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The antiamnesic effect of 3,5-dicaffeoylquinic acid (3,5-diCQA) as the main phenolic compound in Artemisia argyi H. extract
on cognitive dysfunction induced by trimethyltin (TMT) (7.1 𝜇g/kg of body weight; intraperitoneal injection) was investigated in
order to assess its ameliorating function inmice. In several behavioral tests, namely, theY-maze, passive avoidance, andMorris water
maze (MWM) test, 3,5-diCQA significantly ameliorated learning andmemory deficits. After the behavioral tests, brain tissues from
the mice were analyzed to characterize the basis of the neuroprotective effect. Acetylcholine (ACh) levels increased, whereas the
activity of acetylcholinesterase (AChE) decreased upon administration of 3,5-diCQA. In addition, 3,5-diCQA effectively protected
against an increase in malondialdehyde (MDA) content, an increase in the oxidized glutathione (GSH) ratio, and a decline of total
superoxide dismutase (SOD) level. 3,5-diCQA may prevent neuronal apoptosis through the protection of mitochondrial activities
and the repression of apoptotic signaling molecules such as p-Akt, BAX, and p-tau (Ser 404).

1. Introduction

Alzheimer’s disease (AD) is a type of dementia associated
with multiple etiologies and pathogenetic mechanisms such
as genetic factors, diminished cerebral energy metabolism,
excitotoxic events, and free-radical-induced oxidative stress.
Among them, oxidative stress is the most important cause in
AD [1]. Oxidative stress occurs due to an excess of oxidants,
which is caused by an imbalance between oxidants such as
reactive oxygen species (ROS) and antioxidants (e.g., cata-
lase, SOD, and GSH). Oxidants form a normal product of
aerobicmetabolism, but under pathophysiological conditions
oxidants are produced rapidly [2]. Oxidative stress creates
numerous problems, such as a decline of antioxidants and
an increase of free iron in the brain, and leads to mitochon-
drial cytopathies [3]. Accordingly, attention to antioxidants
has increased, and phenolic compounds have been studied
as a source of natural antioxidants. Over 10,000 phenolic

compounds are known to be present in the various plants.
Polyphenols are essential to plant physiology and belong
to the class of natural antioxidants [4]. According to the
research by Stocker [5], dietary polyphenols have biological
effects such as free-radical scavenging, metal modulation of
enzymatic activity, and alteration of signal transduction.

Dicaffeoylquinic acids (diCQAs) as isochlorogenic acid,
being natural phenolic compounds, are widely distributed
in plants such as Gynura [6] and coffee bean [7]. They are
esters formed from quinic acid and two units of caffeic
acid. It has been reported that 3,5-dicaffeoylquinic acid (3,5-
diCQA), one of the diCQA compounds, possesses strong
antimutagenic [8], antioxidant [9], and anti-inflammatory
activity [10]. Further, Kim et al. have reported that 3,5-
diCQA possesses a cytoprotective effect against hydrogen
peroxide-induced oxidative stress [11]. However, there is no
research into in vivo antiamnesic effect of 3,5-diCQA, and, in
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particular, the effect of 3,5-diCQA on the apoptotic signaling
pathway has not yet been reported.

Trimethyltin (TMT) is a potent neurotoxicant acting
in the hippocampus, and intraperitoneal injection of TMT
increased ROS production rate in mice in sensitive areas
such as the hippocampus and the frontal cortex, and the
increased level of ROS induced oxidative damage, which con-
tributes to activate the apoptotic signaling pathway [12]. We
therefore investigated the ameliorating effect of 3,5-diCQA
on TMT-induced learning and memory impairment in ICR
mice through an examination of antioxidant biochemicals,
mitochondrial activity, and apoptotic signaling molecules in
brain tissues.

2. Materials and Methods

2.1. Chemicals and Reagents. A 3,5-diCQA (PubChem CID:
6474310) was purchased from Chengdu Biopurify Phyto-
chemicals Ltd. (Chengdu, China). TMT, dimethyl sulfoxide
(DMSO), metaphosphoric acid, thiobarbituric acid (TBA),
sodium azide, Triton X-100, Tween 20, 5,5-dithiobis(2-ni-
trobenzoic acid) (DTNB), and all other chemicals were pur-
chased from Sigma-Aldrich Chemical Co. (St. Louis, MO,
USA). Primary antibodies for cytochrome c (sc-13560), p-
tau (Ser 404) (sc-12952), and 𝛽-actin (sc-69879) were pur-
chased from Santa Cruz Biotechnology (CA, USA). Primary
antibodies for protein kinase B (Akt) (# 9272), phospho-Akt
(Ser 473) (# 9271), andBAX (#2772) and secondary antibodies
for anti-rabbit (7074S) and anti-mouse (7076S) were obtained
from Cell Signaling Technology (Danvers, MA, USA).

2.2. Sample Preparation and Ultra-Performance Liquid Chro-
matography-Quadrupole-Time-of-Flight (UPLC-Q-TOF) MS
Analysis. Artemisia argyi H. (20 g) was extracted with 60%
ethanol (1 L) at 40∘C for 2 h using reflux extraction. The
ethanolic extract was partitioned with 𝑛-hexane, chloroform,
and ethyl acetate, consecutively, and then each fraction was
concentrated and lyophilized.

Phenolic compounds extracted from Artemisia argyi H.
were analyzed by using UPLC-Q-TOF/MS (Waters, Milford,
MA, USA).The samples were dissolved inmethanol after that
filtered using 0.2 𝜇m filter and then injected into an Acquity
UPLC BEH C

18
column (100 × 2.1mm, 1.7 𝜇m;Waters) with

a flow rate of 0.4mL/min. The mobile phases consisted of
solvent A (distilled water containing 0.1% formic acid) and
solvent B (acetonitrile (ACN) containing 0.1% formic acid)
during analysis. The analysis conditions were as follows: a
gradient elution of 100% A/0% B at 0.5min, 0% A/100% B at
5min, 0% A/100% B at 6.5min, 100% A/0% B at 6.8min, and
100% A/0% B at 9min. Phenolic compounds were analyzed
by a Q-TOF MS (Waters) in electrospray ionization- (ESI-)
negative mode. The conditions used for the ESI source were
as follows: ramp collision energy, 20–45V; oven temperature,
40∘C; capillary voltage, 3 kV; desolvation temperature, 350∘C;
pressure of nebulizer, 40 psi; fragmentor, 175V; cone voltage,
40V; mass range, 50–1200𝑚/𝑧. All MS data obtained by
MassLynx software (Waters), including retention time (RT),
𝑚/𝑧, and ion intensity, were extracted with MarkerLynx
software (Waters).

2.3. Animals and In Vivo Experimental Design. Institute of
Cancer Research (ICR) male mice (age, 4 weeks) were ob-
tained from Samtako (Osan, Korea) and were housed two
per cage at a temperature of 25∘C with a 12 h light-dark
cycle, relative humidity of 55%, and free access to food and
water ad libitum. All animal procedures were carried out as
required by the “Institutional Animal Care and Use Commit-
tee” of Gyeongsang National University (certificate: GNU-
131105-M0067). Mice were (orally) fed 3,5-diCQA as main
phenolic compounds of Artemisia argyi H. at concentrations
of 5mg/kg of body weight (3,5-diCQA 5 group) and 10mg/kg
of body weight (3,5-diCQA 10 group) once a day for 3
weeks. After administration of 3,5-diCQA for 3 weeks, TMT
(7.1 𝜇g/kg of body weight) was dissolved in 0.85% sodium
chloride solution and injected into mice intraperitoneally
(100 𝜇L), except for mice in the vehicle control group. Mice
of TMT group were injected with only TMT.

2.4. Behavioral Tests for Learning and Memory Function.
After 3 days of TMT injection, a Y-maze test was conducted.
The maze was made from black Y-shaped plastic, and the
arms were at an angle of 120∘ from each other. Each mouse
could freely move in the maze for 8min, and the sequence
of arm entries was recorded with a Smart 3.0 video tracking
system (Panlab, Barcelona, Spain). The percentage spatial
cognition ability was calculated as follows: actual alterna-
tion/(total number of arm entries − 2) × 100 (%) [13].

After the Y-maze test, the passive avoidance test was con-
ducted on 2 days. The apparatus consisted of a two-compart-
ment acrylic box, one compartment illuminated and the other
dark, with a gate between the two compartments. On the
first day of the experiment, each mouse was placed in the lit
compartment. As soon as it entered the dark compartment,
it received an electrical shock (0.5mA, 3 s). After 24 h,
the latency times for entering the dark compartment were
measured for maximum 300 s [14].

The Morris water maze (MWM) test was conducted in
accordance with Morris but with some modifications [15].
The apparatus consisted of a large circular pool (90 cm in
diameter) containing opaque water dyed with squid ink
(Cebesa, Valencia, Spain) at 22 ± 2∘C. The circular pool was
divided into quadrants (N, S, E, andWzones)with visual cues
on the walls for navigation, and a platform was located in the
W zone. Training was conducted by means of four trials daily
for 4 consecutive days. For each trial, mice were placed in the
water facing thewall of the pool but at different start positions
between trials. Mice were trained to find the platform for a
maximum of 60 s. After training was complete, the platform
was removed and behavior of the mice was recorded for 60 s
using a Smart 3.0 video tracking system (Panlab, Barcelona,
Spain).

2.5. Tissue Preparation and Biochemical Studies. After the
behavioral tests, the mice were sacrificed by CO

2
inhalation,

and brain tissues were kept at −80∘C until they were used.
Whole brain tissue was minced into small pieces and then
homogenized with 10 volumes of cold phosphate buffered
saline for the measurement of MDA, AChE, ACh, and total
SOD levels. Tomeasure oxidizedGSH and total GSH,minced
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brain tissues were homogenized with 20 volumes of 5%
metaphosphoric acid.

The quantity of ACh neurotransmitter in the brain was
estimated by the method of Vincent et al. Homogenates
were centrifuged (14,000×g for 30min at 4∘C) to obtain
the supernatant [16]. Alkaline hydroxylamine reagent [3.5N
sodium hydroxide and 2M hydroxylamine in HCl] was
added to the supernatant. After 1min at room temperature,
0.5N HCl (pH 1.2) and 0.37M FeCl

3
in 0.1 N HCl were

added, and absorbance was measured at 540 nm. AChE was
measured via ACh hydrolyzing activity following Ellman’s
method [17]. Mixtures of brain homogenate and 50mM
sodium phosphate buffer (pH 8.0) were incubated at 37∘C for
15min and then added to Ellman’s reaction mixture [0.5mM
acetylthiocholine and 1mM DTNB] in a 50mM sodium
phosphate buffer (pH 8.0). Absorbance was measured at
405 nm after incubation at 37∘C (20min).

To measure MDA as a marker of lipid peroxidation,
homogenates were centrifuged (6000×g for 10min at 4∘C),
and the supernatantwasmixedwith 0.67%TBA solutionwith
1% phosphoric acid and then incubated in awater bath (95∘C)
for 1 h. After cooling, absorbance was measured at 532 nm
[18].

Homogenates for measuring total SOD were centrifuged
at 400×g for 10min at 4∘C, and then 10 volumes of 1x Cell
Extraction Buffer [10% SOD buffer, 0.4% (v/v) Triton X-
100, and 200Mm phenylmethanesulfonyl fluoride in distilled
water] were added to the pellet. Mixtures were incubated
on ice for 30min and then centrifuged at 10,000×g for
10min at 4∘C to obtain the supernatant. The SOD content of
supernatantwasmeasuredwith the SODkit of Sigma-Aldrich
Chemical Co.

Homogenates for measuring the ratio of oxidized GSH/
total GSH were centrifuged at 14,000×g for 15min at 4∘C.
Oxidized GSH/total GSH ratios in the supernatant were
measured with the glutathione (oxidized GSH/total GSH)
detection kit of Enzo Life Science Inc. (EnzoDiagnostics, NY,
USA).

2.6. Isolation ofMitochondria fromBrainTissues andMeasure-
ment of Mitochondrial Activities. Mitochondria were isolated
in accordance with the procedure of Dragicevic [19]. Whole
brains were homogenized with 5 volumes of isolation buffer
[mannitol (215mM), sucrose (75mM), 0.1% bovine serum
albumin (BSA) (Bioworld, Dublin, OH,USA), EGTA (1mM),
and 20mM HEPES (Na+) (pH 7.2)] and then centrifuged
at 1,300×g for 5min. After the supernatant was obtained,
it was centrifuged once more at 13,000×g for 10min. After
this, the supernatant was removed, and isolation buffer with
0.1% digitonin (in DMSO) was added to the pellet. After
5min, isolation buffer was added, followed by centrifugation
at 13,000×g for 15min. After that, the pellets were resus-
pended in isolation buffer without EGTA and centrifuged at
10,000×g for 10min. Finally, isolation buffer without EGTA
was added to the pellet, and this was used in the experi-
ment.

Mitochondrial ROS production was measured with 2,7-
dichlorodihydrofluorescein diacetate (DCF-DA). 25 𝜇M
DCF-DA was added to the isolated mitochondria for 20min

and then quantified with a fluorescent (excitation filter
485/20 nm, emission filter 528/20 nm) microplate reader (In-
finite 200, Tecan Co., San Jose, CA, USA) [20].

To measure the membrane potential of isolated mito-
chondria, 20 𝜇L (1.2mg/mL final concentration) of the mito-
chondria was mixed with assay buffer [isolation buffer with-
out EGTA with pyruvate (5mM) and malate (5mM)], and
then a solution of 1 𝜇M JC-1 (5,5,6,6-tetrachloro-1,1,3,3-
tetraethylbenzimi-dazolylcarbocyanine iodide in DMSO)
was added. The mixture was gently stirred at room tem-
perature for 20min in the dark and then measured with
a fluorescent (excitation 530/25 nm, emission 590/35 nm)
microplate reader (Infinite 200, Tecan Co.).

Samples of isolated mitochondria were assayed for ATP
content by means of the ATP bioluminescence assay kit
(Sigma-Aldrich Chemical Co.). ATP concentration was cal-
culated with the help of a standard curve.

2.7. Western Blot Analysis of the Apoptotic Signaling Pathway.
Brains were homogenized with ProtinEx�Animal cell/tissue
(GeneAll Biotechnology, Seoul, Korea) with 1% protease
inhibitor cocktails (Thermo Fisher Scientific, Rockford, IL,
USA). The protein samples were separated by sodium dode-
cyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and then transferred to a polyvinylidene difluoride (PVDF)
membrane (Millipore, Billerica, MA, USA). The membranes
were blocked with 5% nonfat dry milk in TBST buffer [Tris-
Buffered Saline (TBS) with 0.1% of Tween-20]. After 1 h,
primary antibodies were diluted (1 : 1000) in a dilute solution
(0.1% sodium azide and 0.5% BSA in TBST). Diluted primary
antibodies were incubated with the membrane under gentle
agitation overnight, and then the membrane was washed
3 times (10min each time) in TBST. After washing, the
secondary antibody solutions were allowed to react with the
membrane for 1 h, and then the washing process was carried
out once again. Finally, the membrane was exposed to an
enhanced chemiluminescence reagent, and the luminescence
was detected by ChemiDoc (Korea Biomics, Seoul, Korea).
The density of the band was assayed with ImageJ Software
(National Institutes of Health, Bethesda, Maryland, USA).
The results were presented as density of target protein/density
of 𝛽-actin as a loading control [21, 22].

2.8. Statistical Analysis. All results were expressed as mean
± SD. Each experiment was analyzed by one-way analysis of
variance (ANOVA) followed by Duncan’s multiple range test
with the help of the SAS program (Ver. 9.1 SAS Institute, Cary,
NC, USA).

3. Results and Discussion

3.1. Phenolic Compounds Analysis Extracted from Artemisia
argyi H. Ethyl acetate fractions from Artemisia argyi H.,
which has most abundant phenolic compounds (Supplemen-
tary Data 1 in Supplementary Material avialable online at
http://dx.doi.org/10.1155/2016/6981595), were analyzed with a
UPLC/Q-TOF-MS/MS system (Figure 1). Main compounds
were analyzed by a Q-TOF MS system in ESI-negative mode

http://dx.doi.org/10.1155/2016/6981595
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Figure 1: Continued.
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Figure 1: Analysis of ethyl acetate fraction from Artemisia argyi H. using UPLC/Q-TOF-MS/MS chromatography in negative ion mode (a),
MS2 patterns of 3,5-diCQA (b), 4,5-diCQA (c), and diCQA-glucoside (d).

(Figures 1(b)–1(d)): compound 1 (RT: 4.02min, 515.13𝑚/𝑧);
compound 2 (RT: 4.25min, 515.13𝑚/𝑧); and compound 3
(RT: 5.28min, 677.16𝑚/𝑧). Additionally, MS2 scan chro-
matograms were fragmented at compound 1 (353.09, 191.05,
179.03, and 135.04𝑚/𝑧), compound 2 (353.09, 173.04, 179.03,
and 191.05𝑚/𝑧), and compound 3 (515.12, 353.09, 179.03,
and 191.06𝑚/𝑧). From comparison to the main fragments
in the previous literature [23], these peaks showed the 3,5-
diCQA (PubChem CID: 6474310), 4,5-diCQA (PubChem
CID: 6474309), and diCQA-glucoside. A 3,5-diCQA was
identified as the major phenolic compound among 3,5-
diCQA, 4,5-diCQA, and diCQA-glucoside, and 3,5-diCQA
has a higher inhibitory effect on in vitro lipid peroxida-
tion and AChE activity than 4,5-diCQA (Supplementary
Data 2).

3.2. Effect of 3,5-diCQA on TMT-Induced Learning and Mem-
ory Dysfunction. The Y-maze test was conducted to deter-
mine the spatial cognition ability. Figure 2(a) shows the
distance travelled by mice in Y-maze test. According to Kim
et al., TMT induces hyperactivity disorder [24]. And as a
result of hyperactivity, the TMT group exhibited a greater
distance travelled than the vehicle control group.On the other
hand, in the 3,5-diCQA groups the hyperactivity effect due
to TMT was ameliorated. In terms of alternation behavior
which is indicative of spatial cognition (Figure 2(b)), the
3,5-diCQA 10 group showed a similar result to the vehicle
control group, but the 3,5-diCQA 5 group did not show a
significantly different result from the TMT group. Figure 2(c)
also shows the behavior pattern of each group during
the experimental period, and the improvement of TMT-
induced hyperactivity by treatment with 3,5-diCQAwas con-
firmed.

In the passive avoidance test for measuring short-term
learning and memory ability, the TMT group had the lowest
latency time of all groups as a consequence of TMT-induced

learning andmemory defects. However, step-through latency
increased in both 3,5-diCQA groups. In particular, the 3,5-
diCQA 10 group showed a similar latency time to the vehicle
control group (Figure 2(d)).

Another behavioral test, the MWM test, was conducted
to assess long-term learning and memory ability. Figure 3(a)
shows escape latency times recorded during sequential train-
ing trials. The vehicle control group quickly remembered the
correct location of platform in the pool. The escape latency
time gradually decreased, and more direct swim paths were
taken than in the other groups. In contrast, the TMT group
showed the smallest reduction in escape latency time during
training. Both 3,5-diCQA groups exhibited improved spatial
memory and learning ability, relative to the TMT group. As
shown in the probe trials, the 3,5-diCQA groups spent more
time in the W zone, where the platform was located, than
the TMT group (Figure 3(b)). In particular, the 3,5-diCQA
10 group spent a similar amount of time in the W zone as
the vehicle control group, and also both 3,5-diCQA groups
exhibited improvements over the TMT-induced abnormal
travel trajectories (Figure 3(c)). Consequently, a 3,5-diCQA
appears to be an effective substance for ameliorating cognitive
impairment induced by TMT.

3.3. Effect of 3,5-diCQA on the Cholinergic System in Brain Tis-
sue. ACh acts as a neurotransmitter in the brain. According
to the cholinergic hypothesis, reductions in choline acetyl-
transferase (ChAT) activity and ACh synthesis are closely
related with cognitive impairments such as Alzheimer’s dis-
ease (AD) [25]. Woodruff and Baisden reported that TMT
led to a decrease in ChAT and an increase in AChE, an
enzyme that catalyzes the breakdown of ACh and some other
choline ester neurotransmitters [26]. The TMT group in our
experiment similarly showed an increase in AChE activity
and a decrease in ACh levels compared with the vehicle con-
trol group (Figure 4). Treatmentwith 3,5-diCQA significantly
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Figure 2: Effect of 3,5-diCQA on cognitive function in TMT injected mice. Distance in zone (a), alternation behavior (b), and path motion
(c) in Y-maze test and step-through latency (d) in passive avoidance test. Data shown represent means ± SD (𝑛 = 8). ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01
compared to the vehicle control group.

inhibited the TMT-induced impairment of the cholinergic
system. AChE activity in the 3,5-diCQA 5 group was similar
to the vehicle control group. In particular, the 3,5-diCQA 10
group revealed a stronger inhibitory effect on AChE activity
than the vehicle control group. In the research of Kwon et al.,
which investigated the effect of chlorogenic acid, an isomer
of 3,5-diCQA, in ameliorating scopolamine-induced amnesia
in mice, chlorogenic acid significantly abated AChE activity,
especially in hippocampus, and improved cognitive function
[27]. The ACh levels of both 3,5-diCQA groups were similar
to the vehicle control group as a result of the AChE inhibition
by 3,5-diCQA. In recent times, AChE inhibitors have been
used to ameliorate dementia, and AChE inhibitors such as
donepezil and galantamine have been approved in the United

States by the FDA to treat AD [28]. We therefore suggest that
a 3,5-diCQA may also be a candidate natural AChE inhibi-
tor.

3.4. Effect of 3,5-diCQA on Biochemical Antioxidants in Brain
Tissue. MDA is used as an indicator of lipid peroxidation
induced by oxidative stress. In our study, the TMT group
exhibited increased MDA contents compared to the vehicle
control group, whereas both 3,5-diCQA groups exhibited a
reduction in MDA content compared to the TMT group
(Figure 5(a)).

In aerobic cells, glutathione (GSH) is the most copious
antioxidant, andGSH can be converted into its oxidized form
(oxidized GSH). The oxidized GSH/total GSH ratio is often
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Figure 3: Effect of 3,5-diCQA on long-term memory and learning ability on TMT-induced cognitive impairment in MWM test. Escape
latency time (a) and time in W zone (b) path of motion in probe test (c). MWM test was conducted during 6 days. Data shown represent
means ± SD (𝑛 = 8). ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the vehicle control group.

used as an indicator of oxidative stress [29]. The oxidized
GSH/total GSH ratio in the TMT group was higher than
in vehicle control group, and in both 3,5-diCQA groups the
ratio was lower than in the TMT group. In other words, the
oxidized GSH/total GSH ratio showed a similar pattern as
the result of the analysis of MDA levels (Figure 5(b)). The
research of Kim et al. has shown that 3,5-diCQA possesses
neuroprotective effects against hydrogen peroxide-induced
cell death in SH-SY5Y cells as a consequence of inhibiting
caspase-3 activation and restoring GSH levels [11].

According to the previous reports, TMT increases ROS
production and oxidative stress due to an excess of oxidants
reduces antioxidant levels [3, 12]. Accordingly, the TMT
group in our experiments also exhibited lower SOD levels
than the vehicle control group, whereas the SOD contents of
both 3,5-diCQA groups were higher than in the TMT group
(Figure 5(c)). GSH protects against oxidative stress, and a

depletion of GSH is presumably the result of decreased SOD
and catalase activities. When the antioxidant mechanism
becomes ineffective as a consequence of excessive oxidative
stress, lipid peroxidation occurs [30]. In other words, a
noticeable depletion of GSH content in brain tissue will
lead to an increase lipid peroxidation. Since brain tissue is
composed of neuronal cells that contain numerous polyun-
saturated fatty acids to carry out various signaling functions,
it is vulnerable to lipid peroxidation, and lipid peroxidation
in the brain is an indicator of mild cognitive impairment
in patients [31]. Oxidative stress induced by TMT may
eventually destroy the antioxidant system in brain.Therefore,
the collapse of the antioxidant system increased MDA levels
and induced cognitive dysfunction. However, these learning
difficulties and memory impairments due to TMT-induced
cytotoxicity and oxidative stress could be partially recovered
by a 3,5-diCQA.
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Figure 4: Effect of 3,5-diCQA on cholinergic markers in TMT injected mice brain. AChE activity (a) and ACh content (b). Data shown
represent means ± SD (𝑛 = 8). ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the vehicle control group.

3.5. Effect of 3,5-diCQA on Mitochondrial Activity in Brain
Tissue. Mitochondria are one of the most ROS production
organelles in the cell in the pathologic condition. Exposure
to excessive oxidative stress results in the opening of one of
the requisite mitochondrial channels. This in turn causes the
simultaneous collapse of mitochondrial membrane potential
and a transient increase in ROS generation [32]. According to
the research of Zhang et al., TMT-induced cytotoxicity causes
an excessive generation of ROS and a subsequent reduction
in mitochondrial membrane potential [33]. Accordingly,
increased mitochondrial ROS production and decreased
mitochondrial membrane potential were found in the TMT
group, compared with vehicle control group. The 3,5-diCQA
5 group did not exhibit significant differences with the
TMT group, but the 3,5-diCQA 10 group exhibited reduced
mitochondrial ROS production and a higher mitochondrial
membrane potential (Figures 6(a) and 6(b)). In other words,
TMT-induced oxidative stress led to an increase in mito-
chondrial ROS production and a decrease mitochondrial
membrane potential, while 3,5-diCQA at a concentration of
10mg/kg body weight protected mitochondria by reducing
TMT-induced oxidative stress.

As the report of Green and Reed reveals, typically an
early event in the apoptotic pathway is a rapid reduction
of mitochondrial membrane potential which leads to a de-
crease inATP content [34]. Accordingly and as expected,ATP
levels in the 3,5-diCQA 5 group and TMT group were similar,
and ATP levels of 3,5-diCQA 10 group were lower than in
the vehicle control group but higher than in the TMT group
(Figure 6(c)). Polyphenols could play an important role
in mitochondrial biochemistry by modulating antioxidant
activity, apoptosis, inflammation, and signal transduction
[35], and 3,5-diCQA too is thought to have these functions.
Broadly speaking, treatment with 3,5-diCQA at 5mg/kg of

body weight did not provide sufficient protection against
TMT-induced mitochondrial dysfunction. But treatment
with 3,5-diCQA at 10mg/kg of body weight provided statisti-
cally significant protection against TMT-induced mitochon-
drial dysfunction. In other words, 3,5-diCQA at concentra-
tion of 5mg/kg body weight could protect the antioxidant
system in brain, but only seems to be effective in protecting
mitochondria in the brain at a concentration of 10mg/kg
body weight.

3.6. Effect of 3,5-diCQA on Apoptotic Signaling Pathway.
The above observations confirmed that 3,5-diCQA signifi-
cantly ameliorates learning and memory deficits associated
with TMT-induced amnesia in mice by regulating choliner-
gic molecules, biochemical antioxidants, and mitochondrial
activity. To investigate the cytotoxic mechanism of TMT,
changes in apoptotic signaling molecules were analyzed by
western blotting. We found that the ratio of phosphorylated-
Akt (p-Akt)/Akt in the TMT group was drastically lower
than in the vehicle control group. However, the ratio in
the 3,5-diCQA group was higher than that in TMT group
(Figure 7(a)). Akt activity is influenced by numerous path-
ways related to various types of oxidative stress. Akt is
activated by phosphorylation atThr 308 and Ser 473, and Akt
activity can be blocked by the corresponding phosphatase.
The degree of Akt activity is an important factor in the
improvement of neurodegenerative disorders. Akt prevents
apoptosis and promotes cell survival through phosphoryla-
tion of glycogen synthase kinase-3𝛽 (GSK-3𝛽), BAD, and
caspase 9 [36]. The activation of GSK-3𝛽 is responsible for
abnormal hyperphosphorylation of tau, the microtubule-
linked protein in neurons [37]. If GSK-3𝛽 is activated,
apoptosis occurs as a result of increase of p-tau. Accordingly,
the TMT group exhibited increased levels of p-tau compared
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Figure 5: Effect of 3,5-diCQA on antioxidant biochemicals in TMT injected mice brain. MDA contents (a) and oxidized GSH/total GSH
ratio (b) and total SOD contents (c). Data shown represent means ± SD (𝑛 = 8). ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the vehicle control
group.

to the vehicle control group. In contrast, the 3,5-diCQA 10
group, in which expression of p-Akt was higher than in the
TMT group, showed similar expression levels as the vehicle
control group (Figure 7(b)).

According to research by Zhang et al., TMT led to time-
and concentration-dependent apoptotic cell death, whichwas
associated with BAX [33]. TMT stimulated BAX expression,
which leads to a loss of mitochondrial membrane potential
and the release of cytochrome c from the mitochondria into
the cytosol, which then activates the caspase protease cascade
to execute apoptosis. Accordingly, the TMT group in our
experiment also showed increased expression levels of BAX
and a release of mitochondrial cytochrome c compared to
the vehicle control group (Figures 7(c) and 7(d)). However,

in the 3,5-diCQA 10 group BAX expression and the release
of mitochondrial cytochrome c were lower than in the
TMT group. After investigating the neuroprotective effect
of 1,5-diCQA against amyloid 𝛽

1–42-induced neurotoxicity
in primary neuronal culture, Xiao et al. reported that 1,5-
diCQA protects against neurotoxicity through activation of
PI3 K/Akt followed by stimulation of Trk A and, subse-
quently, inhibition of GSK3𝛽 as well as modulation of Bcl-
2/BAX [38]. These results suggest that diCQAs and their
isomers may be able to prevent neuronal cell death through
the regulation of apoptotic signaling molecules such as Akt,
BAX, and tau.

In summary, 3,5-diCQA reduced TMT-induced neuronal
cell death through the activation of Akt and downregulation
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Figure 6: Effect of 3,5-diCQA on mitochondrial activities of TMT injected mice brain. ROS production (a), mitochondrial membrane
potential (b), and ATP level (c). Data shown represent means ± SD (𝑛 = 5). ∗𝑃 < 0.05 and ∗∗𝑃 < 0.01 compared to the vehicle control
group.

of BAX expression. Consequently, the antiamnesic effect of
3,5-diCQA, as an isomer of chlorogenic acid, with respect
to cognitive dysfunction caused by TMT may be improved
through neuronal cell protection through the regulation of
apoptotic signaling molecules.

4. Conclusion

The antiamnesic effect of a 3,5-diCQA on TMT-induced
learning and memory impairment in ICR mice was investi-
gated. 3,5-diCQA, as an isomer of chlorogenic acid, signifi-
cantly ameliorated cognitive dysfunction due to severe TMT-
induced neurotoxicity. AChE inhibition by 3,5-diCQA went

hand in hand with the recovery of ACh, a neurotransmitter
in cholinergic system. In addition, the outstanding antiox-
idant activity of 3,5-diCQA protected against the neuronal
deficit caused by excessive oxidative stress, increased oxi-
dized GSH level, and decreased total SOD content in the
brain. Mitochondrial activities, including oxidative stress,
mitochondrial membrane potential, and ATP production,
were also protected by 3,5-diCQA. Finally, the antiamnesic
effect of 3,5-diCQA was confirmed through its regulation of
apoptotic signaling molecules such as Akt, tau, BAX, and
cytochrome c. The results suggest that 3,5-diCQA, as an
isomer of chlorogenic acid, may be effective in ameliorating
the cognitive impairment induced by TMT, and it seems to
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Figure 7: Continued.
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Figure 7: Effect of 3,5-diCQA on the expression of apoptotic signaling molecules in TMT injected mice brain. p-Akt/Akt (a), p-tau/𝛽-actin
(b), BAX/𝛽-actin (c), and cytochrome c in mitochondria/𝛽-actin (d). Data shown represent means ± SD (𝑛 = 6). ∗𝑃 < 0.05 compared to the
vehicle control group.

be a possible candidate molecule for tackling neurodegenera-
tion.
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