements. The three groups were

compared with respect to the mean amplitudes of early (1,500–500ms before movement

onset) and late (500–0ms before movement onset) BP.

Results: Mean early BP amplitude was non-significantly different between the three

groups. Mean late BP amplitude in the two patient groups was significantly reduced in

the parietal area contralateral to the movement side compared with that in the healthy

control group. In addition, the late BP of the MSA-C group but not the MSA-P group

was significantly reduced at the central parietal area compared with that of the healthy

control group.

Conclusions: Our findings suggest that patients with MSA exhibit motor

cortical dysfunction in voluntary movement preparation and activation. The

dysfunction can be practicably evaluated using late BP, which represents the

cerebello-dentato-thalamo-cortical pathway.

Keywords: Bereitschaftspotential, movement-related cortical potential, multiple system atrophy, parkinsonism,

neurodegenerative disorder
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INTRODUCTION

Multiple system atrophy (MSA) is an adult-onset and progressive
neurodegenerative disease. Unlike Parkinson’s disease (PD), it
has a disabling and rapidly fatal course. MSA is characterized
by a combination of autonomic dysfunction, parkinsonism,
cerebellar, and pyramidal features (1, 2). It is classified based
on the motor phenotypes of striatonigral degeneration (SND),
currently designated as MSA-parkinsonism type (MSA-P), and
olivopontocerebellar atrophy (OPCA), currently designated
as MSA-cerebellar type (MSA-C) (3). Despite the clinical
manifestations show similar gender prevalence, age of onset and
occurrence of orthostatic hypotension, the prognosis may be
different between the two subtypes (4–6). Pathologically, MSA
is a synucleinopathy in which the misfolded alpha-synuclein
accumulates in the cytoplasmic inclusions of oligodendrocytes;
this is different from PD, in which alpha-synuclein aggregates
in the central nervous system neurons (7–9). Prominent
degeneration and atrophy in the putamen, caudate nucleus,
substantia nigra, pons, inferior olive, and cerebellum is observed
in MSA compared with a predominant reduction in the caudate
and putamen in patients with typical PD (1, 2, 10–12). Functional
magnetic resonance imaging studies have revealed the disrupted
functional connectivity of the cerebello-cortical pathway in
patients with MSA and those with PD, but the patterns of the
impaired connectivity differ between the two diseases (13–16).
Despite sharing some parkinsonian features, MSA exhibits a
distinct clinical course and symptom spectrum from PD (17, 18).
Therefore, whether and how the underlying pathophysiology of
MSA leads to motor dysfunction remains to be investigated.

Movement-related cortical potential (MRCP) represents
the cortical neuronal activity corresponding to intentional
movements (19–22). It is a useful tool in studying the motor
initiation by evaluating both the cerebello-thalamo-cortical
motor and cortico-basal ganglia-thalamo-cortical pathways (23–
32). The Bereitschaftspotential (BP), defined as the pre-
movement session of the MRCP, is particularly emphasized
because it represents the preparatory and executive activation
in the motor-related cortices. Early BP exhibits a slowly rising
negative slope, usually arising from 1,500 to 500 milliseconds
(ms) before movement onset, and late BP exhibits a steeper
negative slope from 500 to 0ms before the movement onset (22).
Bilateral pre-supplementary motor area (pre-SMA) activation
contributes to early BP, and the subsequent SMA proper, pre-
motor and primary motor cortical activation contralateral to the
movement contributes to late BP (22, 33).

The two BP components can be differently affected in patients
with cerebellar disorders or basal ganglia lesions (23–28, 30, 31,
34, 35). In patients with cerebellar disorders, early BP is not
affected, but late BP is reduced mostly over the central region of
cortex, indicating dysfunction of the cerebello-dentato-thalamo-
cortical pathway (23–28, 30, 31). In patients with PD, the early
BP exhibits a smaller amplitude compared with healthy controls,
probably due to the failure of SMA activation in the basal ganglia
circuitry (34, 36). A study found reduced late BP in eight patients
diagnosed with OPCA, according to the diagnosis consensus
published in 1999 (37, 38). After the second diagnosis consensus

of MSA in 2008 (39), no data are available to describe the full
MRCP features, particularly BP, in the two subtypes of MSA.
Although MSA-P and MSA-C share a common synucleinopathy
at the cellular level, it is possible that different motor-related
circuits are involved in these two subtypes of MSA. Here we
adopted the new diagnostic criteria for MSA phenotypes and
compared BP in patients with MSA-P, patients with MSA-C, and
healthy controls.

In addition to BP, transcranial magnetic stimulation (TMS) is
the other suitable non-invasive tool to investigate the function
of the cerebello-thalamo-cortical circuit. In patients with PD, the
cerebello-thalamo-cortical circuit has been found significantly
impaired with a TMS technique targeting the cerebellar cortex
and the contralateral primary motor cortex (40, 41). By this
way the cerebellar modulatory influence on the corticospinal
excitability can be measured. However, the cerebellar and the
primarymotor cortices are passively activated in the TMS studies.
Since the current study focused on studying the volitional cortical
activation in the two MSA subtypes, the TMS was not applied.

Clinical evidences have shown that different MSA subtypes
would heterogeneously involve the cerebello-thalamo-
cortical motor and the cortico-basal ganglia-thalamo-cortical
pathways. BP might serve as a feasible tool to investigate the
underlying dysfunction. Findings may elucidate motor control
pathophysiology in the two MSA subtypes.

METHODS

Patients
Sixteen patients with MSA (eight with MSA-P and eight with
MSA-C) were included in this study (age: 62.1 ± 9.2 years; seven
women and nine men) (Table 1). Eight age-matched patients
without a history of neurological disorders were recruited as
the control group (age: 60.9 ± 8.3 years; three women and five
men). All patients were diagnosed with probable or possible
MSA, according to the second consensus statement on the
diagnosis of MSA (39), which was verified by two neurologists
specializing in movement disorders. Patients with regular use of
antiparkinsonianmedications— including levodopa, catechol-O-
methyltransferase inhibitors, dopamine agonists, anticholinergic
agents, amantadine, and monoamine oxidase inhibitors—were
requested to cease medication for at least 12 h before the
examination. All participants were right-handed, according to
the Edinburgh Handedness Inventory (43). This study was
approved by the local ethics committee of the China Medical
University Hospital (CMUH105-REC1-087). All participants
provided their informed consent per the Declaration of Helsinki
before participating in this study.

Recording and Analysis
We used 26 Ag/AgCl scalp electroencephalogram (EEG)
electrodes based on the international 10–20 EEG system. All
electrodes were referenced to linked earlobe electrodes, and
the signals were filtered with a bandpass ranging from 0.05 to
70Hz (NeuroScan SynAmps, Neurosoft, Sterling, VA, USA). All
electrodes had an impedance of <5 kΩ . Surface electromyogram
(EMG) measurements were taken from the bilateral extensor

Frontiers in Neurology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 608322

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yang et al. Bereitschaftspotential in Multiple System Atrophy

TABLE 1 | Demographic data of patients with multiple system atrophy (MSA).

Patient

no.

Subtype Age

(years)/sex

Disease

duration

(years)

Levodopa

equivalent

dose (mg)

UMSARS

part II

1 MSA-P 70/M 7 450 36

2 MSA-P 71/M 4 250 26

3 MSA-P 78/M 10 1,040 26

4 MSA-P 68/M 5 800 10

5 MSA-P 64/M 4 500 29

6 MSA-P 59/F 7 315 19

7 MSA-P 66/F 5 1,170 33

8 MSA-P 80/M 2 200 17

9 MSA-C 56/M 1 300 13

10 MSA-C 54/F 2 300 27

11 MSA-C 57/F 2 525 29

12 MSA-C 54/M 1 400 16

13 MSA-C 49/F 15 150 20

14 MSA-C 56/F 10 900 37

15 MSA-C 55/M 4 500 31

16 MSA-C 57/F 1 200 21

UMSARS, Unified Multiple System Atrophy Rating Scale (Part II score: 0–56) (42).

carpi radialis (ECR) muscles. The surface EMG was rectified and
filtered with a bandpass of 30–200Hz. The EEG and surface EMG
signals were simultaneously sampled, digitized at a rate of 1 kHz
per channel and stored for offline analysis.

Participants were seated in a chair with their forearms and
hands rested on the chair arms. We requested that they fix
their gaze on a red spot 1.5m ahead, and they performed self-
paced, fast, and brisk volitional extensions of the unilateral wrist
approximately every 5–7 s. All participants accomplished this
task in 20min for each hand.

For BP analysis, we identified the EEG epoch from 2,000ms
before (−2,000ms) to 1,000ms after (+1,000ms) the EMG burst
onset. The mean amplitude of the initial 250ms (−2,000 to
−1,750ms) was used as the baseline for each BP epoch. The onset
of the surface EMG burst during each ECR muscle contraction
was digitally marked as time zero after a visual inspection for
every BP epoch. The EEG epochs that were contaminated by head
muscle contraction or eyeball movement artifacts were excluded
from further analysis. The artifact-free EEG sweeps were aligned
with the rectified surface EMG burst onset and then averaged
for the movement condition (i.e., right or left wrist extension
movements) in each participant. The averaged BP waveforms
were compared between the three groups (MSA-P, MSA-C, and
control) (Figure 1). The BP from −1,500 to −500ms in each
epoch was defined as early BP and that from −500 to 0ms
was defined as late BP. We calculated the mean amplitude from
−1,500 to −500ms as the early BP amplitude, and the mean
amplitude from −500 to 0ms as the late BP amplitude. To
compare the data obtained during the wrist movements of each
hand, EEG data were replotted to indicate electrode positions
contralateral (cont) or ipsilateral (ipsi) to the wrist movement.
Data from 15 electrode locations (F-cont, Fz, F-ipsi, FC-cont,

FCz, FC-ipsi, C-cont, Cz, C-ipsi, CP-cont, CPz, CP-ipsi, P-cont,
Pz, and P-ipsi) were used for statistical analysis.

Statistical Analysis
We used SPSS for Windows Version 22.0. For BP amplitude
analysis, repeated-measures analysis of variance (ANOVA) was
performed. The within-subject factors were location (the 15
electrode locations) and movement side (right and left). The
between-subject factor was the group (MSA-P, MSA-C, and
control). To determine significance in the F-value, post-hoc
between-group comparisons were performed using a one-way
ANOVA test with Fisher’s least significant difference. For
comparisons of the surface EMGonset-to-peak time and the peak
amplitude, the Kruskal–Wallis-test was performed. The Mann–
Whitney-test was used for post-hoc analysis of between-group
comparisons. A p-value < 0.05 indicated statistical significance.

RESULTS

Bereitschaftspotential Analysis
Since the movement side did not show any significant
interactions with location and/or group on early and late
BP in the repeated-measures ANOVA (all p > 0.08), we
rearranged all electrodes to either the ipsilateral or contralateral
group corresponding to the movement side (31). The repeated-
measures ANOVA revealed a significant effect for the interaction
of location and group on late BP (F = 2.940, p = 0.006; Table 2).
This effect was not significant on early BP (F = 1.972, p =

0.068; Table 2). For late BP, we further explored the interaction of
location and group in the post-hoc comparisons forMSA-P,MSA-
C, and the control (Figure 2). The amplitudes of late BP exhibited
a significant difference in P-cont and Pz betweenMSA-P, MSA-C,
and control groups (p < 0.05). On the electrode P-cont, post-
hoc comparisons revealed a significant decrease in the mean
amplitude of late BP in the MSA-P group compared with that in
the control group (−0.62 ± 1.19 vs. −2.0 ± 1.26 µV, p < 0.05).
The mean amplitude of late BP was also significantly reduced
in the MSA-C group compared with that in the control group
(−0.70± 0.83 vs.−2.0± 1.26µV, p< 0.05). On the electrode PZ,
post-hoc comparisons revealed a significant decrease of the mean
amplitude of late BP in the MSA-C group compared with that of
the control group (−0.58± 1.13 vs.−2.99± 2.80 µV, p < 0.05).

Movement Performance
The number of the movements acquired from the right wrist
movement was 117, 123, and 210 in the patients with MSA-P,
MSA-C and healthy subjects, respectively. There were 109, 116,
and 213movements acquired from the left wrist movement in the
same three groups. The number of the artifact-free EEG epochs
was 69, 68, and 115 on right wrist movement in the patients with
MSA-P, MSA-C and healthy subjects, respectively. On left wrist
movement, the artifact-free EEG epochs were 66, 72, and 119 in
the same three groups.

Movement performance was measured using surface EMG
signals during wrist extension. We analyzed the onset-to-peak
time and the peak amplitude of the single-trial rectified and
average surface EMG. For onset-to-peak time, a significant
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FIGURE 1 | Superimposition of the grand-average Bereitschaftspotential (BP) from patients with multiple system atrophy (MSA)-P (n = 8, blue lines), patients with

MSA-C (n = 8, red lines), and healthy controls (n = 8, black lines) were revealed at the 15 electrodes of interest when performing volition wrist extension. The zero

denotes the onset of a surface electromyogram (sEMG) burst. Gray stripes represent the late BP period (500–0ms before volitional sEMG burst onset). Grand

averages of the voluntary sEMG burst during performance of wrist extension movements are shown at the right-hand part of this figure.

TABLE 2 | Repeated-measures analysis of variance of mean amplitudes of early

and late Bereitschaftspotential (BP).

Early BP Late BP

F P F P

Within subject factor

Locationa 10.442 <0.001* 16.386 <0.001*

Between subject factor

Groupb 2.231 0.132 1.262 0.304

Locationa × groupb 1.972 0.068 2.940 0.006*

Early BP: 1,500–500ms before movement onset; late BP: 500–0ms before

movement onset.
a15 levels, including F-cont, Fz, F-ipsi, FC-cont, FCz, FC-ipsi, C-cont, Cz, C-ipsi, CP-cont,

CPz, CP-ipsi, P-cont, Pz, and P-ipsi.
b3 levels, including patients with MSA-P, patients with MSA-C, and healthy controls.

Bold means *p < 0.05.

difference was noted between three groups (MSA-P, MSA-C,
and control: 300.8 ± 102.0ms, 395.5 ± 66.4ms, and 186.8 ±

90.2ms, respectively). In the post-hoc analyses, the difference was
significant between theMSA-C and control groups (p< 0.05) and
the MSA-P and control groups (p < 0.05) but not between the
MSA-P and MSA-C groups. For the peak amplitude, a significant
difference was observed between the three groups (MSA-P, MSA-
C, and control: 164.9 ± 153.0 µV, 96.2 ± 65.2V, and 385.8 ±

214.5 µV, respectively). In the post-hoc analyses, the difference
was significant between theMSA-C and control groups (p< 0.05)
but not between the MSA-P and control groups or the MSA-P
and MSA-C groups.

DISCUSSION

Our data suggested thatMRCP in patients withMSA-P andMSA-
C was different than that in the healthy controls. In brief, the
late BP amplitude was significantly reduced on the contralateral
parietal area (i.e., the P-cont electrode) in both MSA phenotypes.
The MSA-C group exhibited a more extensive reduction of the
late BP amplitude (i.e., involving Pz and P-cont electrodes) than
the MSA-P group (i.e., involving only the P-cont electrode). The
findings are consistent with a previous study demonstrating that
late BP was smaller in patients with OPCA compared with the
controls (37). The differences in early BP between MSA-P, MSA-
C, and control groups were not robust. Because patients with PD
had a profound early BP reduction in the frontocentral area (i.e.,
FCZ and CZ) (22, 34), our findings imply that different phases of
volitional movement preparation are affected in PD and MSA.

Distinct Motor Networks Between PD and
MSA
Early BP in patients with PD is smaller than that in healthy
individuals over frontocentral brain regions (34). Early BP may
be generated from the bilateral pre-SMA and pre-motor areas
with a midline maximal and symmetrical distribution (22). Thus,
the reduction of the early BP in patients with PD may be due to
insufficient afferents from the basal ganglia to the SMA region
via the basal ganglia-thalamo-cortical pathway, indicating the
involvement of the frontal basal ganglia circuitry in the motor
impairment of PD (34, 44, 45). The manifestation of the late
BP in PD, however, has been inconsistent, ranging from normal
to larger-than-normal amplitudes (33, 34, 46). Compared with

Frontiers in Neurology | www.frontiersin.org 4 June 2021 | Volume 12 | Article 608322

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Yang et al. Bereitschaftspotential in Multiple System Atrophy

FIGURE 2 | Post-hoc comparisons of the mean late Bereitschaftspotential (BP) amplitude (µV) between patients with multiple system atrophy (MSA)-P (blue), patients

with MSA-C (red), and healthy controls (black) at the 15 electrodes of interest. Error bars indicate standard errors. *p < 0.05.

the control group, patients with PD may exhibit greater late BP,
which suggests compensatory activation from the other brain
regions, probably the cerebellum (33, 34).

In our study, patients with MSA-P or MSA-C exhibited no
difference in early BP compared with healthy controls, but the
reduction in late BP was significant at the contralateral parietal
region. This discrepancy may account for the pathophysiological
differences between MSA and PD. The cerebellar involvement
suggested a distinct mechanism between MSA and PD. In a
functional magnetic resonance imaging (fMRI) study, patients
with MSA exhibited a more widespread reduction of brain
activities than patients with PD did in the primary motor cortex,
SMA, and superior cerebellum (47). In a positron emission
tomography (PET) study, additional cerebellar activation was
observed in patients with PD, potentially compensating for the

cortico-basal ganglia dysfunction (48, 49). Frontoparietal cortical
activation, rather than cerebellar activation, was revealed in
patients with MSA, indicating cerebellar dysfunction in MSA
(50–52). The aforementioned studies have indicated the role
of cerebellar impairment in MSA motor control circuitry. Our
finding of a reduction in the late BP amplitude in patients with
MSA-P and MSA-C constitutes electrophysiological evidence for
cerebellar involvement.

Reduction of the Late BP in the
Contralateral Parietal Region in MSA
In our study, patients with MSA-P and MSA-C exhibited a
notable reduction of the late BP amplitude mainly in the
contralateral parietal region compared with the healthy controls.
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The late BP has been postulated to begin in the lateral pre-
motor and primary motor cortex, mainly on the contralateral
side, receiving cerebellar projections from the contralateral
dentate nucleus with a relay on the thalamus, namely the
cerebello-dentato-thalamo-cortical pathway. The parietal lobe
affects motor control, prediction, and coordination with the
cerebellum (53–55). The cerebellum projects to the parietal
region for the adaptive control of visuo-motor guidance in
reaching and coordination (56, 57).

Changes in the late BP have been also reported in various
cerebellar lesions (23, 24, 26, 28). In patients with dentate nucleus
lesions, the late BP amplitudes were absent or markedly reduced,
indicating that the dentate nucleus may play a role on the
generation of the late BP (28). In patients with spinocerebellar
ataxia type 3, the early BP was not affected, but the decreased late
BP amplitudes in the central area and in the region contralateral
to the movement site were noted (30). Patients with advanced
essential tremor having intension tremor, a sign of cerebellar
dysfunction, exhibited a significant reduction in the late BP (31).
In both these patient groups, the reduced late BP amplitudes
may be attributed to an insufficient excitatory efferent from the
dentate nuclei to the motor cortex (30, 31).

In patients with MSA, brain single-photon emission
tomography imaging revealed a markedly reduced perfusion
in the striatum, brain stem, and cerebellum compared with
patients with PD (58). A task-based fMRI study indicated a
more widespread reduction in functional activity in the primary
motor cortex, SMA, and superior cerebellum in MSA compared
with PD (47). In our study, a decreased late BP amplitude at
contralateral parietal lobes in both MSA-P and MSA-C groups
suggests that dysfunction of the cerebello-dentato-thalamo-
cortical pathway with widespread cortical involvement, such as
that of the parietal lobe, contributes to the loss of motor control
in MSA.

Pathophysiology Between MSA-P and
MSA-C
Currently, the classification of MSA-P and MSA-C are diagnosed
on the basis of clinical presentation (39), and there exist a paucity
of reliable biomarkers and imaging tools to differentiate them.
The pathophysiological differences between them has also drawn
much attention. In a PET study, MSA-P and MSA-C exhibited
different patterns of dopamine transporter loss in striatal regions
(59, 60). Our findings demonstrated a more extensive cortical
involvement in MSA-C (i.e., P-cont and Pz) than in MSA-P (i.e.,
P-cont). Although no significant difference was observed between
MSA-P andMSA-C, which was probably due to the small number
of cases and lack of statistical power of our study, the difference
in BP changes between MSA-P and MSA-C should be further
investigated in future studies.

Study Limitations
First, movement performance data from EMG analysis indicated
significantly prolonged latencies and reduced amplitudes from
EMG onset to EMG peak in both MSA-P and MSA-C groups,
compared with healthy controls; however, this was inevitable
owing to bradykinesia and bradyphrenia in the patients with

MSA-P and MSA-C. Second, our study did not recruit patients
with PD; therefore, no directly comparable data were available
between the PD, MSA-P, and MSA-C groups. Third, the sample
size in our study was small. The possibility of statistical
underestimation due to a type II error cannot be excluded. Larger
sample sizes are warranted to verify our findings. Additionally,
a complementary tool such as TMS would be also helpful to
consolidate our hypothesis.

CONCLUSION

This study provided evidence showing abnormal BP in patients
with MSA. The decreased late BP amplitude in patients
with MSA-P and MSA-C indicated a specific motor cortical
dysfunction corresponding to voluntary movement preparation
and initiation. The functional role of the cerebello-dentato-
thalamo-cortical pathway, which mediates late BP in MSA
requires further study.
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