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Abstract: Low molecular weight seleno-aminopolysaccharide (LSA) is an organic selenium
compound comprising selenium and low molecular weight aminopolysaccharide (LA), a low
molecular weight natural linear polysaccharide derived from chitosan. LSA has been found to
exert strong pharmacological activity. In this study, we aimed to investigate the protective effect
of LSA on intestinal mucosal oxidative stress in a weaning piglet model by detecting the growth
performance, intestinal mucosal structure, antioxidant indices, and expression level of intracellular
transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and its related factors. Our results
indicated that LSA significantly increased the average daily gain and feed/gain (p < 0.05), suggesting
that LSA can effectively promote the growth of weaning piglets. The results of scanning electron
microscope (SEM) microscopy showed that LSA effectively reduced intestinal damage, indicating
that LSA improved the intestinal stress response and protected the intestinal structure integrity.
In addition, diamine oxidase (DAO) and D-lactic acid (D-LA) levels remarkably decreased in LSA
group compared with control group (p < 0.05), suggesting that LSA alleviated the damage and
permeability of weaning piglets. LSA significantly increased superoxide dismutase (SOD), catalase
(CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels, but decreased
malondialdehyde (MDA) level, indicating that LSA significantly enhanced the antioxidant capacity
and reduced oxidative stress in weaning piglets. RT-PCR results showed that LSA significantly
increased GSH-Px1, GSH-Px2, SOD-1, SOD-2, CAT, Nrf2, HO-1, and NQO1 gene expression (p < 0.05).
Western blot analysis revealed that LSA activated the Nrf2 signaling pathway by downregulating the
expression of Keap1 and upregulating the expression of Nrf2 to protect intestinal mucosa against
oxidative stress. Collectively, LSA reduced intestinal mucosal damage induced by oxidative stress
via Nrf2-Keap1 pathway in weaning stress of infants.
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1. Introduction

The clinical onset and severity of intestinal disorders can be markedly impacted by early life stress
in humans and animals [1]. In early life, human infants and neonatal piglets experience significant
stress, which are associated with homeostatic changes related to birth and weaning. Adaptive changes
to these early-life stressors are likely contributors to future gastrointestinal disease susceptibility [2].
Weaning stress results in intestinal mucosal oxidative damage, increases intestinal mucosal damage,
and endangers the health of the body. Therefore, maintaining the healthy state of intestinal mucosa
during weaning has become a research hotspot. Increasing attention has been paid to large animal
models, especially pigs, as an important translational model for the study of human gastrointestinal
disease owing to their remarkably similar gastrointestinal physiology and anatomy [3,4]. We used
piglets as an animal model in our previous study to simulate the function of intestinal barrier of human
infants during oxidative stress induced by weaning [5].

Oxidative stress is one of the main factors causing various diseases in humans and animals,
especially intestinal diseases [6]. Being the largest contact surface between the body and the
outside world, the intestine is the central organ of stress response when the body is under stress [7].
The gastrointestinal tract is easily attacked by excessive free radicals, resulting in abnormal metabolism
of intestinal epithelial cells to be blocked, impaired cell function, and inflammatory reaction [8].
Moreover, oxidative stress damages intestinal mucosal morphology and increases permeability,
intestinal mucosal immune dysfunction, and intestinal disease [9,10]. Oxygen free radicals can result
in DNA damage, protein degeneration, lipid peroxidation, signal transduction abnormalities, energy
metabolism disorders, mitochondrial damage, and apoptosis in the intestinal tract [11]. Thus, oxidative
stress causes inflammatory bowel disease, intestinal mucosal infection, Crohn’s disease, ulcerative
colitis, and colon cancer [12].

Organic selenium is an important selenium sources containing selenium amino acid, selenium
yeast, and selenium polysaccharide. Selenium polysaccharide is the most common among them.
A previous study reported that selenium polysaccharide had higher or unique biological activity
than simple superposition of selenium and polysaccharide activity [13]. However, the purity of
selenium polysaccharides is low in nature. Therefore, increasing attention has been paid to selenium
polysaccharides synthesis [14]. Chitosan is non-toxic (LD50 >16 g/kg), and non-immunogenic,
biodegradable, and can be manufactured reproducibly based on good manufacturing practice
(GMP) guidelines [15]. Low molecular weight aminopolysaccharide (LA), which is a derivative
of chitosan obtained from the deacetylation of chitin from crustaceans, insects, and fungi, is an
abundant, natural linear polysaccharide. LA has been reported to exert many biological activities,
including antioxidant and antitumor activities. Our previous studies suggested that low molecular
weight seleno-aminopolysaccharide (LSA) had lower acute toxicity than sodium selenite, and higher
antioxidant and immunomodulatory activities than selenium and/or LA alone [5,16,17]. Nevertheless,
few studies have investigated the effect of seleno-aminopolysaccharide on the intestinal mucosal
oxidative damage induced by weaning stress. Therefore, our laboratory used LA and sodium selenite
to synthesize LSA. In the present study, an animal model of intestinal mucosal oxidative injury induced
by weaning stress was used to investigate the protective effects of LSA on intestinal mucosal and
to elucidate the possible mechanism of action. The present study may provide novel evidence to
understand the potential mechanism underlying the protective effects of LSA on the intestinal mucosal
injury, which might be a better alternative agent for the prevention and treatment of weaning stress
in infants.

2. Results

2.1. Effects of LSA on Growth Performance

Effects of LSA on growth performance in weaning piglets are shown as Table 1. The results
showed that LSA (0.3 and 0.6 mg/kg) significantly enhanced the daily gain of weaning piglets and
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reduced the feed/gain ratio (p < 0.05). However, no significant difference was found among the
sodium selenite group (S), sodium selenite + LA group (S+) and control group (C). The difference
in feed intake between the groups was not significant (p > 0.05). The results indicated that LSA can
effectively promote the growth of weaning piglets and has good growth performance, which may be
related to the reduction of weaning stress in piglets in LSA groups.

Table 1. Effects of low molecular weight seleno-aminopolysaccharide (LSA) on growth performance *.

Item C S S+ LSA1 LSA2 LSA3

Initial weight (kg) 8.28 ± 0.09 8.28 ± 0.12 8.35 ± 0.17 8.33 ± 0.12 8.30 ± 0.15 8.31 ± 0.13
Final weight (kg) 19.36 ± 0.87 b 19.50 ± 0.81 b 19.49 ± 0.93 b 20.29 ± 0.90 a 20.42 ± 1.07 a 19.35 ± 0.90 b

Average daily gain (g) 395.89 ± 31.3 b 400.70 ± 30.10 b 398.07 ± 35.59 b 427.03 ± 31.06 a 432.90 ± 37.51 a 394.32 ± 33.91 b

Average daily feed
intake (g) 662.15 ± 10.28 648.57 ± 8.84 651.31 ± 16.87 650.36 ± 5.71 666.79 ± 8.89 646.55 ± 8.47

Feed/gain ratio 1.67 ± 0.05 a 1.62 ± 0.04 a 1.64 ± 0.05 a 1.52 ± 0.03 b 1.54 ± 0.03 b 1.64 ± 0.04 a

Notes. C (control), S (sodium selenite), S+ (sodium selenite + low molecular weight aminopolysaccharide (LA)),
LSA1: basal diet + 17.15 mg/kg LSA (0.3 mg/kg Se), LSA2: basal diet + 34.30 mg/kg LSA (0.3 mg/kg Se), LSA3:
basal diet + 51.45 mg/kg LSA (0.3 mg/kg Se). * In the same line, values with different letters (a, b, c, d, e) were
significantly different (p < 0.05).

2.2. Effects of LSA on the Diarrhea Rate

Effects of LSA on the diarrhea rate are shown in Figure 1. The results have shown that LSA
significantly reduced the diarrhea rate of weaning piglets compared with sodium selenite group
and sodium selenite + LA group (p < 0.05). This indicates that LSA can effectively control weaning
stress-induced diarrhea, which may reduce the stress response in the intestines and show a significantly
protective effect on the intestines of weaning piglets.
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Figure 1. Effects of LSA on diarrhea rate. Bars labeled with different letters (a–d) were significantly
different (p < 0.05) from each other.

2.3. Effects of LSA on Intestinal Morphology

The effects of LSA on intestinal morphology are shown in Figure 2. Weaning significantly induced
injury of the intestine in piglets. Intestinal mucosal damage was reduced to a certain extent in sodium
selenite group and sodium selenite + LA group, but the effect was weaker than that in LSA groups.
Scanning electron microscopy (SEM) images showed that LSA effectively reduced intestinal damage,
suggesting that LSA could significantly improve the intestinal stress response induced by weaning
and protect the intestinal structure integrity of piglets.
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(CAT), glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels, and 
significantly decreased the malondialdehyde (MDA) level (p < 0.05). Sodium selenite group and 
sodium selenite + LA group also enhanced the level of SOD, CAT, GSH-Px, and T-AOC, but there 
was no significant difference. These results were indicated that LSA significantly enhanced the 
antioxidant capacity and reduced oxidative stress in weaning piglets, and its antioxidant effect was 
better than that of sodium selenite group and sodium selenite + LA group. 

Figure 2. Effects of LSA on intestinal morphology (SEM, 200×).

2.4. Effects of LSA on the Level of DAO, D-LA in Serum

As shown in Figure 3, weaning induced higher serum levels of diamine oxidase (DAO) and
D-lactic acid (D-LA). LSA significantly reduced DAO and D-LA levels. Sodium selenite group and
sodium selenite + LA group also significantly reduced the DAO level compared with the control.
However, no significant difference was found in reduction of D-LA level. In addition, LSA could
significantly reduce DAO and D-LA levels compared with sodium selenite group and sodium selenite
+ LA group (p < 0.05). These results suggested that LSA significantly reduced the intestinal damage
and permeability.
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Figure 3. Effects of LSA on the level of diamine oxidase (DAO) and D-lactic acid (D-LA) in serum.
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2.5. Effects of LSA on the Antioxidant Levels in Serum

Effects of LSA on the antioxidant levels of weaning piglets are shown in Figure 4. Compared with
the control group, LSA were significantly increased superoxide dismutase (SOD), catalase (CAT),
glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC) levels, and significantly
decreased the malondialdehyde (MDA) level (p < 0.05). Sodium selenite group and sodium selenite
+ LA group also enhanced the level of SOD, CAT, GSH-Px, and T-AOC, but there was no significant
difference. These results were indicated that LSA significantly enhanced the antioxidant capacity and
reduced oxidative stress in weaning piglets, and its antioxidant effect was better than that of sodium
selenite group and sodium selenite + LA group.
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2.6. Effect of LSA on the Gene Expression Levels of Tight Junction Proteins in the Ileum

The effects of LSA on the gene expression level of tight junction protein (ZO-1 and Occludin) in
the ileum are shown in Figure 5. LSA significantly enhanced the gene expression levels of ZO-1 and
Occludin in ileal mucosa compared with the control, sodium selenite group and sodium selenite +
LA group (p < 0.05). These findings suggested that LSA effectively protected the ileum tight junction,
reduced the permeability of the intestinal tract, and enhanced the barrier function.
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2.7. Effects of LSA on the Expression of Antioxidant Genes in the Ileum

As shown in Figure 6, LSA remarkably enhanced the expression level of antioxidant genes
(GSH-Px1/2, SOD1/2, CAT, Nrf2, NQO1, HO-1) compared with the other groups. It can be suggested
that LSA significantly enhanced the intestinal antioxidant capacity and reduced intestinal oxidative
damage caused by weaning stress.
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2.8. Effects of LSA on Expression Level of Kelch-Like ECH-Associated Protein 1 (Keap1) and Nrf2

The effects of LSA on the expression level of intestinal Nrf2 are shown in Figure 7.
The experimental groups remarkably decreased the expression level of Keap1 protein and significantly
enhanced the expression level of Nrf2 protein (p < 0.05) compared with the control. In addition, LSA
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has significantly inhibited Keap1 protein expression and improved Nrf2 protein expression compared
with that of sodium selenite group and sodium selenite + LA group.
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3. Discussion

Under normal physiological conditions, the intestine is not only an important barrier that prevents
harmful substances (bacteria and toxins) from invading the body, but also an important organ that
regulates the stress response of the body and produces inflammatory mediators [18,19]. As the largest
component of the immune system, the intestine is continually attacked by excessive free radicals
leading to oxidative stress which, in turn, results in intestinal cell DNA damage, protein denaturation,
lipid peroxidation, abnormal signal transduction, and apoptosis [11,20,21]. These mechanisms are
responsible for the occurrence and development of diarrhea, intestinal mucosal infection, intestinal
inflammatory disease, and colon cancer [12,22]. Therefore, the function of the intestine plays an
important role in maintaining the overall health of the body. Intestinal dysfunction can cause a
range of diseases. Among them, diarrhea is the most common phenomenon, especially in early
weaning infants. Mild diarrhea can lead to malnutrition and growth retardation, while severe diarrhea
may lead to dehydration and even death. Previous studies demonstrated that organic selenium
significantly reduced the diarrhea incidence and improved the immune system function and growth
performance [23,24]. Moreover, some studies revealed that organic selenium and inorganic selenium
could affect the growth performance to a certain extent, however, selenium exerted better effects than
inorganic selenium [25–27]. In the present study, results showed that LSA significantly enhanced the
average daily gain, improved the feed efficiency, and effectively promoted the growth of weaning
piglets. In addition, compared with the inorganic selenium group, LSA significantly reduced the
diarrhea rate, suggesting that LSA effectively controlled diarrhea and reduced the intestinal stress
response in weaning piglets. Thus, LSA was found to improve the growth performance of piglets,
which was attributed to the protective effect on intestinal mucosa.

Destruction of the intestinal mucosa can result in various intestinal-derived diseases [28]. The tight
junction between intestinal mucosal epithelial cells are the primary means of cell to cell connection [29].
The tight junction molecules comprise three membrane protein Occludins, and junctive adhesion
molecules (JAMs) and zonula occludens (ZO) families. The tight junction proteins are important
indicators of observing intestinal tight junction barrier and permeability function. Among them, ZO-1
and Occludin are important proteins that are tightly linked to the expression of barrier function, which
plays a key role in maintaining the integrity of tight junctions [30,31]. Some reports demonstrated
that weaning is related to increased intestinal permeability and inflammation, villous atrophy of the
small intestine, and reduced immunological response [32–34]. Therefore, elucidation of changes in
the expression of tight junction molecules is important for understanding intestinal mucosal barrier
function, and for preventing and treating certain diseases. In this study, the mRNA expression levels
of ZO-1 and Occludin significantly decreased in the weaning group, which indicated an increase in
intestinal permeability. However, LSA significantly enhanced the expression level of ileum mucosa
connexin gene ZO-1 and Occludin in ileum mucosa compared to the weaning group. In addition,
intestinal mucosal integrity was observed by measuring the levels of DAO and D-LA. In this study,
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LSA significantly decreased DAO and D-LA level, suggesting that LSA reduced the intestinal damage
and permeability of weaning piglets. Furthermore, SEM images showed that LSA could significantly
improve the intestinal villi structure and protect the intestinal barrier. Taken together, our findings
indicated that LSA effectively reduced intestinal damage, protected the tight junction, reduced
intestinal permeability, enhanced the barrier function of the intestinal tract, and improved the intestinal
stress response in weaning piglets.

The intestine is an organ that can produce a lot of free radicals. A very small number of free
radicals are used by the body, while others are eliminated by antioxidant enzymes and endogenous
and exogenous antioxidant systems [8]. The production and elimination of free radicals are in a
dynamic balance and can be maintained at a favorable and harmless level to prevent the occurrence
and development of diseases [35]. The gastrointestinal tract mainly plays an antioxidant role through
antioxidant enzymes, including GSH-Px, SOD, and CAT, to remove free radicals from the body and to
prevent oxidative damage [8,34]. Weaning is a stressful process associated with intestinal disorders,
which may lead to diarrhea and increased disease susceptibility [36]. Oxidative stress induced by
weaning is responsible for intestinal mucosal injury [37]. However, the mechanisms underlying
weaning stress-induced gastrointestinal disease are unclear. Excessive reactive oxygen and reactive
nitrogen species production and changes in the antioxidant defense systems (SOD, CAT, GSH-Px, and
T-AOC) may result in oxidative stress [11,38]. A previous study demonstrated that T-AOC, SOD, and
GSH-Px activities in piglets were improved when selenium was added in the form of organic selenium,
instead of inorganic selenium, in the diet [39]. In this study, LSA significantly enhanced serum GSH-Px,
SOD, CAT, and T-AOC levels; decreased MDA levels; and significantly enhanced the expression of the
antioxidant genes (GSH-Px1/2, SOD1/2, CAT) in the ileum. Taken together, our findings indicated
that LSA significantly enhanced the intestinal antioxidant capacity and reduced the oxidative injury
induced by weaning stress.

Activation of Nrf2 leads to the induction of various cytoprotective proteins, such as Heme
oxygenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1) [40,41]. Transcription factor
Nrf2 binds to the antioxidant response element (ARE), which promotes the genes expression of phase
II detoxification enzyme, antioxidant enzyme, molecular chaperone, and anti-inflammatory factor,
and protects the normal function of tissue cells [42]. In the present study, LSA remarkably increased
the gene expression levels of Nrf2 and its downstream phase II detoxification enzymes NQO1 and
HO-1. Moreover, mRNA expression levels of antioxidants (GSH-Px, SOD, CAT) in the ileum was
consistent with that of Nrf2. These results were in agreement with those of previous studies showing
that selenium or selenium compounds can exert cytoprotective effects via activation of Nrf2–ARE
signaling pathway [43–45]. Our previous study suggested that LSA has good cytoprotective effects
against H2O2-induced oxidative stress in IPEC-1 cells, which may be associated with the activation
of the Keap1–Nrf2 signaling pathway [5]. In addition, the study showed that exogenous additives
can interfere with intestinal oxidative damage caused by weaning stress, and the mechanism of
action is related to Nrf2. Nrf2 is a key factor in cellular oxidative stress. It is regulated mainly by
interaction with Keap1, and it binds to the antioxidant responsive element (ARE) to regulate the
expression of phase II detoxifying/antioxidant enzymes [46]. When oxidative stress occurs, Nrf2 is
released from its inhibitor Keap1 and enters the nucleus. After binding to ARE, Nrf2 promotes the
expression of downstream target genes [42]. Nrf2 not only plays an important role in antioxidative
stress, anti-inflammatory effects, and cell protection, but it also closely linked with the occurrence
and development of various diseases [47]. The mechanism of antioxidant action may be related to the
activation of the Nrf2 signaling pathway. To further determine the underlying mechanisms, the effect
of LSA on the translocation of Nrf2 and Keap1 was investigated by Western blot analysis in the present
study. The results showed that LSA significantly inhibited the expression of Keap1 and increased the
expression level of Nrf2. Moreover, the effect of LSA was significantly better than that of inorganic
selenium. Our findings suggested that LSA might activate the Nrf2 signaling pathway and promote
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the transcription of Nrf2 into the nucleus, and enhance the expression of antioxidant enzymes and
phase II detoxification enzymes.

4. Materials and Methods

4.1. Chemicals and Reagents

DAO and D-LA kits were purchased from Nanjing Senbeijia Biological Technology Co., Ltd.
(Nanjing, China). Antioxidant kits (SOD, GSH-Px, CAT, MDA, LDH) were purchased from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). 2000 DNA Marker, RNA loading buffer, DNA
6× loading buffer, RIPA lysis buffer, PMSF, BCA kit, BeyoECL Star kit, 5× loading buffer, BSA,
non-fat dried milk, and TEMED were obtained from Beyotime Biotechnology (Shanghai, China).
Monoclonal antibodies against β-actin were from CST (Cell Signaling Technology, Inc., Boston, MA,
USA). Antibody against Nrf2 was purchased from Abcam (Abcam, Cambridge, UK). Monoclonal
antibodies against Keap1 were acquired from Santa Cruz (Santa Cruz Biotechnology, Inc., Santa Cruz,
CA, USA). All other reagents were of the highest grade or analytical grade.

The LSA was synthesized in our laboratory and the selenium content in LSA was 17.5 mg/g.
The results of UV, IR, NMR analysis showed that the SeO3

2− is attached to C2 amino and C6 hydroxyl
group of amino polysaccharides (data not shown), which was consistent with the findings of the
study by Miao et al. [48]. Millipore filter (0.22 µm) and Toxin Eraser endotoxin removal kit were used
to remove any contaminants and endotoxins of the LSA. Endotoxin was quantified to be less than
0.1 EU/mL by Chromogenic End-Point Tachypleus Amebocyte Lysate in the stock solution.

4.2. Experimental Animals

All procedures in this study were performed in accordance with the Guide for the Care and Use
of Laboratory Animals prepared by the Institutional Animal Care and Use Committee of Zhejiang
University. The animals used in this experiment were approved by the principles of the Zhejiang
University Animal Care and Use Committee (NO. 2012-0178). Weaning piglets were chosen from
Jiaxing Dunhao Farming Co., Ltd, Jiaxing, Zhejiang province, China. One hundred and eighty
post-weaning barrows (28 day of age, Duroc × Landrace × Yorkshire) were randomly assigned to
6 treatment groups, as indicated in the Table 2. Each treatment was replicated three times with 10 pigs
per replicate. The basal diet was a corn–soybean meal-based diet without selenium supplementation
and no antibiotics. All piglets were housed in pens equipped with a fully slatted mesh floor and a
nipple water drinker. In addition, they were housed under a dry and ventilated facility and kept under
the same temperature (25 ± 2 ◦C). The piglets were fed a common diet for a 5-day adaptation period.
The feeding trial lasted 28 days.

Table 2. Animal grouping *.

Groups Feed Composition

Control (C) Basal diet
Na2SeO3 (S) Basal diet + 0.3 mg/kg Se (Na2SeO3)

Na2SeO3 + LA (S+) Basal diet + 0.3 mg/kg Se (Na2SeO3) + 11 mg/kg LA
LSA1 Basal diet + 17.15 mg/kg LSA (0.3 mg/kg Se)
LSA2 Basal diet + 34.30 mg/kg LSA (0.6 mg/kg Se)
LSA3 Basal diet + 51.45 mg/kg LSA (0.9 mg/kg Se)

* Selenium (Se) is measured in form of LSA and sodium selenite.

4.3. Sample Collection

At the end of the animal experiment, the piglets were subjected to 12 h fasting, all piglets
were weighed, and six piglets from each treatment injected with 5% pentobarbital sodium solution
(50 mg/kg·BW) to anesthetize. Blood was collected from the anterior vena cava in vacuum blood
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collection tubes, centrifuged at 3000 rpm at 4 ◦C for 10 min, and serum was acquired. The serum
samples were transferred to 1.5 mL Eppendorf (EP) tubes, respectively, snap frozen in liquid nitrogen,
and stored at −80 ◦C until further analysis. For SEM, after washing in PBS (pH 7.4), the midportion of
the jejunum (at least 1 cm2) was fixed in 2.5% glutaraldehyde and stored at 4 ◦C. The ileum mucosa
was scraped off with a glass slide. The samples were frozen in liquid nitrogen and stored at −80 ◦C
for analysis.

4.4. Determination of Growth Performance and Diarrhea Rate

During the experiment, the feed intake was recorded daily, and the piglets were weighed.
The average daily feed intake, average daily gain and ratio of feed/gain were calculated as follows:

average daily feed intake = feed intake/days

average daily gain = (final weight − weaning weight)/days

feed/gain ratio = average daily feed intake/average daily gain

The degree of diarrhea was indicated by the diarrhea index, and a score of 4 can be determined as
diarrhea. The specific scores are shown in Table 3. The incidence of diarrhea (%) = the total number
piglets with diarrhea over the period divided by the total number of piglets multiplied by the duration
of the feeding trial.

Table 3. Incidence of diarrhea.

Degree of Diarrhea Fecal Appearance Water Volume (%) Score

No diarrhea Normal, strip, or long strip <70 1
Mild diarrhea Soft, basically shaped 70–75 2
Moderate diarrhea Viscous, not formed, no separation of manure 75–80 3
Severe diarrhea Liquid, not formed, separation of manure >80 4

4.5. Histopathological Observation

At the end of animal experiment, approximately 1 cm of the jejunum was excised. According
to the requirements of SEM, the jejunum was quickly fixed pre-cooled using 2.5% glutaraldehyde.
The samples were sent to Zhejiang University for analysis.

4.6. Determination of DAO and D-LA in Serum

The serum samples were taken out and thawed. The contents of DAO and D-LA in serum were
measured using Enzyme-Linked Immunosorbent (ELISA) Assay Kit. The specific procedure was
operated according to the manufacturer’s instructions.

4.7. Determination of Antioxidant Indices in Serum

The activities of T-AOC, SOD, GSH-Px, CAT, and MDA test kits were acquired from Nanjing
Jiancheng Bioengineering Institute (Nanjing, China). These tests were performed according to the
manufacturer’s instructions.

4.8. Quantitative Real-Time Polymerase Chain Reaction (RT-PCR)

The mRNA expression level of antioxidant genes (GSH - Px1/2, SOD1/2, CAT, Nrf2, NQO1,
HO-1) and connexin genes (ZO-1, Occludin) were measured using quantitative Real-Time polymerase
chain reaction (RT-PCR) as described previously [5]. Total RNA was extracted from in the ileum using
ice-cold TRIzol reagent (15596026, Thermo Fisher Scientific, Inc., Waltham, MA, USA). The quality
and concentration of the extracted total RNA were determined using NanoPhotometer (P300, Implen
GmbH, Munich, Germany) by measuring the absorbance at 230, 260 and 280 nm, and by determining
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the A260/A280 and A260/A230 ratios. The first strand of cDNA was synthesized with using
PrimeScript™ II 1st Strand cDNA Synthesis Kit (6210A, Takara Bio, Inc., Ohtsu, Japan) according to
the manufacturer’s instructions. The PCR primers were designed using Primer 5 software and from
Sangon Biotech Co., Ltd (Shanghai, China) (Table 4). Quantitative polymerase chain reaction (PCR)
was carried out using Applied Biosystems ViiA™ 7 Real-Time PCR system. For each PCR reaction, the
total volume of 20 µL contained 10.0 µL of SYBR Green qPCR mix, 2 µL cDNA, 0.4 µL of ROX II, 6.8 µL
of double distilled water, and 0.4 µL of primers (10 µM forward and 10 µM reverse). RT-PCR reactions
were carried out according to the following protocol: pre-denaturation at 95 ◦C for 30 s, then 40 cycles
at 95 ◦C for 5 s and 65 ◦C for 34 s. The cycle threshold (CT) values of each gene were normalized with
β-actin. β-Actin gene was selected as reference gene for 2−∆∆Ct analysis.

Table 4. Real-Time PCR Primers and Conditions.

Gene Gene Accession
Number Primer Sequence 5′-3′ PCR Product Size

(bp) Tm

SOD1 NM_000454 F: TCCATGTCCATCAGTTTGGA
R: CTGCCCAAGTCATCTGGTTT 250 50

SOD2 NM_001322820 F: TGGAGGCCACATCAATCATA
R: AGCGGTCAACTTCTCCTTGA 136 59

CAT NM_214301.2 F: TGTGAACTGTCCCTTCCGTG
R: CGTCTGTTCGGGAGCACTAA 124 60

GPx1 NM_201397.2 F: TGGGGAGATCCTGAATTG
R: GATAAACTTGGGGTCGGT 184 53

GPx2 NM_001115136.1 F: TCGTGGCTTCCCTTGCAAC
R: CCATTCACGTCACACTTCTG 138 61

Nrf2 XM_021075133.1 F: CACCACCTCAGGGTAATA
R: GCGGCTTGAATGTTTGTC 125 55

HO-1 NM_001004027.1 F: AGCTGTTTCTGAGCCTCCAA
R: CAAGACGGAAACACGAGACA 130 59.2

NQO1 NM_001159613.1 F: CCAGCAGCCCGGCCAATCTG
R: AGGTCCGACACGGCGACCTC 160 66.2

ZO-1 NM_001355015 F: CAGCCCGAGGCGTGTTTA
R: TGGGAGGATGCTGTTGTCT 146 60

Occludin NM_214301.2 F: GCTGGAGGAAGACTGGAT
R: ATCCGCAGATCCCTTAAC 124 61

β-actin XM_003124280 F: GATGAGATTGGCATGGCTTT
R: CACCTTCACCGTTCCAGTTT 122 60

F, forward; R, reverse.

4.9. Western Blot Analysis

Western blot analysis of protein was carried out as described previously [5]. In brief, around
100 mg of intestinal mucosa was placed in liquid nitrogen, ground thoroughly, and collected in
a sterile 1.5 mL EP tube. Then, 1 mL of ice-cold RIPA lysis buffer was added into the tube and
samples were fully lysed by incubating for 15 min on ice. Protein concentration was measured by
BCA method. Proteins were denatured using a loading buffer with the anionic denaturing detergent
sodium dodecyl sulfate (SDS), and boiled at 95–100 ◦C for 5 min. Equal amounts of protein were
separated by SDS-PAGE (10%), transferred to 0.45 µm polyvinylidene difluoride (PVDF) membranes,
and then blocked with 5% non-fat milk in Tris buffered saline with Tween 20 for 1 h, and incubated
with primary antibodies at 4 ◦C overnight. Subsequently, the membranes were washed three times for
5 min with TBST. Then, the membranes were incubated with secondary antibody (HRP-conjugated
secondary antibody) for 1–2 h. ECL reagents were added for chemiluminescent imaging. The bound
antibodies were visualized using an enhanced chemiluminescent detection system FluorChem FC3
(ProteinSimple, Santa Clara, CA, USA) and the density of bands were measured using AlphaView
software (3.4.0.0, ProteinSimple, Santa Clara, CA, USA). The intensity ratio of proteins was determined
relative to β-actin. Each sample was replicated three times.
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4.10. Statistical Analysis

All data were evaluated with SPSS17.0 software. Data were presented as mean ± standard error
(SEM). The statistical significance was analyzed by one-way analysis of variance (ANOVA) and Tukey’s
test. P values less than 0.05 were considered as statistically significant.

5. Conclusions

The present study indicated that LSA could promote the growth of weaning piglets via increasing
the average daily gain and feed/gain, and remarkably reducing the diarrhea rate. LSA effectively
reduced intestinal damage, and protected the integrity of intestinal structure and permeability through
decreasing the levels of DAO and D-LA. Moreover, LSA significantly enhanced the antioxidant capacity
and reduced oxidative stress through increasing the antioxidant index levels, such as through T-AOC,
GSH-Px, SOD, and CAT in weaning piglets, while significantly increasing GSH-Px-1, GSH-Px-2, SOD-1,
SOD-2, CAT, Nrf2, HO-1, and NQO1 gene expression in intestinal mucosa. In addition, LSA could
activate the Nrf2 signaling pathway by downregulating the expression of Keap1 and upregulating
the expression of Nrf2. Collectively, LSA may be used as an active substance for the prevention and
management of gastrointestinal disorders by weaning stress in infants.
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