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Simplex Virus-1 Genomes Initiating
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Lev Shapira, Maya Ralph, Enosh Tomer, Shai Cohen and Oren Kobiler*

Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

Although many viral particles can enter a single cell, the number of viral genomes per cell
that establish infection is limited. However, mechanisms underlying this restriction were
not explored in depth. For herpesviruses, one of the possible mechanisms suggested
is chromatinization and silencing of the incoming genomes. To test this hypothesis, we
followed infection with three herpes simplex virus 1 (HSV-1) fluorescence expressing
recombinants in the presence or absence of histone deacetylases inhibitors (HDACi’s).
Unexpectedly, a lower number of viral genomes initiated expression in the presence
of these inhibitors. This phenomenon was observed using several HDACi: Trichostatin
A (TSA), Suberohydroxamic Acid, Valporic Acid, and Suberoylanilide Hydroxamic Acid.
We found that HDACi presence did not change the progeny outcome from the infected
cells but did alter the kinetic of the gene expression from the viral genomes. Different
cell types (HFF, Vero, and U2OS), which vary in their capability to activate intrinsic and
innate immunity, show a cell specific basal average number of viral genomes establishing
infection. Importantly, in all cell types, treatment with TSA reduced the number of
viral genomes. ND10 nuclear bodies are known to interact with the incoming herpes
genomes and repress viral replication. The viral immediate early protein, ICP0, is known
to disassemble the ND10 bodies and to induce degradation of some of the host proteins
in these domains. HDACi treated cells expressed higher levels of some of the host ND10
proteins (promyelocytic leukemia and ATRX), which may explain the lower number of viral
genomes initiating expression per cell. Corroborating this hypothesis, infection with three
HSV-1 recombinants carrying a deletion in the gene coding for ICP0, show a reduction
in the number of genomes being expressed in U2OS cells. We suggest that alterations
in the levels of host proteins involved in intrinsic antiviral defense may result in differences
in the number of genomes that initiate expression.

Keywords: herpes simplex virus-1, intrinsic immunity, virus host interactions, ICP0 deletion, gene expression,
histone deacetylase inhibitors

INTRODUCTION

Herpes simplex virus-1 (HSV-1) is a common human pathogen and is considered a prototype of
the large herpesviridae family. Herpesviruses are a good example for viruses that coevolved with
their hosts, to maintain a tight balance between minimal pathogenicity and maximal spread in
the population. This balance can also be observed at the cellular level. Like many other double
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stranded DNA viruses, the viral genome replicates inside the host
nucleus and utilizes host factors to facilitate viral replication. On
the other hand, the intrinsic immunity of the cell evolved to
inhibit the expression and replication of foreign DNA. Restriction
factors are constitutively expressed host proteins that provide
the first intracellular line of defense against viruses and other
intracellular parasites (Bieniasz, 2004; Yan and Chen, 2012).
Many mechanisms have evolved to recognize and inhibit viral
DNA, including silencing the incoming genomes inside the
nucleus of the infected cell.

Naked herpes viral DNA genomes enter the host nucleus
through the nuclear pore complexes (Kobiler et al., 2012). Upon
entry, the viral DNA is rapidly associated with host proteins
inside the nucleus that can inhibit replication of the virus
(Knipe, 2015). Among these proteins are the well characterized
components of the nuclear domain 10 (ND10) bodies, also
known as promyelocytic leukemia (PML) bodies (Maul et al.,
1996). Some of these proteins including PML, hDaxx, ATRX,
SP100, and more, were shown to have antiviral activity (Everett
et al., 2006, 2008; Lukashchuk and Everett, 2010). ICP0, a
viral immediate early protein with a E3 ligase activity interacts
with these host proteins and facilitates their degradation, thus
enhancing viral gene expression (Boutell and Everett, 2013).
Other host proteins that interact with the naked viral DNA are
histones. The viral DNA and histones form nucleosomes, which
are known to be important for establishing either the lytic or
the latent infection (Cliffe and Knipe, 2008; Oh and Fraser,
2008).

The host and viral chromatin state can be regulated by many
post translational modifications of the histone proteins including:
acetylation, methylation, phosphorylation, ubiquitination, and
more. The ‘histone code,’ i.e., assigning functions to combinations
of histone modifications is more complex than originally
assumed (Jenuwein and Allis, 2001). However, the role of lysine
acetylation of the histone tails is still mostly considered to
be associated with open chromatin, a condition that favors
transcription. Histone deacetylases (HDAC’s) are a group
of enzymes that remove acetyl groups from an ε-N-acetyl
lysine amino acid on a histone, allowing the histones to
pack the DNA more tightly. An important role for the
HDAC activity was identified in many key biological processes
including development, cell proliferation, DNA repair, and
more. Inhibition of HDAC activity has a therapeutic value
for many diseases including many malignancies. Therefore,
many HDAC inhibitors (HDACi’s) were identified, with different
specificities against the 18 known human HDAC’s (Falkenberg
and Johnstone, 2014). HDACi were able to induce HSV-1
reactivation from latency (Arthur et al., 2001; Poon et al.,
2003; Danaher et al., 2005; Neumann et al., 2007) and
to enhance HSV-1 based oncolytic virus in some tumor
derived cells (Otsuki et al., 2008; Cody et al., 2014). Recent
findings suggest that different histone modifying factors are
important for infection depending on cell type (Oh et al.,
2014).

We previously described that using three isogeneic viral
recombinants, each carrying a different fluorescent protein, we
can estimate the number of viral genomes initiating expression

(Kobiler et al., 2010, 2011; Taylor et al., 2012). The basis for
our method is the assumption that as more genomes are being
expressed per cell, more cells will express all three fluorescent
colors. In brief, λ representing the most likely average number
of incoming viral genomes initiating expression per cell, was
estimated given the distribution of cell colors in the cell
population according to the following equation:

λ = −3 ln [1−(r1 + 2r2 + 3r3)/3n]

In which r1, r2, and r3 represent the numbers of cells expressing
one-color, two-color, and three-color, respectively, and n
represents the total number of colored cells that were analyzed
(Kobiler et al., 2010). We found that during lytic infection,
only a limited number of incoming herpes viral genomes can
initiate expression and replication in a given cell (Kobiler et al.,
2010, 2011; Taylor et al., 2012). Recently, we corroborated these
findings with a single cell based method (Cohen and Kobiler,
unpublished), indicating that our mathematical model provides
a good estimate for the number of viral genomes being replicated
per cell.

We hypothesize that host factors alter the number of incoming
genomes initiating expression and replication. We assumed
that the histone modifying factors could be involved in this
process. To test this hypothesis, we examined the role of HDACi
during the initiation of gene expression by incoming herpes
viral genomes. We found that treatment with HDACi results in
a lower number of viral genomes that initiate replication per
cell in different cell types. Treatment with HDACi results in
increased levels of PML and ATRX, known intrinsic immunity
proteins. Taken together, our results suggest that the level of host
restriction factors modify the probability of a viral genome to
initiate replication.

MATERIALS AND METHODS

Cells
The experiments were performed with green monkey kidney
cells (Vero cells, ATCC CCL-81), human immortalized foreskin
fibroblasts [human foreskin fibroblasts (HFF) cells], or human
female osteosarcoma cells (U2OS cells ATCC HTB-96). The
immortalized HFF cells were a kind gift from the Sara Selig. These
HFF cells were immortalized by hTERT transfection. All cells
were grown with Dulbecco’s Modified Eagle Medium (DMEM
X1; Gibco), supplemented with 10% Fetal Bovine Serum (FBS;
Gibco) and 1% Penicillin (10,000 units/ml) and Streptomycin
(10 mg/ml; Biological Industries, Israel).

Viruses
All viruses are derivatives of HSV-1 strain17+. Viral
recombinants OK11, OK12, and OK22 carry a single fluorescent
protein (mCherry, EYFP, and mTurq2, respectively) with a
nuclear localization tag under the CMV promoter between UL37
and UL38 genes as described previously (Taylor et al., 2012;
Criddle et al., 2016). The fluorescence expressing, ICP0 deletion
recombinants were constructed for this work. Shortly OK11
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and OK22 were co-infected with a viral recombinant with YPet
protein inserted into the UL25 gene and dual color viruses were
purified by repeated selection of phenotypic plaques. Similarly,
OK12 was co-infected with a viral recombinant with mCherry
protein inserted into the UL25 gene and dual color virus was
purified by repeated selection of the phenotypic plaques. All three
dual color viruses were further co-infected with HSV-1 dl1403
strain. HSV-1 dl1403 strain (Stow and Stow, 1986), carrying a
2 kbp deletion in the each of the two copies of the ICP0 gene,
was a kind gift from Roger Everett. The progeny plaques were
selected for single color recombinants with 1ICP0 phenotype.
Each new recombinant was plaque purified to homogeneity on
either Vero cells (for wild type recombinants) or U2OS strains
(for 1ICP0 recombinants). Viral recombinants OK29, OK32,
and OK40 carry a single fluorescent protein (mCherry, mTurq2,
and EYFP, respectively) in an ICP0 deletion background. The
new recombinants were tested by PCR, phenotype, and growth
curves (Figures 5A,B). Viruses were replicated and titered on
either Vero (for wild type recombinants) or U2OS (for 1ICP0
recombinants) cells. The multiplicity of infection (MOI) was
calculated as the number of plaque forming units (PFU) per
cell.

HDACi Protocol
Cells were seeded in 24 wells plates for 24 h at 37◦C.
Three hours prior to infection, the medium was replaced with
medium containing the specific inhibitor or medium with
the solvent only. The concentrations used for each of the
inhibitors are listed in Table 1. Cells were inoculated with an
even mixture of the three fluorescent recombinants for 1 h
at 4◦C. The excess viruses were removed, and new medium
containing the inhibitor (or solvent only) was added to cells.
The infected cells were incubated at 37◦C for 6–8 h until
images of the infected cells were taken. All inhibitors were
tested for cell toxicity after 12 h of incubation. In working
concentration, none of the HDACi’s induced more than 5% cell
death (tested by Propidium iodide positive cells). In fourfold
higher concentration, only Valproic Acid (VPA) had less than
80% viability. Anacardic Acid (AA) working concentration
resulted in ∼10% cell death and up to 40% in fourfold higher
concentration.

Image Acquisition and Analysis
To estimate the number of HSV-1 genomes expressed in each
infected cell, we obtained images (as described above) using a
Nikon Eclipse Ti-E epifluorescence inverted microscope. Each

TABLE 1 | List of inhibitors used in this work.

Inhibitor Company Working
concentration

Trichostatin A (TSA) Sigma–Aldrich 1.32 µM

Suberohydroxamic Acid (SBX) Sigma–Aldrich 40 µM

Valproic Acid (VPA) Merck 4 mM

Suberoylanilide Hydroxamic Acid (SAHA) Sigma–Aldrich 10 µM

Anacardic Acid (AA) Merck 250 µM

experimental condition (different cells, viruses, inhibitors, and
MOI) was replicated in two wells, and the experiment was
performed at least twice. From an individual well, five random
areas were imaged. From each image, 100 cells were analyzed for
their color content. To define the average number of incoming
genomes being expressed, we used the mathematical equation
for estimating the most likely average number of genomes
expressed in each cell (λ) according to the number of one- (r1),
two- (r2), or three-color (r3) cells out of the number of cells
analyzed (n), as was previously developed (Kobiler et al., 2010):

λ = −3 ln [1−(r1 + 2r2 + 3r3)/3n]

The λ was calculated for each well individually (based on
500 cells) and for each condition the mean λ and standard
deviations were calculated. To predict the significance of the
difference between the condition a two tailed student T-test was
performed.

Live Cell Imaging
Vero cells plated in eight well NuncTM Lab-TekTM II Chambered
Coverglass were used. Infection with OK11 was carried out
in the presence or absence of 1.32 µM Trichostatin A (TSA)
as described above. Images were acquired using a Nikon
Eclipse Ti-E epifluorescence inverted microscope every 10 min
with DAPI and RFP fluorescence at 37◦C in a 5% (vol/vol)
CO2 enriched atmosphere using a Chamlide TC stage top
incubator system (Live Cell Instrument). Two experiments
were done with technical repeats (wells) per condition. From
each well, five frames were taken and analyzed. First, using
the Imaris 8.1 (Bitplane) image software we identified the
individual cells according to the Hoechst DNA staining. The
level of red fluorescence at each time point was measured
for each identified cell by the software. We removed all
cells in which fluorescence levels did not increase above
10% during the infection, as most of these cells were either
dead or resistant to infection. From each well, at least 200
cells were analyzed. The average levels of fluorescence from
all the cells analyzed per experiment were normalized, and
the average and standard deviation between experiments are
presented.

Quantitative PCR
Freshly seeded cells were incubated in the presence or absence
of 1.32 µM TSA for 3 h at 37◦C. The entire RNA was
extracted from the cells with the BIO TRI RNA (Bio-Lab ltd.)
according to manufacturer protocol. The RNA was converted to
cDNA with the High Capacity cDNA transcription kit (Applied
BiosystemsTM) according to manufacturer protocol. cDNA was
amplified using Faststart universal SYBR Green Master (Roche)
in the presence of specific sets of primers for each gene
(Table 2). qPCR was carried out and analyzed in StepOneTM

(Applied BiosystemsTM). mRNA levels were normalized to the
expression of GAPDH gene. The results were collected from
five independent repeats. We performed an outlier identification
using the extreme studentized deviate (EMD) method. One
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TABLE 2 | List of primers used for qPCR.

Gene Primer sequence

PML f 5′-GATGCCGAAAACTCGTCCTC

PML r 5′-AGGTCTGTCTTCTGCTTGGG

hDaxx f 5′-TGGGCATCAGGTTACAGGAG

hDaxx r 5′-GATCTGATAGTGCGGGGTCA

ATRX f 5′-AGCCGTGACTCAGATGGAAT

ATRX r 5′-ACCAAGGTTGCGTAGAATGC

GAPDH f 5′-ACCCACTCCTCCACCTTTGA

GAPDH r 5′-CTGTTGCTGTAGCCAAATTCGT

Both forward (f) and reverse (r) primers for amplifying the specific genes are listed.

outlier result was removed for PML mRNA levels at HFF cells
which did not change the significance of the results.

RESULTS

HDACi Treatment Decreases the Number
of Viral Genomes Establishing Infection
per Cell
To study the role of histone modification on the number of
viruses that initiate expression and replication in individual cells,
we infected Vero cells in the presence or absence of several
HDACi with three viral recombinants, each carrying a different
fluorescent protein. We tested the following HDACi: TSA –
inhibits the class I and II HDACs, Suberohydroxamic Acid
(SBX) – a competitive inhibitor that inhibits class II HDACs,
VPA – inhibitor of the class I HDACs and Suberoylanilide
Hydroxamic Acid (SAHA) – inhibits the class I and II HDACs.
All the HDACi were introduced 3 h prior to infection.
Figures 1A–D show representative images obtained 6–8 hpi
from such experiments. Surprisingly, incubating the cells with
either one of the HDACi resulted in a lower average number
of viral genomes expressed per cell (Figure 1E). TSA, SBX,
and VPA all significantly decreased the average number of viral
genomes expressed per cell at MOI 50 and 100, while with SAHA
the decrease was not significant. (SAHA treatment decrease
was significant in paired experiments compared to controls,
data not shown). TSA treatment was also tested with a lower
concentration of the drug (0.25 µM compared to 1.32 µM)
at MOI 100. This lower concentration treatment reduced the
number of viral genome expressed by 15% (P = 0.014) compare
to 27% (P > 0.0001) reduction in the higher concentration,
suggesting a dose response effect of TSA. Taken together, these
results suggest that the HDACi activity robustly reduces the
average number of herpes genomes initiating expression. These
results are unexpected, as HDACi generally increases open
chromatin status and thus should promote higher expression
from viral genomes. Thus, it is more likely that under the
experimental conditions, the HDACi inhibitors are not affecting
the chromatinization status of the viral genomes directly but
probably affecting hosts’ gene expression.

To ensure that our results are specific to HDACi, we also
tested the effect of the histone acetyltransferases (HAT) inhibitor,

FIGURE 1 | Effect of histone modifying enzyme inhibitors on the
number of viral genomes expressed per cell. Vero cells were infected at
multiplicity of infection (MOI) 100, 50, or 10 with a mixture of the three
fluorophore expressing herpes simplex virus 1 (HSV-1) strains. (A–D)
Representative images taken 6–8 hpi of infected cells at MOI 100 (A,B) or 10
(C,D) show the variability in the hues as a result of the three different
fluorescent colors (mCherry – red, YFP – Green, and mTurq2 – blue). Infection
was carried out in the presence (B,D) or absence (A,C) of Trichostatin A
(TSA). Scale bars 50 µM. (E) Images were used for calculating the average
number of genomes expressed per cell. The infected cells were incubated
with different inhibitors, 3 h prior to infection. Color coded as follows: No
inhibitor – red, TSA – lightest blue, Suberohydroxamic Acid (SBX) – light blue,
Valproic Acid (VPA) – blue, Suberoylanilide Hydroxamic Acid (SAHA) – dark
blue, and Anacardic Acid (AA) in gray. Each bar represents at least two
biological repeats and error bars represent standard deviations between the
repeats. ∗P < 0.05, ∗∗ P < 0.01; ∗∗∗P < 0.001; by t-test.

AA. In the presence of AA, no significant change in the
number of expressed viral genomes per cell was observed in
all MOI tested (Figure 1E). Our results show that all four
HDACi tested, similarly, reduce the number of viral genomes
expressed while the HAT inhibitor did not; suggesting that this
phenomenon is dependent on the specific inhibition of the
deacetylase activity.
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FIGURE 2 | Effect of histone modifying enzyme inhibitors on the viral replication kinetics. (A,B) Vero cells were infected with an even mixture of the three
fluorescent expressing HSV-1 recombinants at MOI 10 (A) or 100 (B), in the presence or absence of different inhibitors, and at different time points post-infection,
progeny viruses were collected and assayed for titer. The infected cells were incubated with different inhibitors (color coded as in Figure 1), 3 h prior to infection.
Each point is an average of viral titers obtained from three technical replicates. Error bars show standard deviations. (C,D) Vero cells were infected with an mCherry
expressing recombinant at MOI 100 in the presence or absence of TSA. The cells were visualized every 10 min from 1-h post-infection. (C) Representative images at
the indicated time-points are shown. Cell nuclei were stained with Hoechst (blue) and mCherry expression from the virus was monitored (red). Scale bars 50 µM.
(D) Each line represents the average relative fluorescence accumulation from two different experiments (color coded as in Figure 1). In each experiment two wells
were monitored (technical repeats), in each well 3–5 frames were analyzed. A total of more than 200 individual cells were collected from each well. Error bars show
standard deviations between the two experiments.
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The Viral Progeny Levels Are
Independent of the Number of Genomes
Replicating per Cell
To test the effect of the number of genomes replicating on viral
progeny, we carried out single step growth curves in the presence
or absence of the HDACi’s. We found that HDACi’s have very
minor effect on the total outcome of infection according to the
single step growth curves (Figures 2A,B). On the other hand,
the addition of AA resulted in a reduction of∼fivefold compared
to the control at MOI 10 (P value = 0.018). This difference was
not detected at MOI 100. Taken together these results indicate
that there is no correlation between the number of viral genomes
initiating replication, and the final concentration of progeny
viruses released from cells.

To test if HDACi have an effect on the kinetics of the viral
infection, we monitored the gene expression from the viral
genomes using live cell microscopy. Vero cells were infected
at MOI 100 with mCherry expressing viral recombinant in the
presence or absence of TSA (Figure 2C). Figure 2D shows a
slower accumulation of the mCherry signal in the presence of
TSA, indicating slower kinetics of viral gene expression in TSA
treated cells. These results are in agreement with the finding that
a lower number of genomes initiate expression in the presence of
HDACi.

Differences in the Number of Viral
Genomes Expressed in Human Cells
As HSV-1 coevolved with its human host, it is likely that some
host factors, that are involved in viral replication, might be
specific to human cells (Lou et al., 2016). To test if the number of
viral genomes replicating per cell is cell type dependent, we have
infected two human cells types: the HFF and U2OS cells (human
osteosarcoma cell line). The HFF cells we used, are primary
fibroblasts that are not known to have any cellular abnormalities,
and which were immortalized by hTERT. U2OS on the other
hand, are known to be more permissive for HSV-1, VP16,
and ICP0 mutant strains as U2OS cells are defective in several
intrinsic immunity cellular mechanisms (Yao and Schaffer, 1995;
Smiley and Duncan, 1997; Hancock et al., 2006). For example, in
U2OS cells, both copies of the ATRX gene are deleted (Heaphy
et al., 2011). We tested the number of herpes genomes expressed
per cell in HFF and U2OS cells. We found that in general, fewer
viral genomes can initiate expression in HFF compared to Vero
or U2OS, especially in the lowest MOI tested (10, Figure 3A;
Table 3). In U2OS cells, more viral genomes per cell are capable
of establishing infection, with the biggest difference seen in the
highest MOI 100 (Figure 3A; Table 3). These results suggest that
cellular factors are key regulators determining the number of viral
genomes being replicated per cell.

TSA Treatment Reduces the Number of
Viral Genomes Initiating Expression in
Human Cells
Several studies have shown that the effect of HDACi on herpes
replication is cell type dependent (Cody et al., 2014). To test if

FIGURE 3 | Trichostatin A reduces the number of viral genomes
expressed per cell in human cell lines. (A) Two human cells lines: U2OS

(Continued)
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FIGURE 3 | Continued
(Dark red) and human foreskin fibroblasts (HFF) (Orange) were infected
with a mixture of the three fluorophore expressing HSV-1 strains. The average
number of viral genomes expressed in the human cells was compared to
Vero (red) cells. HFF cells (B,C) or U2OS cells (D,E) were infected in the
presence or absence of TSA with a mixture of the three fluorophore expressing
HSV-1 strains. Representative images taken 6–8 hpi of HFF (B) and U2OS
(D) cells infected at MOI 100 are shown. Scale bars 50 µM. Images
were used for calculating the average number of genomes expressed per cell.
The average number of genomes in HFF cells (C) or U2OS cells (E) in
the presence (light blue) or absence (HFF – orange and U2OS – dark red)
of TSA at different MOI as indicated are presented. The infected cells were
incubated with TSA, 3 h prior to infection. Each bar represents six biological
repeats and error bars represent standard deviations between the repeats.
∗P < 0.05, ∗∗P < 0.01; ∗∗∗P < 0.001; by t-test.

HDACi decreases the number of viral genomes in the human
cell lines, we infected HFF and U2OS cells in the presence
or absence of TSA (the HDACi with the highest effect on
Vero cells). We found that the presence of TSA significantly
reduces the number of viral genomes replicating per HFF cell
in both MOI of 50 and 100 (Figures 3B,C). At MOI of 10
the reduction was not statistically significant. As with the other
cell types in the presence of TSA, U2OS cells demonstrated a
significant decrease in the number of viral genomes expressed per
cell, both in MOI of 50 and 100 (Figures 3D,E). Interestingly,
in all cells tested, infection in the presence of HDACi results
in a similar degree of decline in the number of herpes viral
genomes expressed per cell, regardless of the different basal
levels of genomes establishing infection per cell. In the three cell
types, infection in the presence of TSA results in a reduction
of ∼25% at an MOI 100 and 10% or less in MOI10 (Table 3).
Taken together, these results suggest that the effect HDACi
have on the viral initiation of replication is independent of cell
type.

Treatment with HDACi Increases the
Levels of Antiviral ND10 Proteins
The ability of HDACi to decrease the number of viral genomes
initiating expression per cell is contra-intuitive to the predicted
role of HDACi on viral genomes. As we observed significant
differences among the cell lines tested (Figures 3A; Table 3), we
assume that alterations in the levels of host factors influence the
probability of viral genomes to initiate expression and replication.
We hypothesize that the treatment with HDACi results in higher
expression of cellular genes that are involved in inhibiting viral

replication. To test this hypothesis, we selected three genes, PML,
ATRX, and hDaxx, all part of the ND10 bodies and known
to be involved in the intrinsic response against HSV-1. We
tested the mRNA levels of these genes following 3-h incubation
in the presence or absence of TSA. In HFF cells, the mRNA
levels of ATRX were significantly upregulated in the presence
of TSA (P < 0.05), both PML and hDaxx mRNA levels were
upregulated to a lesser degree (Figure 4). In U2OS cells, there
is no ATRX mRNA and the PML mRNA levels increased
significantly (P < 0.05) due to the TSA treatment. While the
increase of PML mRNA levels in U2OS was higher than in HFF,
hDaxx mRNA levels did not change in the presence of TSA in
U2OS. Our results suggest that some host antiviral genes are
over-expressed in the presence of TSA. We speculate that the
higher levels of antiviral genes expression following treatment
with HDACi results in a hostile environment for the entering viral
genomes, reducing the number of genomes initiating expression
and replication.

ICP0 Deletion Reduces the Number of
Viral Genomes Initiating Expression in
U2OS Cells
Many host genes, including PML and ATRX, that have a role
in the anti-herpes intrinsic response are counteracted by the
viral ICP0 protein. To test the role of ICP0 in determining the
number of viral genomes that establish infection per cell, we first
constructed three viral recombinants (each carrying a different
fluorescent protein) into the dl1403 (ICP0 null) background
(see “Materials and Methods”). All three new ICP0 deleted
fluorophore expressing HSV-1 strains: OK29 (mCherry), OK32
(mTurq2), and OK40 (EYFP), show similar single cell growth
curves (Figure 5A). While the efficiency of plating of ICP0
positive viral strain on Vero and U2OS cells is similar (ratio is
close to one), the ICP0 deleted strains are forming more plaques
on U2OS cells (known to be permissive for ICP0 null mutants)
as expected (Figure 5B). U2OS cells were infected with an even
mixture of all three ICP0 null recombinants at different MOIs. In
the absence of ICP0, a significant decrease in the number of viral
genomes that initiate expression compared to wild type infection
can be detected in all MOIs tested (Figure 5C; Table 3). This
decrease is almost twofold and results in numbers similar to those
obtained by wild type infection in HFF cells. (We were unable to
obtain titers for the ICP0 null recombinants that will be sufficient
for HFF infection at comparable MOIs). Our findings indicate
that the ICP0 protein has a major role in allowing viral genomes

TABLE 3 | Summary of the average number of genomes expressed per cell under different conditions.

HFF Vero U2OS

TSA + − + − + − 1ICP0

MOI 100 4.9 ± 0.6 6.6 ± 0.6 5.2 ± 0.5 7.3 ± 0.9 10.6 ± 1.0 13.5 ± 1.7 7.4 ± 0.4

MOI 50 3.9 ± 0.2 4.7 ± 0.5 4.6 ± 0.6 6.2 ± 0.7 7.6 ± 1.9 9.8 ± 0.5 5.7 ± 0.4

MOI 10 2.1 ± 0.2 2.4 ± 0.2 4.0 ± 0.5 3.8 ± 0.9 4.5 ± 0.4 4.7 ± 0.6 2.8 ± 0.4

The average and standard deviation of the number of genomes expressed per cell under different conditions as specified in the table was calculated.
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FIGURE 4 | Trichostatin A treatment of HFF and U2OS cells increases
intrinsic immunity gene expression. qRT-PCR measurements of host
genes (as marked) following incubation of HFF (Orange) or U2OS (dark red)
cells in the presence or absence of TSA. Each bar represents the mean
difference between TSA treatment and control in five independent
experiments, each experiment was tested in duplicate. Error bars represent
standard error of mean.

to initiate expression, even in U2OS cells, probably by promoting
the degradation of antiviral host factors.

DISCUSSION

We have previously shown that only a finite number of
herpesvirus genomes can establish infection in a given cell
(Kobiler et al., 2010, 2011; Taylor et al., 2012). Several other
viruses from different families, including HIV and plant RNA
viruses, were also shown to have a restricted number of genomes
initiating expression per cell (Gonzalez-Jara et al., 2009; Gutierrez
et al., 2010; Miyashita and Kishino, 2010; Del Portillo et al.,
2011), suggesting a general characteristic in viruses’ life cycles.
Here, we identified that the HDACi reduces the number of
genomes expressed in a single cell in three different cell types.
We speculated that HDACi activity on host chromatin disrupts
the balance between the virus and host cell, by allowing higher
expression of intrinsic immunity proteins. In support of this
hypothesis, we found that U2OS cells which are known to be
defective in their intrinsic immunity, express greater numbers
of viral genomes compared to the other cell types. Moreover,
HDACi treatment, which reduces the number of genomes
initiating gene replication, induces the expression of cellular
proteins involved in inhibition of viral functions.

We consistently observed that treatment with HDACi
reduces the number of parental viral genomes initiating
expression. These results were observed in the presence of
different HDACis (Figure 1E) and for three different cell types

FIGURE 5 | Deletion of the ICP0 gene reduces the number of viral
genomes expressed per cell in U2OS cells. (A) U2OS cells were infected
with one of the ICP0 deleted fluorophore expressing HSV-1 strains: OK29
(red), OK32 (blue), and OK40 (green). At different time points post-infection,
progeny viruses were collected and assayed for titer. Each point is an average
of viral titers obtained from three technical replicates. Error bars show
standard deviations. (B) The titers of fluorophore expressing HSV-1 strains
(either ICP0 plus strains: OK11, OK12, and OK22 or ICP0 deleted strains:
OK29, OK40, and OK32) were measured on Vero cells or U2OS cells. The
ratio between titers on Vero cells to U2OS cells is presented for each strain as
marked. Each bar represents the ratio between two biological repeats and
error bars represent standard deviations between the repeats. (C) U2OS cells
were infected with a mixture of the three ICP0 deleted fluorophore expressing
HSV-1 strains (light green). The average number of viral genomes expressed
was compared to wild type infection of U2OS cells (Dark red). Images taken
6–8 hpi were used for calculating the average number of genomes expressed
per cell. Each bar represents six biological repeats and error bars represent
standard deviations between the repeats. ∗∗P < 0.01; ∗∗∗P < 0.001; by t-test.

(Figures 1E and 3C,E). However, a significant decrease in the
number of viral genomes was only observed in MOI 100 and 50.
We found that at MOI 10, while a small decrease is observed
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(in most cases), a statistical significance is not obtained. We
previously suggested that at MOI 10 and lower the effect of
the incoming viruses is more significant in determining the
number of viral genomes, expressing a higher percentage of
incoming viruses able to establish infection compared with the
higher MOIs (Kobiler et al., 2010). Thus, in higher MOIs, cell
factors probably have a larger effect on the number of genomes
initiating expression. Our results suggest that the HDACi effect
on incoming genomes is mediated by overexpression of host
antiviral proteins (Figures 4 and 5C). Taken together, this might
explain why no significant effect of HDACi on viral genome
numbers is observed at MOI 10.

Our results indicate that there is no correlation between
the average number of genomes that initiate expression to the
progeny outcome from the infection (compare Figures 1 and
2A,B). This finding raises the question: what is the biological
advantage of regulating the number of viral genomes initiating
expression and replication per cell? One possible mechanism
involves slowing down the rate of the infection process. Our
results support this idea as treatment with HDACi reduces the
number of viral genomes and decreases the rate in which the gene
expression from the viral genomes progresses (Figures 2C,D).
The evolutionary advantage of reducing the quantity of viral
genomes that initiate replication may be to prevent cell death
before viral particles can be released.

Another possible evolutionary advantage is the maintenance
of viral fitness and diversity. Recently it was shown that
tomato mosaic virus, a positive-strand RNA virus, by random
selection of a limited number of genomes initiating replication in
infected cells, is able to selectively propagate more advantageous
genotypes (Miyashita et al., 2015). We speculate that this
mechanism can also be also important for DNA viruses, as much
of their diversity is governed by recombination (Szpara et al.,
2014). The methods presented here to modify the number of
viral genomes could provide ways to identify the evolutionary
advantage of replicating only a finite number of genomes in
individual cells.

We identified significant differences between the three cell
types we tested (Figure 3A). We found that in U2OS cells, more
incoming viral genomes are expressed compared to HFF cells.
In Vero cells, the number of genomes was higher than those
of HFF but significantly lower than those of U2OS cells. It is
important to note that Vero cells originated from green monkey
whereas both HFF and U2OS are of human origin. HFF, human
diploid cells have both the intrinsic and the innate immune
system functioning. Vero cells are incapable of producing type
I interferon as many of the type I interferon genes are missing
because of a ∼9 Mb deletion on chromosome 12 (Osada et al.,
2014); thus they have a dysfunctional innate immunity. U2OS
do not express ATRX and have lower expression of other
intrinsic immunity proteins (Lukashchuk and Everett, 2010), thus
exhibiting impaired intrinsic immunity and facilitating genomes
expression. We suggest that the intrinsic immunity has a bigger
role than the innate immunity in repressing incoming viruses
expression. In agreement with this hypothesis, we found that the
HDACi treatment induces the expression of PML and ATRX,
which are part of the intrinsic immunity system (Figure 4).

The genes tested here encode PML, ATRX, and HDAXX,
which are part of the nuclear domains -ND10 (also known
as PML bodies) that among other functions are involved in
recognizing and inhibiting viral genomes in the nucleus (Glass
and Everett, 2013; Xu et al., 2016). ND10 bodies are specifically
known to interact with HSV-1 genomes and be dismantled by the
viral ICP0 protein (Everett and Maul, 1994; Maul and Everett,
1994; Boutell and Everett, 2013). ICP0 deletion recombinants
show a significant decrease in the number of genomes expressed
per cell (Figure 5C). Taken together these results indicate that
perturbation of the viral host interactions balance by either
inducing the expression of host genes or increasing the stability
of host proteins can reduce the probability of a viral genome to
establish infection.

The response to HDACi treatment is expected to result in
higher gene expression, however, prior studies have identified
that while many genes are over-expressed following HDACi
treatment, innate immunity genes are down regulated (Nusinzon
and Horvath, 2003; Suh et al., 2010). Thus, the increase in
expression of PML and ATRX we observed following HDACi
treatment may reflect a specific regulation of this part of the
immune response. Interestingly, inhibition of HDAC by TSA
dramatically enhanced induction of antimicrobial peptides but
not of proinflammatory cytokines (Fischer et al., 2016), further
indicating selective expression post HDACi treatment of different
parts of the immune system.

CONCLUSION

This work provides evidence for viral host interactions in
regulating the number of viral genomes establishing infection
per cell. We suggest that inhibition of HDAC during infection
can be more significant for the host chromatin than to the viral
chromatin. The number of incoming viral genomes that initiate
expression and replication is probably dependent on the intrinsic
immunity state of the infected cell and influence the infection
process but has a little effect on the number of progeny viruses.
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