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Inverse centrifugal effect induced by collective
motion of vortices in rotating thermal convection
Shan-Shan Ding 1,5, Kai Leong Chong2,4,5, Jun-Qiang Shi1, Guang-Yu Ding 2,3, Hao-Yuan Lu1,

Ke-Qing Xia 2,3✉ & Jin-Qiang Zhong 1✉

When a fluid system is subject to strong rotation, centrifugal fluid motion is expected, i.e.,

denser (lighter) fluid moves outward (inward) from (toward) the axis of rotation. Here we

demonstrate, both experimentally and numerically, the existence of an unexpected outward

motion of warm and lighter vortices in rotating thermal convection. This anomalous vortex

motion occurs under rapid rotations when the centrifugal buoyancy is sufficiently strong to

induce a symmetry-breaking in the vorticity field, i.e., the vorticity of the cold anticyclones

overrides that of the warm cyclones. We show that through hydrodynamic interactions the

densely distributed vortices can self-aggregate into coherent clusters and exhibit collective

motion in this flow regime. Interestingly, the correlation of the vortex velocity fluctuations

within a cluster is scale-free, with the correlation length being proportional (≈ 30%) to the

cluster length. Such long-range correlation leads to the counterintuitive collective outward

motion of warm vortices. Our study brings insights into the vortex dynamics that are widely

present in nature.
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Coherent vortex structures exist ubiquitously in many flow
systems ranging from small-scale turbulence to large-scale
geophysical and astrophysical flows1–3, and their dynam-

ics play a crucial role in determining turbulent mixing and
transport in those systems. Previous studies of vortex dynamics
are mainly focused on isolated vortices3,4. However, in rapidly
rotating turbulent flows these vortices become densely
distributed5,6, and the resulting vortex interactions may lead to
markedly different dynamics compared to that of isolated
vortices7–9. Many nonequilibrium dynamical systems in nature
consisting of densely distributed, interacting entities often exhibit
collective behavior, i.e., the entities self-aggregate to perform
collective motions. Examples include bird flocks, bacteria swarms,
and clustering of active matters10–12. Whether the collective
behavior of vortices can arise in rotating turbulent flows is thus a
question of fundamental interest.

The fluid dynamics of rotating turbulent flows is often studied
in rotating Rayleigh–Bénard convection (RBC). Despite the
considerable progress achieved in studying non-rotating and
weakly rotating turbulent RBC13–18, some important convection
regimes that may exhibit intriguing vortex dynamics are yet to be
explored (see, e.g.,19,20). Recent studies report that for rapidly
rotating RBC in moderate Prandtl-number fluids, the convective
flows are organized by the Coriolis force into coherent columnar
vortices21–30. These columnar vortices are helical structures with
either upward or downward flows. Upwelling vortices rotate in
the same direction as the system (cyclones) in the lower half fluid
layer, and in the opposite direction (anticyclones) in the upper
half and vice versa for downwelling ones22,29. The theory of
thermal wind balance, which relates the vertical variations of the
fluid velocities with the horizontal temperature gradients31, pro-
vides a general description of the flow structures of the columnar
vortices. From a dynamical viewpoint, however, the horizontal
motions of, and the interactions between, these vortices remain to
be explored in a quantitative way.

Here, we demonstrate both experimentally and numerically the
collective motion of vortices in rotating thermal convection. As a
primary external force governing the motions of rotating fluids in
many natural and industrial flows19,32,33, centrifugal force drives

cold, denser fluid radially outward from the rotation axis and
warm, lighter fluid inward. Counterintuitively, we discover that
the long-range correlated vortex dynamics give rise to inverse
centrifugal motion, i.e., the warm and lighter convective vortices
exhibit outward motion from the rotation axis. This intriguing
phenomenon occurs in a rapidly rotating regime where the strong
centrifugal buoyancy breaks the symmetry in both the population
and vorticity magnitude of the vortices. Our study reveals that it
is through local hydrodynamic interactions that the densely dis-
tributed vortices self-aggregate into large-scale vortex clusters, in
which the warm cyclonic vortices submit to the collective motion
dominated by the strong anticyclones and move outwardly.

Results
Vortex motion and inverse centrifugation. Our experimental
apparatus was designed for high-precision flow structure mea-
surements in rotating RBC20,30. We used cylindrical cells with an
inner diameter d= 240mm and height H= 63.0 (120.0) mm,
yielding an aspect ratio Γ= d/H= 3.8 (2.0). The experiment was
conducted with a constant Prandtl number Pr= ν/κ= 4.38 and
in the range 2.0 × 107 ≤ Ra ≤ 2.7 × 108 of the Rayleigh number
Ra= αgΔTH3/(κν) (g is the gravitational acceleration, ΔT the
applied temperature difference, α, κ and ν are respectively the
isobaric thermal expansion coefficient, thermal diffusivity, and
kinematic viscosity of the convecting fluid). Rotation rates of up to
5.0 rad/s were used. Thus the Ekman number Ek= ν/(2ΩH2)
spanned 4.9 × 10−6 ≤Ek ≤ 2.7 × 10−4, corresponding to a
range of the reduced Rayleigh number 1.3 ≤ Ra/Rac ≤ 166. Here,
Rac= CEk−4/3 (with the coefficient C= 8.7− 9.63Ek1/6) is the
critical value for the onset of convection34, and Ω is the
rotating rate. The Froude number Fr=Ω2d/(2g) varied within
0 < Fr ≤ 0.31. The flow field at a fluid depth of z=H/4 was
measured using the technique of particle image velocimetry (PIV)
(see a schematic of the experimental setup in Fig. 1i). In the direct
numerical simulation (DNS) we solved the Navier–Stokes equa-
tions with the Coriolis and centrifugal forces included, using
the multiple-resolution version of the CUPS code35,36. The
simulation was performed in a cylindrical domain with Γ= 4,

Fig. 1 Experimental apparatus and radial motion of vortices. a, c Instantaneous vertical vorticity distribution ω/ωstd over the measured fluid height. ωstd is
the standard deviation of ω. b, d Trajectories for cyclones (red) and anticyclones (blue). The shading of the trajectories indicates that the vortices appear
(terminate) at the light (dark)-color side. Results for Ra= 3.0 × 107 and Ra/Rac= 8.90, Fr= 0.03 (a, b); Ra/Rac= 1.97, Fr= 0.27 (c, d). e–h Radial profiles
hurðrÞiξ of cyclones and anticyclones. Data for Ra= 2.0 × 107 and from left to right, Ra/Rac= 20.9, 4.57, 2.26, 1.43, corresponding to the four flow regimes
(I)–(IV), respectively (see text for discussions). Here, ξ denotes individual vortex trajectory and 〈...〉ξ a trajectory-ensemble average. (i) Schematic of the
experimental set-up. A laser sheet illuminates a rotating Rayleigh–Bénard convection cell filled with water and seeded with tracer particles at a fluid height
z= H/4. A co-rotating camera images the light scattered by the tracer particles.
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Ra= 2.0 × 107, and 1.3 ≤ Ra/Rac ≤ 55 (see Supplementary Fig. 1
for a phase diagram of the present study).

Figure 1 presents snapshots of the vortex structures at the
measurement fluid height (z=H/4). At a low rotation rate when
the centrifugal force is negligible (Fig. 1a), the cyclonic vortices
(shown in red color) possess a greater number density and on
average larger vorticity in magnitude than that of anticyclones
(blue color). Both types of vortices exhibit stochastic horizontal
motions as evidenced by the vortex trajectories shown in Fig. 1b.
The mean-square-displacement (MSD) of the vortices becomes a
linear function of time at large times, indicating a Brownian-type,
normal diffusive motion20.

However, at higher rotation rates when the centrifugal force
becomes dominant, we observe strong anticyclones with a larger
population than the cyclones (Fig. 1c). The anticyclones undergo
outward radial motions accompanied by stochastic fluctuations
along their paths (Fig. 1d) until they move close to the sidewall
where their radial motion is terminated by the retrogradely
traveling plumes. Compared to the anticyclones, the motion of
weak cyclones is much more complex. Figure 1d indicates that in
the outer region (r ≥ d/4), the cyclones move toward the cell
center while in the inner region (r ≤ d/4) most of them migrate
radially outward. In this rapidly rotating case, the MSD of both
types of vortices indicates superdiffusive behavior (see Supple-
mentary Movies of the vortex motions).

To further quantify the vortex motions, we show the profiles of
the mean radial velocity huriξ of the vortices measured in the
inner region of the cell in Fig. 1e–h. These velocity profiles reveal
four distinct flow regimes depending on the rotation rates: (I) A
randomly diffusive regime exists in the slow rotating limit with
Ra being one order in magnitude larger than Rac. In this regime
the vortices move in a random manner, yielding huriξ � 0
(Fig. 1e). (II) A centrifugation-influenced regime where the
magnitude of huriξ increases linearly with r (4Rac ≤ Ra ≤ 10Rac).
We observe that warm cyclones (cold anticyclones) move radially
inward (outward), which is in agreement with the centrifugal
effect (Fig. 1f). (III) Inverse-centrifugal regime (1.6Rac ≤ Ra ≤ 4
Rac) in which there is anomalous outward cyclonic motion
(Fig. 1g), and the radial gradients of huriξ for both types of
vortices reach a maximum. (IV) The asymptotic regime in the
rapid rotation limit (Ra ≤ 1.6Rac) where the opposite radial
motions of cyclones and anticyclones recover (Fig. 1h).

We formulate a theoretical model consisting of Langevin-type
equations that incorporate the centrifugal force, which governs
the radial vortex motion in a background of stochastic
fluctuations. As shown in Fig. 2, the model provides predictions
of the first and second moments of the radial vortex displace-
ments which replicate very well the experimental data in flow

regimes (II) and (IV) (see Supplementary Note 3 for detailed
discussions of the model). Nonetheless, Fig. 2 clearly shows that
the inverse centrifugal motion of the cyclones in the anomalous
regime (III) cannot be explained by the model. A key question is
then what sets the anomalous vortex motion?

Asymmetric vorticity field in the inverse-centrifugal regime. To
gain insights into the observed phenomenon, we first examine the
relative strength of vorticity between the cyclones and antic-
yclones. Figure 3a shows the vorticity ratio γω of the anticyclones
to the cyclones. We note that in the randomly diffusive regime, γω
is approximately 0.6, meaning that at the measurement height
z=H/4 the cyclonic vorticity is overall larger in magnitude than
the anticyclonic ones (see Fig. 1a). It is the case because when
observed at the lower half of the layer, anticyclones are down-
welling vortices generated from the top boundary. They travel a
long distance to the measurement layer than the upwelling vor-
tices (cyclones), and their momentum and vorticity have been
largely dissipated by the background turbulence when reaching
the measurement position in this flow regime27. (The vorticity
magnitude of the two types of vortices are equal if measured at
z=H/2. See the visualization from our DNS in the right inset of
Fig. 3a.) With increasing Ω the up- and down-welling vortices
evolve into columnar structures that are vertically antisymmetric
in vorticity with respect to the mid-height plane25,26. One would
expect that in this flow regime the measured vorticity strength of
the cyclones and anticyclones become comparable, i.e., γω
approaches unity. Our DNS data with the centrifugal force
switched off indeed show this trend. However, when the cen-
trifugal effect is dominant, both the experimental and DNS results
reveal that γω exceed unity considerably in the inverse-centrifugal
regime, indicating an asymmetric vorticity field dominated by the
cold anticyclones (left inset of Fig. 3a). In the asymptotic regime
where the severe rotational constraint finally weakens the con-
vective vortices, γω eventually returns to unity, and the symmetry
of the cyclonic and anticyclonic vorticity restores. Remarkably, we
observe that γω(Ra/Rac) is independent of Ra and Γ over the
parameter range studied.

We now show that the asymmetry of the vorticity field in the
anomalous regime results from the centrifugal effect. Figure 3b
presents the radial profiles of the mean temperature of the two
kinds of vortices and of the background fluid. These numerical
data indicate noticeable warming of the background fluid in the
inner region, owing to the centrifugal effect37–39. (See compara-
tive results in Supplementary Fig. 7 when the centrifugal force is
excluded.) As a result, the temperature difference δT of the cold
anticyclones from the background exceeds that of the warm
cyclones. Since δT is proportional to the buoyancy forcing on the
vortices, it is predicted to be positively correlated to the vorticity

Fig. 2 Second moments of vortex radial displacement. Results for anticyclones (a) and cyclones (b) with Ra= 3.0 × 107. Open symbols: experimental
data. Solid lines: theoretical predictions. Insets: results of the first moments of vortex radial displacement. r0 is the initial radial position of a vortex.
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ω in recent theoretical models24,26. Indeed Fig. 3c shows that δT
and ω are both larger in magnitudes for anticyclones than for
cyclones in the inner region, which explains the asymmetry of the
vorticity field (γω > 1).

Clustering and collective motion of the vortices. In light of the
broken symmetry of the vorticity field in the anomalous regime,
we show below that it is the long-range correlated vortex motion
that gives rise to the inverse centrifugal motion of the cyclones.

Figure 4 presents the instantaneous motion of the vortices, with
their spatial distribution presented in a Voronoi diagram. One
sees that the adjacent vortices often self-organize into vortex
clusters, i.e., the vortices move largely in the same direction. We
adopt two criteria to identify vortex clusters, i.e., the distance of
two neighboring vortices is smaller than 1.5 times the mean
vortex diameter and the angle ϕ between their velocity vectors is
within a threshold (ϕ ≤ ϕ*= 60°). Our analysis over the range
30° ≤ ϕ* ≤ 75° confirms that the results of correlated vortex
motion are not sensitive to the choice of ϕ*. The direction of the
motion of each cyclone i is represented by the angle θ between its
velocity u!i and its position vector r!i from the rotation axis. We
find that θ is strongly dependent on the number (N) of vortices in
a cluster (inset). For isolated cyclones (N= 1), the most probable
direction of motion is radially inward (θp= π). However, for
clustered cyclones (N > 1) we find θp= 0 as they move outward.
The standard deviation of θ decreases monotonically when N
increases. Our data reveal that within large clusters the motion of
weak cyclones submit to that of strong anticyclones and move
outwardly in a collective manner. Their inverse centrifugal
motion becomes more unidirectional with the increase of the
cluster size.

By analyzing the cluster size distribution p(N), one can obtain
certain insights into the physical mechanism responsible for the
vortex cluster formation. Figure 5a shows that p(N) for various
Ra/Rac can be well described by pðNÞ ¼ AN�be�N=Nc . Here, b and
Nc are the fitting parameters with their dependence of Ra/Rac
plotted in the inset. For clusters in small size N, p(N) first decays
as a power function N−b up to a cutoff size Nc. Studies of the
collective behavior in various natural systems have revealed that
local aggregation of interacting entities is the essential ingredient
for the power-law decay of the group-size distributions in these
systems40–42. In the present vortex system, each vortex is
surrounded more likely by counter-rotating vortices in a densely
populated state (Fig. 4). Owing to the vortex-pair interaction,
adjacent vortices of opposite-sign tend to move in similar
directions43 (see Supplementary Note 7 for details). Moreover,
the shielded structure formed near the edge of each vortex
prevents strong interactions in closer proximity26,28,30, thus
avoiding vortex merging and annihilation. As a result, isolated
vortices are often aggregated into neighboring clusters and move

Fig. 3 Vorticity and temperature of cyclones and anticyclones. a The vorticity ratio γω= ∣〈ωa〉/〈ωc〉∣ of the anticyclones to the cyclones as a function of
Ra/Rac. Here, 〈...〉 denotes a time average. Filled symbols: experimental data for Γ= 3.8 with Ra= 2.0 × 107 (circles), 3.0 × 107 (up triangles), 6.0 × 107

(squares); and for Γ= 2.0 with Ra= 1.4 × 108 (diamonds), 2.7 × 108 (left triangles). Data from DNS including (excluding) the centrifugal force are shown in
open diamonds (pluses) for Γ= 4.0. The solid curve indicates the trend of the experimental data. The error bars denote representative fluctuation
amplitude of γω. Inset panels: iso-surfaces of the temperature anomaly from DNS for Ra= 2.0 × 107, Ra/Rac= 2.26 (left), and Ra/Rac= 18.3 (right). The
coloration represents the vorticity of the vortices. b Radial profiles of the mean temperature 〈T− Tm〉/ΔT for the vortices and the background fluid. Tm is
the mean of the top and bottom fluid temperature. The length of the dashed lines indicates the temperature difference δT between the cyclones
(anticyclones) and the background fluid. c Radial profiles of γω and γT= ∣〈δTa〉/〈δTc〉∣. b, c DNS data for Ra= 2.0 × 107 and Ra/Rac= 2.26.

Fig. 4 Clustering of vortices. Results are shown in the central region for
Ra= 3.0 × 107, Ra/Rac= 1.97, Fr= 0.27. Blue (yellow) circles show the
centers of anticyclones (cyclones). Black arrows show the vortex velocity
direction. The solid-line network represents the Voronoi diagram of the
vortex centers. Examples of six vortex clusters are highlighted and marked
with thick boundaries. θ denotes the angle between the position vector of a
cyclone relative to the rotation axis (green cross) and its velocity. L is the
largest distance between two vortices within a cluster. The background
coloration represents the distribution of the quantity Q/Qstd. Inset:
Probability density functions of θ of cyclones in clusters with various size N.
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collectively. The power-law exponent, b= 1.5 ± 0.04, is found to
be independent of Ra/Rac (inset of Fig. 5a), and falls within the
range of previous theoretical predictions40,44. For large N we find
that p(N) evolves into an exponential tail with the cutoff size Nc

varying with Ra/Rac and reaching a maximum at Ra/Rac= 1.97,
where the vorticity ratio γω is maximum (see Fig. 3a). The
rescaled data pðNÞN1:5

c =A as a function of N/Nc thus collapse onto
a master curve as shown in Fig. 5b.

Dynamical systems consisting of clustered entities often exhibit
scale-invariant, collective motions12. Here, we further analyze the
spatial correlation function of vortex velocity fluctuations within

a vortex cluster CðlÞ ¼ ∑ij½u0
!

ið r!i þ l
!Þ � u0!jð r!jÞδðl � lijÞ�=

½C0 �∑ijδðl � lijÞ�, where u!0
i ¼ u!i � V

!
is the relative vortex

velocity with respect to the mean cluster velocity V
!¼ ∑i u

!
i=N ,

lij is the distance between the vortex pair (i, j) and C0 is a
normalization constant. δ(l–lij) is a Dirac function selecting pairs
of vortices separated by distance l. Figure 5c shows that C(l)
decreases as the distance l increases, with the decay length
depending on the cluster size N. In Fig. 5d, we present the
correlation function C(l/L), scaled by the cluster length L, for
clusters with various sizes. This rescaling leads to the converging
of the data onto a single curve representing a stretched
exponential function, which crosses zero at the correlation length
lc ≈ 0.3L for all cluster sizes N. Thus the correlated motions of the
vortices are long-range and scale-free, i.e., there is no character-
istic length scale here except the length L of the cluster. We
remark that the scattering of data points at large distances (l ≈ L),
owing to insufficient statistics, has negligible influence on the
determination of lc.

Discussion
Our study has revealed the formation of large-scale coherent
structures, in the form of vortex clusters, in rotating thermal
convection. Within each cluster the lighter cyclones submit to
collective motions dominated by the heavier anticyclones, exhi-
biting outward, inverse-centrifugation motion. We find that the
size-distribution p(N) of the vortex clusters can be well repre-
sented by a fractional power function with an exponential cutoff.
The observed robust three-half power scaling of p(N) for small N
(see Supplementary Fig. 9a) suggests that the theory of
aggregation40–42 apply to a broad range of grouping phenomena,
and may provide predictions for the clustering dynamics of
vortices in the present highly nonlinear, buoyancy-driven con-
vection systems.

For large N we find that p(N) decays exponentially and the
cutoff size Nc is maximum when the centrifugal effect is domi-
nant. Further investigations reveal that Nc is proportional to the
ratio of the vortex population density over the separation rate of
the vortices from the clusters (detailed in Supplementary Fig. 9c),
analogous to various biological systems42,45. We thus attribute the
exponential decay of p(N) to the separating and aggregating
process of vortices between the clusters and the ambient flows,
which maintains a statistically stable cluster-size distribution. As
is shown in Supplementary Fig. 9b, the vortex separation rate
reaches a minimum when the asymmetry of the vorticity fields is
maximum. Thus when the interaction between adjacent vortices
is dominated by the anticyclonic flows, the cluster structures
possess the maximum stability against separation, leading to
the largest characterized cluster size Nc.

Last, we have discovered that the self-organized vortices exhibit
scale-free correlations of velocity fluctuations, with the

Fig. 5 Statistical properties of vortex clusters and collective motion of vortices. a Size distribution of vortex clusters. Solid curves represent fits to the
experimental data pðNÞ ¼ AN�be�N=Nc . Results for Ra= 3.0 × 107. Symbols are as in (b). Inset: the fitting parameters, i. e., the exponent b (circles) and
cutoff size Nc (triangles) as functions of Ra/Rac. The prefactor A is determined by the normalization relation: ΣNp(N)= 1. b The rescaled data pðNÞNc

1:5=A
shown in a log-log frame as a function of N/Nc. All data collapse onto a master curve shown by the solid curve. See Supplementary Fig. 10 for a power-
function compensated plot of p(N). c, d Correlations of the vortex velocity fluctuation as a function of l/H (c), and as a function of l/L (d). Solid symbols:
experimental data for Ra= 3.0 × 107, Ra/Rac= 1.97. Open symbols: DNS data for Ra= 2.0 × 107, Ra/Rac= 2.26. The solid curves represent stretched
exponential functions, CðlÞ ¼ ð1þ aÞeð�c1 lÞc2 � a, fitted to the data (described in Supplementary Note 9). The vertical dashed line in (d) indicates the
correlation length lc≈ 0.3L determined by the zero-crossing position of C(l/L).
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correlation length being approximately 30% of cluster length.
This phenomenon of scale-invariant dynamics is analogous to the
collective behavior observed widely in bird flocks, bacterial
colonies10,11, and in active matters12. The present study sheds
light from a different angle on the phenomenon of collective
motion and may have broad implications in the studies of soft
condensed matter, fluid physics, and biological systems.

Methods
Experimental setup. In the present study, we used a cylindrical cell mounted on a
rapidly rotating table. Its bottom plate was made of 35 mm thick oxygen-free
copper, heated from below by a uniformly distributed electric wire heater. Its top
plate was a 5 mm thick sapphire disc, cooled from above through circulating
coolant. Its sidewall, made of 3 mm thick Plexiglas, was protected against the
ambient temperature fluctuations by an adiabatic shield that maintained a constant
temperature. Temperature inhomogeneities over the top and bottom plates and the
adiabatic shield were within one percent of ΔT (temperature difference between the
top and bottom plates) during the experiment. The rotating axis of the table was
adjusted to be accurately parallel to the gravity. The rotation was set in the
clockwise direction with the rotation vector pointing downward (see Fig. 1). The
convection cell was then leveled, using a cross-test level with a precision of
0.02 mm/m placed on the top surface of the top plate, to better than 0.001 rad. For
flow visualization, a PIV system was installed on the co-rotating frame. A thin
light-sheet powered by a solid-state laser illuminated the seed particles in a hor-
izontal plane at a fluid height z=H/4 (Fig. 1i). Images of the particle were captured
through the top sapphire window by a high-resolution camera (2448 × 2050 pixels).
Two-dimensional velocity fields were extracted by cross-correlating two con-
secutive particle images. Each velocity vector was calculated from interrogation
windows (32 × 32 pixels), with 50% overlap of neighboring sub-windows to ensure
sufficient accuracy and resolution46. For each measurement, we took image
sequences at a time interval of 0.5 s with a typical acquisition time of 2.5 h. Detailed
experimental schemes of vortex identification and tracking are provided in Sup-
plementary Note 2.

Numerical method. In the DNS we solved the three-dimensional Navier–Stokes
equations with the Boussinesq approximation

Du
Dt

¼� ∇P þ Pr
Ra

� �1=2

∇2uþ θẑ

þ Pr

RaEk2

� �1=2

u ´ ẑ� 2rFr
d

θr̂;

ð1Þ

Dθ
Dt

¼ 1

ðRaPrÞ1=2
∇2θ; ð2Þ

∇ � u ¼ 0: ð3Þ
Here, u is the fluid velocity, θ and P are the reduced temperature and pressure.

The last two terms in the momentum equation (Eq. (1)) represent the Coriolis
force and the centrifugal force, respectively. The equations were
nondimensionalized using L, ΔT, and the free-fall velocity U f ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αgΔTL

p
. The

simulations were performed in a cylindrical sample with an aspect ratio Γ= 4 and
no-slip boundaries at all walls. Equations (1–3) were solved using a fully
parallelized DNS code CUPS based on finite volume method with 4th order
precision. To increase computational efficiency without any sacrifice in precision,
we used a multiple-resolution strategy, in which the temperature equation was
solved in a finer grid than the momentum one, allowing for a sufficient resolution
to resolve the Batchelor and Kolmogorov length scales. The grid resolutions along
radial, azimuthal and vertical directions were 140 × 384 × 160 for the momentum
and pressure fields, and 280 × 768 × 160 for the temperature field. Staggered grids
were used in the simulations, which allowed the grid cells corresponding to the
three velocity components to be shifted by half a grid cell. Grids were refined near
boundaries, so that boundary layers can be resolved. In addition, we considered the
flow fields with Fr= 0, excluding the centrifugal effect.

Data availability
The data that support the findings of this study are available within this article,
its Supplementary Information, or from the corresponding authors upon request. Source
data are provided with this paper.

Code availability
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