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Abstract—SARS-CoV-2 has infected over ∼165 million
people worldwide causing Acute Respiratory Distress
Syndrome (ARDS) and has killed ∼3.4 million people.
Artificial Intelligence (AI) has shown to benefit in the
biomedical image such as X-ray/Computed Tomography in
diagnosis of ARDS, but there are limited AI-based system-
atic reviews (aiSR). The purpose of this study is to un-
derstand the Risk-of-Bias (RoB) in a non-randomized AI
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trial for handling ARDS using novel AtheroPoint-AI-Bias
(AP(ai)Bias). Our hypothesis for acceptance of a study
to be in low RoB must have a mean score of 80% in a
study. Using the PRISMA model, 42 best AI studies were
analyzed to understand the RoB. Using the AP(ai)Bias
paradigm, the top 19 studies were then chosen using the
raw-cutoff of 1.9. This was obtained using the intersec-
tion of the cumulative plot of “mean score vs. study”
and score distribution. Finally, these studies were bench-
marked against ROBINS-I and PROBAST paradigm. Our ob-
servation showed that AP(ai)Bias, ROBINS-I, and PROBAST
had only 32%, 16%, and 26% studies, respectively in low-
moderate RoB (cutoff>2.5), however none of them met the
RoB hypothesis. Further, the aiSR analysis recommends
six primary and six secondary recommendations for the
non-randomized AI for ARDS. The primary recommenda-
tions for improvement in AI-based ARDS design inclusive
of (i) comorbidity, (ii) inter-and intra-observer variability
studies, (iii) large data size, (iv) clinical validation, (v) gran-
ularity of COVID-19 risk, and (vi) cross-modality scientific
validation. The AI is an important component for diagnosis
of ARDS and the recommendations must be followed to
lower the RoB.

Index Terms—COVID-19, CT, ARDS, AI, Risk-of-Bias.

I. INTRODUCTION

COVID-19 or Coronavirus is a disease that was declared
a “public health emergency of international concern” or

“pandemic” by the International Health Regulations Emergency
Committee of the World Health Organization (WHO) on January
30, 2020. As of 20th May 2021, the WHO statistics showed
more than 165 million people have been infected causing Acute
Respiratory Distress Syndrome (ARDS), and nearly 3.4 million
have lost their lives due to this virus [1]. There is a dire necessity
to flatten the pandemic curve and prevent this severe illness
during the “long-COVID-19” (beyond the COVID-19 era). The
SARS-CoV-2 virus directly affects the human lungs, travels
through the respiratory system and into the body [2]. However,
the mutated ribonucleic acid (RNA) present in the virus makes
it difficult to treat the infected patient. As per the Journal of the
American College of Cardiology (JACC), cardiac troponin may
help determine the risk of myocarditis [3], signaling a positive
COVID-19 diagnosis [4]. Imaging, therefore, also plays a vital
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role in predicting and validating the severity of the infection [5];
however, the patient’s vital clinical information further improves
its ability to predict the severity better and lowers the mortality
rate [6].

Artificial Intelligence (AI) has been helpful in combating such
diseases because of its ability to model extensive and non-linear
covariates against COVID-19 deaths in a big data framework.
In previous pandemics, models were developed to flatten their
mortality curves. For example, the Zika epidemic [7], Influenza
type A, the H1N1 pandemic [8], and the Chikungunya epidemic
[9] had shown a correlation between their data streaming using
telemedicine and the pandemic curve. More recently, in China,
similar telemedicine models have been adapted [10]. Therefore,
we firmly believe that predicting the severity of COVID-19 using
AI through computational models will be significantly useful to
address the lack of software “verification, scientific and clinical
validation” (discussed in section VII.B) capabilities worldwide.
Note that AI-based COVID-19 severity is determined by either
(i) classifying the COVID-19 pneumonia patient scans against
controls or other kinds of pneumonia or (ii) locating the diseased
region in the lung scan(s). Ground Glass Opacities (GGO) can be
used to validate the COVID-19 severity. This study is focused
on (a) ARDS that deals with the lung gas exchange disorder
caused by the SARS-CoV-2, and (b) imaging of infected lungs
using Computed Tomography (CT) and Chest X-rays (CXR).

In 2020, there have been six AI-based systematic reviews
(aiSR) on ARDS [11–16]. However, they are incomplete, not
well focused, and lack practical recommendations for safe and
effective AI design for ARDS analysis. A detailed comparison
among the six aiSR is discussed in the benchmarking section
VII.A. In general, there are limited aiSR, which rank these
studies, compute their mean scores, and determine the AI studies
with low RoB. Further, this aiSR establishes a link between
the AtheroPoint’s artificial intelligence-based Bias (AP(ai)Bias)
and previous RoB paradigms such as the Risk of Bias in Non-
randomized Studies of Interventions (ROBINS-I) or Prediction
model Risk Of Bias ASsessment Tool (PROBAST) for handling
ARDS via CT or CXR.

This aiSR uses Preferred Reporting Items for Systematic Re-
views and Meta-Analysis (PRISMA) model for study selection.
These studies are then analyzed to understand the role of AI
in the detection of COVID-19 severity in radiological images
and evaluate the RoB using AI attributes. It then presents the
pathophysiology of COVID-19 leading to ARDS [17], followed
by different AI techniques used in the lung segmentation and
classification of the disease severity. Furthermore, to help un-
derstand the non-randomized trials’ outcome, we have proposed
AP(ai)Bias, a novel bias estimation, that rates each of the ten AI
attributes, computes cumulative and mean scores, and ranks the
selected studies. Further, AP(ai)Bias is compared against quali-
tative paradigms such as ROBINS-I and PROBAST. Lastly, the
aiSR presents several significant recommendations for lowering
the RoB in the AI design for ARDS.

II. METHODOLOGY

A. Search Strategy

A detailed search was performed using PubMed, IEEE
Xplore, ScienceDirect, ArXiv and Google Scholar. The key-
words used for selecting studies were COVID-19, ARDS, deep
learning, lung segmentation, classification, lung CT, X-ray, and

Fig. 1. Search strategy using the PRISMA model.

AI. Fig. 1 shows the PRISMA model consisting of the studies
used in this review. A total of 339 studies were identified,
and duplicates were removed using the feature called “Find
Duplicates” in EndNote software by Clarivate Analytics [18],
thus, retaining 304 records. The three exclusion criteria were
(i) studies not related to AI, (ii) non-relevant articles, and (iii)
having insufficient data. This excluded 55, 56, and 104 studies
(marked as E1, E2 (non-AI, but COVID-19), and E3 in Fig. 1),
leading to the final selection of 89 studies.

B. Hypothesis and the Acceptability Criteria

We hypothesize that “non-randomized Artificial Intelligence-
based attributes can (a) detect, (b) classify, (c) estimate severity
of the COVID-19 risk, and (d) meets the performance standards
in lung infected ARDS patients.” Three acceptability criteria
were: (i) for the AP(ai)Bias-based ranking method, the mean
score must be greater than or equal to 80% for an AI-based
study while taking into consideration all the AI attributes [19].
This was due to the consensus of the experienced team and five
different classes for each AI attribute based on its strength (such
as low, moderate, high-moderate, low-of-a-high, and high-of-
a-high, ranging from 1 to 5). Similarly, for the (ii) ROBINS-I
and (iii) PROBAST paradigms, our acceptability criterion must
meet the score of 80% or above for AI-based studies to be in the
low-RoB zone [19], [20].

III. PATHOPHYSIOLOGY OF ARDS

The number of publications and cases discussing ARDS in-
fected by SARS-CoV-2 has been increasing over time [21]. The
first set of cases in Wuhan, China, reported having COVID-19
patients hospitalized for lower respiratory tract (LRT) com-
plaints [22]. They also indicated that the symptoms of COVID-
19 are incredibly diverse, ranging from minimal LRT symptoms
to significant hypoxia due to ARDS [22]. Further, Huang et al.
[23] reported that the time gap between the onset of minimal
LRT symptoms to ARDS was as short as nine days, suggesting
that minimal LRT symptoms could progress rapidly in these pa-
tients. Recent studies support that in COVID-19 patients, ARDS
has higher rates than extrapumonary complications [24]–[26].
The pathophysiology of ARDS in COVID-19 patients be-
gins with SARS-CoV-2 entering into the lung by aerosol
transmission [27], as outlined in Fig. 2 (note, numbers 1-12
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Fig. 2. Stages of ARDS (Courtesy of AtheroPoint, CA, USA).

correspond to letter D1-D12). The attachment of SARS-CoV-2
to the host cells occurs via the anchoring of its virion spike
proteins (S1 and S2) to the angiotensin-converting enzyme 2
(ACE2) receptor on the surface of the type 2 pneumocytes on
the pulmonary alveolar epithelium (D1). This causes respiratory
symptoms to present as the earliest clinical presentation of
COVID-19 [28].

Due to infection, the inflammatory process begins and leads to
inflammatory mediators’ production [29], [30] (D2). Moreover,
these inflammatory mediators stimulate alveolar macrophages in
producing polymorphic neutrophils (PMNS) and cytokines such
as IL-1, IL-6, and TNF-a (D3, D4a, and D4b). Additionally,
cytokine hyperproduction causes a cytokine storm. The se-
quence of steps in the systemic inflammatory response, cytokine
storm, and multiple organ failure plays a critical role in ARDS
development [31].

Previous coronaviruses had also observed the same process
of cytokine storm and ARDS development [32]. The produced
PMNS recruits platelets and forms Neutrophil extracellular traps
(NET) that causes endothelial dysfunction [33]. NET’s are web-
like structures of deoxyribonucleic acid (DNA) and proteins
created after PMNS activation and infection. The key enzymes
that help develop NET’s are neutrophil elastase, type 4 peptidyl
arginine deiminase, and gasdermin-D [34]. Although NET’s
have a beneficial role in the host defense against pathogens,
they also have a detrimental role. They are created by facilitat-
ing micro thrombosis, resulting in permanent organ damage to
the lung, heart, and kidney [35]. Additionally, cytokine storm
causes endothelial dysfunction and creates gaps between cells,
increasing vascular permeability [22], [36] (D5, D7, and D8).
Increased vascular permeability causes fluid leakage, resulting
in increased alveolar space and diffuse inflammatory alveolar
exudate, causing alveolar edema [37–39] (D8 and D9), typically
seen in CT lung scans. Alveolar edema then leads to increased
alveolar surface tension, a critical feature of diffuse alveolar
atelectasis (i.e., damage or collapse) [40], [41] (D10 and D11).
Following the alveolar collapse, ventilation-to-perfusion mis-
match, ARDS occurs, that results in an impairment of carbon
dioxide excretion due to the increased alveolar dead space
[42] (D12).

IV. ARTIFICIAL INTELLIGENCE BUILDING BLOCKS FOR

ARDS: LUNG SEGMENTATION AND CLASSIFICATION

For a comprehensive RoB analysis, it is customary to investi-
gate the basic building blocks of the ARDS pipeline. As shown
in Fig. 3, the two major components are lung segmentation
and COVID-19 severity classification. We will briefly study AI
models’ statistical distribution and AI architectures for these two
components.

A. Statistical Distribution of AI Models

Even though PRISMA selected 89 studies, only 42 were AI-
based studies [43]–[84]. AI-based image classification occurred
in 85% [43–50], [52], [53], [55], [56], [58–62], [64–70], [73–80],
[83] of the selected studies, while lung segmentation with or
without classification was 3% [51], and 12% [57], [63], [71],
[72], [84], respectively (Fig. 4(a)). In terms of risk granularity,
AI-based on binary classification (BC) showed 46%, while
multiclass (MC) paradigm for classification showed 39%, and
hybrid (combination of segmentation and classification) were
15% (Fig. 4(b)). Most of the studies used 2-D (82%) [43–52],
[54], [57–62], [64–69], [71–80], while others were used 3-D
(12%) [53], [63], [70], [83], [84], and 6% [55] used both 2-D
and 3-D (Fig. 5(a)). The total images used were 51% in 2-D,
only 1% in 3-D, and 48% used both (Fig. 5(b)).

The landscape for AI models for image classification con-
sisted mainly of machine learning (ML), deep learning (DL),
transfer learning (TL), recurrent learning (RL), [4], and an amal-
gamation of these learning paradigms [85] (Fig. 6). The granular
division of the AI-based classification paradigm consisted of
DL (50%) [43], [46], [47], [49], [50], [52], [53], [55], [56],
[59–61], [64–66], [69], [78–80], [83], DL and TL (12%) [67],
[68], [75–77], TL (10%) [44], [46], [58], [74], DL and ML (5%)
[48], [73], ML (5%) [45], [62], and RL combined with DL (3%)
[70]. Note only six studies (15%) [51], [57], [63], [71], [72], [84]
were focused on lung segmentation.

B. Lung Segmentation Architectures for COVID-19
ARDS

Lung segmentation is a process of extraction of the lung region
in CXR projections or in CT-slices [86]. In the 2-D paradigm,
(i) Rajaraman et al. [72] implemented UNet architecture with
Gaussian dropout in CXR (Fig. 7). As the shape resembles
the letter U, the contraction path (also known as encoder) is
the left arm of U and captures the context of the image using
traditional convolutions and max-pooling layers. The expanding
path (also known a decoder) is the right arm of U that enables
precise localization using transposed convolutions. The depth
of the UNet is the number of layers in the UNet architecture
and is responsible for the performance, while having a tradeoff
between accuracy and computational cost [72]. (ii) Oh et al.
[57] implemented Fully connected (FC)-DenseNet103 transfer
learning model (architecture shown in Fig. 8 and results shown
in Figure A(left), see Supplemental D) offered the advantage
of saving time by using the pre-trained weights. In the 3-D
paradigm, Wang et al. [63] implemented DenseNet121-FPN
(Figure A(right), see Supplemental D), the only study that
performed 3-D lung segmentation using CT volumes (Fig. 9).
In FC-DenseNet models, 2-D or 3-D, the feature maps created
by the preceding dense block are up-sampled to prevent a
large number of computations and parameters. Note that, all
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Fig. 3. AI-based ARDS pipeline in lung CT for COVID-19 severity prediction (Courtesy of AtheroPoint, Roseville, CA, USA).

Fig. 4. (a) #studies for lung segmentation vs. classification; (b) #stud-
ies for BC and MC frameworks.

Fig. 5. (a) #studies in 2-D vs. 3-D; (b) #images in 2-D vs. 3-D.

Fig. 6. Four kinds of AI models (with and without segmentation) in the
selected 42 AI-based studies.

the above architectures adapted a skip connection between the
down-sampling path and up-sampling paths for transferring
weights. 2-D CXR is preferred over 3-D CT volume imaging
due to lower costs. The in-depth comparison between 2-D and
3-D segmentation is shown in Table I.

C. Lung Classification Architectures for COVID-19
ARDS

The pipeline for ARDS diagnosis consists of the classification
of lung scans based on COVID-19 risk severity. The AI model
using ground truth with two classes leads to binary class (BC)
framework, while models using multiple ground truths yielded

Fig. 7. UNet architecture for lung segmentation (Courtesy of
AtheroPointTM, Roseville, CA, USA).

Fig. 8. Lung segmentation using DenseNet [57] using CXR (Repro-
duced with permission).

Fig. 9. (a) 3-D segmentation of the CT lung images and (b) heat map
using a DL system [63] (Reproduced with permission).

multiclass (MC). Studies that adapted both segmentation and
classification (using either BC or MC) were categorized into
hybrid class (HC). The statistical distribution between the three
types of classes was 46%, 39%, and 15%, respectively. Most of
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TABLE I
2-D VS. 3-D LUNG SEGMENTATION IN COVID-19 ARDS

the studies that conducted BC used CXR [44], [75], [76], [87]
while MC (such as DenseNet [52] and truncated Inception Net
for CXR [46], COVNet (a modified Resnet-50 architecture) [83]
and COVIDNet-CT [79] for CT, and VGG-16 for Ultrasound
[74]) adapted transfer learning (TL) architecture ranging from
5-fold to 10-fold cross-validation paradigms (Figure B, see
Supplemental D). The best accuracies of 96% and 99% in BC and
MC were obtained by Brunese et al. [44] and Gunraj et al. [79].
A unique observation was seen in Ozturk et al.[59] for validating
the COVID-19 output that consisted of the superimposition
of colored heat maps on grayscale CXR using GRAD-CAM
[59]. In HC, three studies had used 2-D CXR [57], [59], [72]
while two studies had used 3-D CT [53], [63]. Wu et al. [64]
implemented a new HC multi-view fusion CT technique using
the modified Resnet-50 on a patient size of 495, demonstrating
accuracy of 83.33% and AUC∼0.905 (p<0.001). This was 6%
better compared to the single view paradigm. Oh et al. [57] also
showed that better classification performance could be achieved
when trained using FC-DenseNet103 on segmented infected
lung region in 2-D CXR. It is however noteworthy to explore
factors that affects the performance of AI models which we
discuss next.

V. PERFORMANCE EVALUATION OF AI TECHNIQUES

A. Image Quality Assessment: CT vs. CXR

The image quality plays an important role when it comes
to computer-aided diagnosis (CAD) performance [86], [88],
[89]. The CT image quality can also be fuzzy or degraded due
to the radiation dosage [90]. Further, due to high COVID-19
severity, there is a fluid leakage or alveolar edema, which causes
lung-scans to show hyperintensity distribution (due to high con-
solidation and ground-glass opacity). Digital CXR is preferred
over conventional CXR due to high-resolution imaging [92].
Several methods were designed to assess signal-to-noise ratio
(SNR) and contrast-to-noise ratio (CNR) in CAD-based static
and motion imagery [93]. Image registration is essential during
the image quality assessment [94], [95]. However, the effect
of an image quality assessment on AI for COVID-19 has not
been well researched. The AI studies used in this aiSR did not
demonstrate AI performance due to image degradation. The lack
of image quality testing or the effect of image quality assessment
on the AI performance will lower the overall score estimation
during the comprehensive evaluation.

B. AI-Based Performance Parameters

Comparison of the AI models in the studies was based on
accuracy, sensitivity (SEN), specificity (SPE), F1-score, pre-
cision, and recall metrics. The missing data was calculated
based on the studies existing data, such as SEN, SPE, patient
size, and sometimes using the true positive rate. The mean
accuracy of the AI models extracted was 93.05±5.7%. The best
accuracy was 98% [59], while the sensitivity and specificity had
a mean of 92.01±10.25% and 89.80±15.42%, respectively. All
the studies combined achieved a mean F1-score and precision
of 93.72±6.36% and 93.51±4.45%, respectively. Thus these
performance metrics show high values, so certainly, these at-
tributes will have strong contributions to the overall score when
computing AP(ai)Bias. Note that the accuracies computed above
considered the augmentation technique during data preparation
process (also shown in recent studies [96–98]).

VI. THREE PARADIGMS FOR THE RISK-OF-BIAS ESTIMATION

Our current novel ranking strategy, AP(ai)Bias helps to iden-
tify AI-based studies that are comprehensive, complete, error-
free, safe, and effective. On the contrary, ROBINS-I [99] and
PROBAST [100] helps in identification of factors that contribute
to RoB. This section is therefore focused on three kinds of
paradigms for RoB in non-randomized AI for ARDS.

A. AP(ai)Bias: Ranking Paradigm for RoB

We have considered 10 attributes for AI evaluation in
AP(ai)Bias model that includes (i) segmentation and classifi-
cation, (ii) cross-validation (CV) protocol, (iii) inter- & intra-
observer variability (IIV), (iv) benchmarking, (v) scientific vali-
dation (SV) and clinical evaluation (CE), (vi) learning paradigm
(LP), (vii) data preparation (DP), (viii) data size, (ix) per-
formance evaluation (PE), and (x) innovation. Note that DP
attribute was further subdivided into (vii.a) augmentation pro-
tocol [96], [97], [101], (vii.b) region-of-volume selection, given
the CT volume, (vii.c) format conversion declaration, (vii.d)
manual tracings for ground truth or goal standard to generate
binary shapes, and (vii.e) baseline characteristics demonstration.
Each attribute (i-x) can earn up to a maximum of five points
as presented in the section “Hypothesis and the Acceptability
Criteria”. The value obtained in each attribute is pro-rated based
on the threshold adapted for the attributes. These values of
each attribute are then added, leading to an accumulated score.
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TABLE II
ROBINS-I METHOD

TABLE III
PROBAST METHOD

Fig. 10. Selected 19 studies out of 42 based on the raw-cutoff of a
mean score greater than equal to 1.9.

Fig. 11. Mean score using ten attributes on top 19 studies.

Finally, these 42 scores (corresponding to 42 studies) were
then ranked in decreasing order (low-bias to high-bias). The
raw-cutoff (1.9) for the selection of AI studies was determined
based on the intersection of the “cumulative plot of mean score
vs. studies” and the “descending order of distribution of the
scores of the studies” (Fig. 10). Table V shows the AP(ai)Bias
model-based ranking of the best 19 AI-based studies taken from
a pool of 42 studies. According to the ranks, the color was
assigned, where green is given to the group of the high-rank
(low-bias), yellow for mid-rank (moderate-bias), and red for the
low-rank (high-bias). Note that the maximum rank a study can
obtain is 50 (10 attributes multiplied by a maximum of 5 points
for each attribute). Using the above strategy and applying to all
the 10 attributes to 19 studies, the top three contenders came out
to be Wu et al. [64], Alberto et al. [71], and Ouchicha et al. [58].

B. Interpretation of the AP(ai)Bias Strategy

To interpret these results, we analyze the mean scores for each
of the ten attributes over all the 19 studies (see Table V: C1 to
C10). The mean and the standard deviation of these attributes are
shown in Fig. 11, which can also be used for computing the per-
centage contribution of these attributes. (i) Learning paradigm
(C6) was the highest scorer amongst all the attributes, since
86% of the studies were supervised. (ii) Inter- & intra-observer
variability (C3, label as IIV) showed the lowest mean value
amongst all the studies. This demonstrated that the evaluation
of AI techniques was undermined and inconclusive. (iii) Data
size (C8) attained a mean value of 2.7, meaning that most of
the data size was in the range of 100 to 500 subjects. (iv) Four
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TABLE IV
BENCHMARKING TABLE FOR SYSTEMATIC REVIEWS FOR COVID-19 ARDS

∗CRF: Conventional risk factor consists of age, body temperature, and (respiratory) signs and symptoms; for prognostic models, age, sex, C reactive protein, lactic dehydrogenase,
lymphocyte count, and potentially features derived from CT scoring; PTC: Point the challenges in design; VTEM: validate the existing models; IIV: Inter- and intra-observer.

TABLE V
AP(AI)BIAS METHODOLOGY BASED RANKING OF THE AI STUDIES FOR ARDS

∗Segm: Segmentation; class: Classification; IIV: Intra- and inter-variability; Innov: Innovation; Bench: Benchmarking; PE: Performance evaluation; CE: Clinical Evaluation; LP:
Learning Paradigm; DP: Data Preparation

attributes scored mediocre mean values, namely segmentation
and classification (C1), benchmarking (C4), scientific validation
and clinical evaluation (C5), and performance evaluation (C9),
contributing to be 44%, 26%, 45.5%, and 30%, respectively. This
clearly shows the segmentation and classification were binary.
Only 26% of the studies implemented benchmarking. Amongst
all the studies, 45.5% did the clinical evaluation with the radiolo-
gist or used a pre-evaluated cohort for the training. The attribute
performance evaluation (C9) scored 31.5%, indicating that the
accuracy of the AI models was around 93%. Our observation
showed that only 6 studies ([49], [58], [59], [64], [66], [71])
(Table V) were in the low-bias pool (bias-cutoff greater than 2.5,
C12, Table V) ((6/19) ∗ 100∼32%), that passed the hypothesis.

C. ROBINS-I

The objective of ROBINS-I is to mimic the randomiza-
tion of the non-randomized studies. It covers seven distinct
attributes (domains) divided into three intervention factors
(marked parameters) for bias during (a) “Pre-Intervention,” (b)
“At-Intervention,” and (c) “Post-Intervention,” through which
bias can be studied. Table II shows the bias due to (i) con-
founding factors (data size and data source); (ii) selection of
participants (training and testing protocols); (iii) classification of
interventions (data augmentation and use of imaging features);
(iv) deviations from intended interventions (demographics, mul-
ticenter data, and comorbidity); (v) missing data (SWAB test,
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Fig. 12. Venn diagram shows the three bias paradigms using: (a) high-
bias; (b) moderate-high bias scenarios.

patient follow-up); (vi) measurement of outcomes (innovation,
optimization, validation by the radiologist, COVID-19 data
size); and (vii) selection of the reported result (prevents it from
being included in the meta-analysis). Table II (seven-column
marked C1 to C7) below discusses the outcome of 19 studies
(“Study” column). The three-color scheme is adopted to de-
pict the outcome of the qualitative analysis. Red color means
high-bias, indicating a severe issue in the study concerning the
factors taken into consideration. Moderate-bias is depicted by
yellow, indicating that the study holds good on the given set
of non-randomized data, and the green means low-bias, as the
study performs comparatively well on the testing parameters
and the input data. We conclude from ROBINS-I (Table II),
“Study column, shaded in pink color” that ∼73% ((14/19) ∗
100) have at least one of the attributes with high-bias. Only
three studies ([64], [71], [80]) passed the hypothesis test ((3/19)
∗ 100 ∼16%). Further, we also conclude that 60% ((79/132) ∗
100) were low-moderate bias (green and yellow color) using the
cell division approach.

D. PROBAST

It is a popular AI-based RoB assessment tool. It uses four
attributes as shown in Table III, where (a) participants, were
the source of the image database and whether the radiologist
verified them, (b) predictors, demographic data availability
(Yes/No), and imaging features. (c) outcomes, consisted of the
factors that whether different datasets were combined and if the
reverse transcription-polymerase chain reaction (RT-PCR) test
was conducted for the cohort, and (d) analysis, covers the cohort
size, number of COVID-19 patients, optimization techniques
used, validation, and the innovation in the design. We used the
same 19 studies adapted for the AP(ai)Bias analysis ranking
(Table V). Using PROBAST, we conclude that ∼47% (9 out
of 19) studies were high-bias (marked as H in red color); some
even had an unclear RoB. Five studies [64], [71], [79–81] out
of the 19 selected studies passed the hypothesis ((5/19) ∗ 100
∼26%). Using the cell division approach, PROBAST showed
67% ((51/76) ∗ 100) were low-moderate bias.

E. Analysis of RoB Using Venn Diagram

Following steps were adapted to generate the Venn dia-
gram (Fig. 12). (i) Conversion of ROBINS-I (Supplemental A)
and PROBAST (Supplemental C) from qualitative scheme to
quantitative scheme, using the conversion scores of low-biases

to 5, moderate-bias to 3, high-bias to 1, and unclear-bias to 0.
(ii) Selection of common studies between (a) ROBINS-I and
PROBAST (left: [43], [48], [49], [58], [66], [75], [77], right:
[43], [46], [48], [49], [58], [62], [66], [75], [77]), (b) PROBAST
and AP(ai)Bias ranking (left: [48], [75], [77], right: [43], [46],
[48], [62], [75], [77]). (c) ROBINS-I and AP(ai)Bias (left: [48],
[62], [75], [77], right: [43], [46], [48], [62], [75], [77]) and (d)
between all the three paradigms (top: [48], [75], [77], bottom:
[43], [46], [48], [62], [75], [77]).

This digital count is shown in the Venn diagram, Fig. 12 for
high-bias and moderate-high bias. These counts are 7, 3, 4, 3
for high-bias, and 9, 6, 6, 6 for moderate-high bias, respectively.
(iii) These digital counts are then converted into percentage by
normalizing it by total studies (19), shown in Fig. 12. These
percentages are 39%, 17%, 23%, and 17%, and 50%, 33%,
33%, 33% for high-bias and moderate-high bias, respectively.
The top two low-bias studies [64], [71] were the same in all three
paradigms. It was interesting to note that reference [66] was
low-bias using AP(ai)Bias, while it was in moderate-high bias
for ROBINS-I and PROBAST. This is because the AP(ai)Bias
takes into consideration attributes like CE, LP and DP. Note
that Fig. 12 uses bias-cutoff of 2.2 and 2.5 for high-bias and
moderate-high bias, respectively.

VII. DISCUSSIONS

The main contributions of the aiSR first showed the basic
pipeline of the ARDS framework (Fig. 3). The study then showed
the statistical distribution visually for (a) different AI models, (b)
image modalities, and (c) image dimension type (2-D vs. 3-D).
The crux of the aiSR was to understand the Risk-of-Bias (RoB)
in a non-randomized AI trial for handling ARDS using three
paradigms: AP(ai)Bias, ROBINS-I, and PROBAST. AP(ai)Bias
consisted of ten main attributes and several sub-attributes, while
the ROBINS-I and PROBAST consisted of seven and four
attributes. These two qualitative assessments were quantified
using the same strategy as in AP(ai)Bias. This framework further
allowed us to show how the AP(ai)Bias based ranking strategy
can be compared against ROBINS-I and PROBAST using high-
RoB and low-RoB cutoff’s and pictorially represented using
Venn diagram. The study further presented 12 (six primary
and six secondary) recommendation for high-RoB studies for
better AI designs for ARDS. Finally, the study corelated the
pathophysiology of ARDS and lung damage process represented
by GGO. In terms of imaging modality, CXR [46], [57], [59],
[72], [80] is more economical, and it is seen that more than
50% of the studies had used them. GGO has been one of the
most common manifestations in CT image volumes, but these
may vary from person-to-person. It has been noted that data
from the patients with rapid progression of the disease show
a faster change in lung lesions, but to incorporate this in the
AI framework, more data for the AI-model is required to train
them. It also requires a follow-up on the patient’s condition. The
evaluation of the AI models has not been done using randomized
trials, so to overcome this, we have proposed the usage of novel
methods for the RoB analysis using ROBINS-I and PROBAST.

A. Benchmarking: Comparative Study on aiSR

Table IV shows a comparison between the previous aiSR,
where 12 types of attributes were chosen to compare the five
studies [11–15]. The proposed study is in the last column,
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labelled “Suri.” Note that we offer “
√

” in places for unique
contribution in the “Suri model.” We also offer recommenda-
tions in clinical validation, inter-and intra-observer variability,
comorbidity, and risk granularity.

B. Recommendations

The primary set of six-point recommendations is: (i) Co-
morbidity: This section focuses on a novel intuitive approach
that can lead to new improvements to the present prevailing
methods for COVID-19 diagnosis. Studies have shown that
comorbidities like age, ethnicity, hypertension, diabetes, higher
BMI, respiratory disorders, hyperlipidemia, and obesity lead
to worsening of ARDS [102], [103]. In these studies, ARDS
is more prominent among the older patients, and if given a
timely prognosis, can be controlled to reduce the risk factor
and enhance the efficacy related to COVID-19. For validation
of this data, a randomized controlled trial is necessary where the
data is clinically validated. With AI techniques and comorbidity
factors, this disease’s prognosis and diagnosis can be made
more accurate. (ii) Inter- and intra-observer variability: Our
observation shows that only 12% of the AI-based studies at-
tempted inter-and intra-observer variability study analysis. This
does not assure that the AI results are robust. An example of
comprehensive IIV can be seen in [104], [105]. Similarly, inter-
and intra-operator variability can be computed, ensuring further
reliability in clinical settings. (iii) Data Size: Even though 50%
of the AI studies for ARDS had a total number of subjects<500,
this could be improved by targeting 1,000 and above. Typically,
clinical trials adapted in meta-analysis range to many thousands
(>15,000). This also requires conducting “power-analysis” for
the AI system [106–108]. (iv) Scientific Validation and Clinical
Evaluation: It requires the engineering AI-based design to be
validated by the clinical community in terms of reliability,
accuracy, and reproducibility. Therefore, the medical, scientific,
and engineering community needs to collaborate more closely.
They could also incur more costs for system design, should
the medical community participate for a longer duration [109],
[110]. (v) Risk Granularity: Risk assessment in several medicine
fields is binary; however, such a strategy poses a challenge during
drug prescription and better patient care. For this reason, new
strategies have evolved recently where a multiclass framework
provides a stronger granularity of risk leading to better control of
medications and monitoring [111], [112]. This requires multiple
classes in the ground truths design for COVID-19 severity. This
means a careful examination of the CT lung images by the
radiologist in conjunction with the pulmonologist. The second
alternative is to stratify the risks of the AI systems’ output in
continuous values between 0 and 1, thereby partitioning the
output into multiple classes. Note that the classes’ thresholds
are based on the baseline characteristics of the input cohort’s
demographics.

Note that the classes’ thresholds are based on the baseline
characteristics of the input cohort’s demographics. (vi) Scientific
validation using cross-modality fusion: Scientific validation is
crucial for ensuring the AI system’s correct functioning. One
way could be looking at COVID-19 using two different angles,
such as imaging of the lung using CT and positron emission
tomography (PET). With the advanced technology of combined
PET/CT, one can visualize the PET images’ metabolic distribu-
tion corresponding to the spatial CT [113]. Fig. 13 below shows
the PET image showing the functional metabolic distribution

Fig. 13. PET-CT pair of a COVID-19 lung ([113]).

of COVID-19. The selected studies did not consider PET/CT
fusion as part of a systematic review.

The secondary set of recommendations include (i) solid model
design (training and prediction) [86], [89], [114], (ii) repro-
ducibility [104], (iii) process of peer-review, (iv) high-quality
documentation, (v) multi-ethnic and multi-regional data collec-
tion, and (vi) multiple ground-truth events for clinical validation
[11]. Since all the three paradigms of hypothesis (section II.B)
were invalid, we thus conclude that one requires the above
concrete recommendations for improving AI design for meeting
the requirements of the hypothesis keeping in mind for optimal
AI performance. Note that in our study the AI solutions did not
consider the socio-economic causes during the design. Recently
a study [115] was conducted elaborating the need for inclu-
sion of socio-economic conditions for COVID-19. This could
possibly be adapted as an extension to the current work. The
role of socio-economic conditions during the ML design was
attempted by our group for neonatal deaths in different counties
of Bangladesh [116]. A similar approach can also be adapted for
COVID-19 based on geography, social-economic conditions.

C. Strength, Weakness, and its Extension

This main strength of this review is the selection of the best
19 AI studies for analyzing RoB. Most of the studies adapted
DL as their base architecture due to the medical imaging source.
As a result, DL was the best suited for its purpose. We observed
that data augmentation was also used in 43% of the studies
where the data was lacking. For the selected set of studies, we
have successfully analyzed the risk factors using two schemes,
ROBINS-I and PROBAST. There was a gap in the studies that
there was no linking on how they did COVID severity, clinical
validation, variability study, and cross-modality [117]. Some
of the studies did not mention about hardware constraints. On
top of all, none of them showed any 510(K) FDA approval.
There is much inconsistency in the studies, which can be fixed
by adopting some initial clinical validation on the patients
using cross-modality. Even RL, TL with cross-modality, and
comorbidity can introduce innovation to this lifesaving study
worldwide. Understandably, this may take more time for the
medical community but could cut corners on patient care.

VIII. CONCLUSION

This study used the PRISMA model to select 89 studies, which
was then AI-filtered to 42. Based on the mean score ranking,
the selection was further refined to 19 studies using a raw
cutoff of 1.9. Further, the three RoB paradigms were analyzed



SURI et al.: SYSTEMATIC REVIEW OF ARTIFICIAL INTELLIGENCE IN ARDS 4137

using the Venn diagram. The percentage of studies that satisfied
the “non-randomized Artificial Intelligence-based” hypothesis
for ARDS-based COVID-19-infected lungs were only 32%,
16%, and 26%, corresponding to AP(ai)Bias, ROBINS-I, and
PROBAST, respectively. This percentage obtained was using
high-bias cutoff of 2.2 and moderate-high bias cutoff of 2.5,
respectively. None of the three RoB models met the requirement
of the hypothesis.

The aiSR’s overall presents a set of six-point primary and
six-point secondary recommendations for improving the AI
design for ARDS were (i) the inclusion of comorbidity in AI
design, (ii) increase in data size, (meets the performance of
all the standards in ARDS COVID-19 lung infected patients),
(iii) scientific validation using cross-modality, (iv) conducting
the clinical validations, (v) improved inter-and intra-observer
variability studies, (vi) risk granularity for better drug prescrip-
tion. The secondary set of recommendations include (i) solid
model design (training and prediction), (ii) reproducibility of the
proposed model, (iii) process of peer-review, (iv) high-quality
documentation, (v) multiethnic and multi-regional data collec-
tion, and (vi) multiple ground truth events for clinical validation.
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