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While immunotherapy has marked significant advances in can-
cer treatment, resistance remains a challenge. The complexity
of the tumor microenvironment, particularly the role of B
cell subpopulations, is a critical factor affecting treatment effi-
cacy. In this study, we conducted analyses of single-cell RNA
sequencing data from immunotherapy patients (n = 25) to
explore the biomarker of immunotherapy resistance. Spatial
transcriptome analysis, immunofluorescence analysis, and
multi-cancer immunotherapy transcriptome analysis (n =
1,253) were used to validate our finding, and the potential
mechanisms were explored. FOS+ B cells, identified across
multiple cancer types, were associated with poor response to
immunotherapy. FOS may form AP-1 (activator protein 1)
with JUNB, thereby promoting the expression of Blimp-1 and
subsequently facilitating the differentiation of B cells into
immunosuppressive plasma cells. Furthermore, FOS+ B cells
were linked to altered tumor necrosis factor signaling path-
ways, suggesting a mechanism for their immunosuppressive
effects. Our findings highlight FOS+ B cells as important
players in immunotherapy resistance, providing a novel
biomarker for predicting treatment response. This study
not only deepens our understanding of the immunological
landscape influencing immunotherapy efficacy but also opens
avenues for targeted interventions to overcome resistance.

INTRODUCTION
Immunotherapy, including immune checkpoint inhibitors (ICIs), has
shown excellent performance as a landmark malignancy treatment in
a variety of cancers, including lung cancer,1 colorectal cancer,2 and
skin tumors.3 However, not all patients benefit from immunotherapy,
and many patients develop immunotherapy resistance.4 Although
there are many studies on immunotherapy resistance, the mechanism
behind it remains unclear, presenting a substantial challenge in the
selection of appropriate treatment regimens.

Previous studies have shown that the heterogeneity of the tumor
microenvironment may be an important reason for the different
efficacies of immunotherapy in patients.5–7 Immune cells, as an
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important component of the tumor microenvironment, play an
important role in anti-tumor immunity and thus affect immuno-
therapy efficacy and patient prognosis.8 The influence of immune
cells on the effect of immunotherapy has been well recognized.9

Many previous studies have shown that immune cells, such as B cells,
have positive implications for immunotherapy,10–12 but a few studies
showed that B cells affect immunotherapy efficacy.13,14 Therefore, we
speculate that a certain group of B cells has a negative effect on immu-
notherapy, while the other B cells promote immunotherapy efficacy,
and further studies are needed to prove this conjecture and to inves-
tigate which B cells reduce immunotherapy efficacy.

Single-cell RNA sequencing (scRNA-seq) can be used to measure
RNA expression levels at the cellular level.15 scRNA-seq, combined
with a variety of cell-specific markers, enables the identification of
cell types, cell functional status, levels of cell-to-cell interactions,
and the differentiation status using several analysis methods.16

With the advancement of technologies such as single-cell sequencing,
our understanding of B cell subpopulations and their impact on the
immune microenvironment has deepened. Various B cell subgroups,
including naive B cells and memory B cells, have been associated with
favorable prognoses in malignant tumor patients. Conversely, regula-
tory B cells (Bregs) have been linked to poorer prognoses as they
secrete multiple immunosuppressive cytokines, including IL-10,
IL-35, and TGF-b.10,17 However, the precise role and mechanisms
by which B cells operate in immunotherapy warrant further investi-
gation, necessitating continued research in this area.

We analyzed single-cell sequencing data from immunotherapy pa-
tients to perform a comparative analysis of tumor-infiltrating B cells
to obtain immunotherapy-related B cells and their marker genes. We
discovered that FOS+ B cells negatively affect immunotherapy
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outcomes, in contrast to other B cell subtypes across four cancer
types. Immunofluorescence analysis and pan-cancer immunotherapy
cohort analysis also indicated that FOS+ B cells negatively relate to
immunotherapy efficiency and anti-tumor immunity. Furthermore,
we explored the possible mechanisms underlying the effect of
FOS+ B cells. This study sheds light on the imaging of B cells for
immunotherapy and provides directions and ideas for overcoming
drug resistance in immunotherapy (Figure 1).

RESULTS
FOS+ B cells are associated with immunotherapy response

We first analyzed a single-cell dataset of basal or squamous cell car-
cinoma (BCC) (GSE123813) of 10 immunotherapy patients, 6 of
whom responded to immunotherapy (R) and 4 of whom did not
respond to immunotherapy (NR). A total of 40,314 immune cells
were included in this dataset, which were clustered by PCA down-
scaling and displayed by UMAP as shown in Figure 2A and divided
into 12 subgroups, of which the number of cells in groups 2, 6, and
10 was statistically different between R and NR patient groups
(p < 0.001, Figures 2B and 2C). The marker genes of each cell group
are shown in Figure 2D. To define the types of each subgroup of cells,
we analyzed the expression of immune cell marker genes among the
12 cell types (Figure 2E). CD19, CD79A, and MS4A1 were defined as
B cell marker genes. IGHG1, MZB1, SDC1, and CD79A were defined
as plasma cell marker genes. CD68, CD163, and CD14were defined as
macrophage and monocyte marker genes. CD3D, CD3E, CD8A, and
CD4 were defined as T cell marker genes. FGFBP2, FCG3RA, and
CX3CR1 were defined as NK cell marker genes. Based on these
gene expressions, we defined cluster 2 cells as B cells, cluster 10 cells
as plasma cells, and cluster 6 cells as monocytes or macrophages
(Figure 2F). As shown in Figure 2G, CD19, CD79A, and MS4A1
were characteristically expressed in cluster 2 cells, which were defined
as B cells.

We further clustered the 5,969 B cells in descending order into
4 groups (Figure S1A), and the third group (n = 269) showed a
significant quantitative difference between the R and NR groups
(p < 0.0001) and was enriched in NR patients (Figures S1B and
S1C). Marker genes in each group of B cells are shown in Figure S1D.
The five genes with the highest specific expression in group 3 B cells
were FOS, FOSB, SLC2A3, NR4A2, and JUNB, and FOS has
the highest degree of differential expression (p < 0.0001, log2FC =
1.5335, Figures S1G–S1K). Therefore, we defined the third group of
B cells as FOS+ B cells and performed subsequent analyses on
them. Subsequently, we conducted an analysis of the correlation
between FOS+ B cells and immunotherapy in patients with colon
cancer, lung cancer, and liver cancer.

To further substantiate our finding, we collected surgical specimens
from two colon cancer patients (one showing no response to the
treatment and the other exhibiting a partial response) and one
hepatocellular carcinoma (HCC) patient (evaluated as stable disease)
who underwent neoadjuvant immunotherapy at Xiangya Hospital,
Central South University, and conducted single-cell sequencing. We
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performed dimensionality reduction and clustering on this single-
cell data, dividing 12,484 cells into 13 subgroups (Figures S2A and
S2B). The cells in the 7th subgroup exhibited specific expression of
B cell markers, MS4A1, and CD79A (Figure S2C). Subsequently, we
further clustered B cell subgroups into 5 clusters (Figure S2D).
Notably, clusters 0 and 2 of B cells predominantly resided in samples
from immunotherapy non-responders, with cluster 0 B cells showing
larger differences between NR and R patients (n = 190, Figures S2E
and S2F). It is worth noting that FOS was among the top 5 marker
genes for cluster 0 B cells (p = 5.61e�18, log2FC = 1.5153, Figure S2G).
FOS also showed significant differences in expression among the 5 B
cell clusters (p = 3.8� 10�11, Figure S2H) as well as between different
patients (p < 2.2 � 10�16, Figure S2I). Single-cell data from a HCC
patient who received immunotherapy were also analyzed. Among
the 14 cell subgroups (Figure S3A), we defined the 8th group as B cells
(Figure S3B). Further analysis revealed that B cells expressing the FOS
gene were scarce. We examined four previously identified immuno-
suppressive B cell markers (Figures S3D–S3L), and TGF-b expression
showed significant differences in B cells from lung cancer, BCC, and
colon cancer (p = 7� 10�8 to 0.015), whereas IL-10, IL-35, and CD21
showed no significant differences.

We similarly analyzed a dataset comprising single-cell data from
12 non-small cell lung cancer patients who received immunotherapy
(Figure S2J). We defined the third group of cells as B cells (Figure S2K)
and further clustered B cells into six classes (Figures S2L and S2M).We
found that B cells in immunotherapyNRs exhibited significantly higher
expression of FOS (p < 2.2 � 10�16) and JUNB (p < 2.2 � 10�16)
compared with responders (Figures S2N and S2O), with cluster 0 cells
showing FOSB, a member of the FOS family, as a top 5 marker gene
(Figure S2P). In addition, the expression of the two genes is highly
positively correlated (Figures S1E and S1F).

Through the analysis of colorectal cancer spatial transcriptome data
and their corresponding single-cell data, we observed a significant
reduction in the infiltration levels of T cells and CD8+ T cells in sam-
ples with high FOS+ B cell infiltration (Figures 3A and 3B). To further
substantiate the correlation between FOS+ B cells and immuno-
therapy resistance, we performed multi-immunofluorescence testing
on samples from eight colon cancer immunotherapy patients,
including four Rs and four NRs. We observed a significant decrease
of FOS+ B cells in samples from immunotherapy Rs (Figure 3C),
and the difference in the proportion of B cells among the total B
cells between the two groups of patients was statistically significant
(p = 0.013, Figure 3D). The analysis based on single-cell data from
immunotherapy patients and the results of immunofluorescence
testing illustrate the correlation between FOS+ B cells and immuno-
therapy resistance.

FOS may promote the differentiation of B cells into

immunosuppressive plasma cells, exerting immunosuppressive

effects

Our study revealed a correlation between FOS+ B cells and immuno-
therapy resistance. It is noteworthy that FOS+ B cells also use JUNB as



Figure 1. The flowchart of this study

(A) Through the analysis of single-cell sequencing data from skin cancer, colon cancer, lung cancer, and hepatocellular carcinoma, we have identified a significant correlation

between FOS+ B cells and resistance to immunotherapy. (B) We conducted investigations into the potential mechanisms by which FOS+ B cells exert their influence. (C) To

validate these findings, we performed immunofluorescence assays and examined transcriptomic data from a pan-cancer immunotherapy cohort. (D) Furthermore, analysis of

pan-cancer transcriptomic data from TCGA suggests a potential role for FOS+ B cells in suppressing pan-cancer immune functions.
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a marker, and the FOS family proteins can form a transcription
factor complex, AP-1, along with JUN family proteins, to function.
Previous research has indicated18 that AP-1 can facilitate the expres-
sion of B lymphocyte-induced maturation protein 1 (Blimp1) in B
cells, thereby promoting the transformation of B cells into plasma
cells. Thus, we hypothesized that AP-1 in B cells might promote
the differentiation of B cells into immunosuppressive plasma cells
by facilitating Blimp1 production.

Therefore, we analyzed the differential expression of Blimp1 in B
cells from two groups of patients. In both BCC and lung cancer
immunotherapy-resistant patients, the expression of Blimp1 in B
cells was indeed higher than in immunotherapy Rs (Figures S4A,
S4E, and S4I). Although previous studies have mostly suggested
that plasma cells play a positive role in anti-tumor immunity,
some research has also indicated that the presence of immunosup-
pressive plasma cells can hinder anti-tumor immunity. These
immunosuppressive plasma cells exhibit high expression levels of
IgA, PD-L1, and IL-10.19 Consequently, we further analyzed plasma
cells in both the R and NR groups. We found that in all three types
of cancer, NR group plasma cells expressed higher levels of IgA
compared with the R group (Figures S4A–S4L). These results
Molecular Therapy: Oncology Vol. 32 December 2024 3

http://www.moleculartherapy.org


Figure 2. FOS+ B cells are associated with immunotherapy resistance

(A) The cells were divided into 12 subgroups using the UMAP method for descending clustering. (B and C) The distribution of each group of cells in the R versus NR groups

and the difference in the proportion of cells in each group in the R versus NR groups are shown. (D) The expression of top 5 marker genes in each cell group. (E) The

expression of each cell group for immune cell marker genes. (F and G) The cells of each group were defined according to the expression of immune cell marker genes.

Molecular Therapy: Oncology
suggest that FOS may combine with JUNB and other JUN family
proteins to form the transcription factor AP-1, thereby promoting
the differentiation of B cells into immunosuppressive plasma cells
(Figure 3E).
4 Molecular Therapy: Oncology Vol. 32 December 2024
FOS+ B cells exhibited greater maturity compared with other B

cell subtypes

To investigate the effect of differentiation stages of B cells on immu-
notherapy, we performed a pseudotime analysis of 5,969 B cells. As



Figure 3. Validation of the relationship between FOS+ B cell and anti-tumor immune

(A and B) Spatial transcriptome analysis indicates that samples with higher FOS+ B cell infiltration (A) exhibit reduced infiltration of T cells and CD8+ T cells compared with

samples with lower FOS+ B cell infiltration (B). (C) Immunofluorescence results. Immunofluorescence assays were conducted on specimens from eight colorectal cancer

patients undergoing immunotherapy. The upper row displays results from responsive patients, while the lower row shows results from non-responsive patients. The

(legend continued on next page)
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shown in Figure 4A, light blue represents more mature B cells, while
dark blue represents more naive B cells. The NR group of B cells
mostly consisted of more mature B cells (Figure 4B). According to
the results of the proposed time series analysis, B cells can be divided
into 11 categories, among which NR cells are mainly clustered in
group 9 cells (Figures 4B and 4C). The four B cell types we obtained
previously were also basically in different differentiation time periods
(Figure 4D). We then used heatmaps to show the relationship
between the proposed temporal subpopulation, cell type, immuno-
therapy response grouping, gene expression, and differentiation
time, and we could see that all these factors were significantly
correlated with cell differentiation time (Figure 4E).

Subsequently, we employed heatmaps to illustrate the relationships
between pseudotime subgroups, cell types, immunotherapy response
groups, gene expression, and differentiation time. It is evident that all
these factors are significantly correlated with pseudotime. Further-
more, we observed differential expression of FOS at various stages
of B cell differentiation, with high expression in mature B cells, or
what we refer to as the third group of B cells (Figures 4F and 4G).
IGHD and IGHMwere closely associated with the degree of B cell dif-
ferentiation, with higher expression levels in highly differentiated B
cells. Through pseudotime analysis, we found elevated expression
levels of IGHD and IGHM in B cells from the NR group (Figure
4G). In addition, we noted that TGFB1 expression increased with B
cell differentiation, while IL-10 remained relatively unchanged, and
IL-35 exhibited a declining trend (Figure 4G). These results collec-
tively indicate that FOS+ B cells tend to be more mature in terms of
differentiation and are associated with resistance to immunotherapy.

FOS+ B cells may inhibit anti-tumor immunity through TNF

signaling pathway

To investigate the effect of B cells on anti-tumor immunity, we per-
formed CellChat analysis on B cells from both R and NR groups.
The four types of B cells have close cellular interactions with other types
of immune cells, especially CD8+ T cells (Figures 5E, 5F, 5H, and 5I).
We then compared the number of signal communication between
the two groups. Compared with cells in the R group, B cells in the
NR group delivered more signals to CD4+ T cells and monocytes/mac-
rophages and fewer signals to CD8+ T cells, NK cells, and plasma cells;
B cells in the NR group received fewer signals from CD4+ T cells, CD8+

T cells, plasma cells, and B cells themselves, and received a higher num-
ber of signals from NK cells (Figures 5A and 5C). We also compared
the strength of communication between the two groups to the cells
in the R group. The B cells in the NR group sent weaker signals to
the other five cells, received weaker signals from CD4+ T cells, CD8+

T cells, NK cells, plasma cells, and the B cells, and received stronger
signals from monocytes/macrophages (Figures 5B and 5C). Finally,
we compared the differences of some major signaling pathways
between R and NR group immune cells and discovered that CD70
expression of CD20, c-fos, and CDX2 were measured. (D) Statistical analysis of the

specimens from patients who exhibited immunotherapy resistance. (E) FOS may form a

and subsequently facilitating the differentiation of B cells into immunosuppressive plasm
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and IL-6 signaling pathways were significantly higher in R group B cells
and the CD80 signaling pathway was significantly higher in NR group
B cells as well as cluster 3 B cells (Figures 5D and 5G).

To compare the differences in communication between the
four classes of B cells and other immune cells, we performed cell
analysis again after dividing the B cells into four classes. The num-
ber and strength of communication between various immune cells
are shown in Figures 6E and 6F. Compared with the other three
types of B cells, FOS+ B cells expressed fewer CD45 and CD22
signaling pathways and more tumor necrosis factor (TNF)
signaling pathways. The number and strength of communications
from the four types of B cells to various other immune cells are
shown in Figures 6H and 6I. It can be found that the number
and strength of signals from FOS+ B cells to CD8+ T cells were
higher than those from other immune cells. We then further
analyzed the CD22, CD45, and TNF pathways, and found
that CD22 signals were mainly emitted by three other B cells
besides FOS+ B cells, acting on various immune cells, including
FOS+ B cells, with stronger effects on CD8+ T cells, whose main
ligand receptors were CD22 and PTPRC (Figures S5A–S5C).
TNF signals are mainly emitted by FOS+ B cells and act mainly
on monocytes/macrophages, CD4+ T cells, CD8+ T cells, and
NK cells, with TNF and TNFRSF1B as the main ligand receptors
(Figures S5G–S5I).

FOS+ B cells correlate with immunotherapy efficacy and

patient’s prognosis in pan-cancer

To assess the level of infiltration of FOS+ B cells at the genetic level,
we intersected 563 B cell marker genes with FOS+ B cells differently
expressed genes, and obtain 170 genes (Figure 6A),whichwere analyzed
by PCA and Lasso regression to obtain 15 genes, namely SWAP70,
POU2F2, TEX9, AIM2, LGALS1, KLHL6, PSMB9, HSPE1,
IGHMBP2, HLA.DQA2, HMGN2, SRFBP1, ZRANB2, CYB5A, and
TAF7. To explore the correlation and predictive role of FOS+ B cells
with immunotherapy efficacy and patient prognosis, we developed
a predictive model using these 15 genes. We divided a fused immuno-
therapy transcriptome dataset into the training set (n= 721) and valida-
tion set 1 (n = 154). The model achieved excellent results in this fusion
dataset (Figures 6G–6I), with an area under the curve (AUC) of 0.75 for
3-year overall survival (OS) and 0.74 for 5-yearOS, and the prognosis of
patients in the high- and low-risk groups differed significantly
(p<0.0001), as did the efficacyof patients in the twogroups (p=0.0310).

We then validated the model in four immunotherapy cohorts. We
performed model validation in the Xiangya HCC immunotherapy
cohort (n = 36), with an AUC of 0.78 for 1-year progression-free sur-
vival (PFS), AUC of 0.98 for 5-year PFS, AUC of 1 for 1-year OS, AUC
of 0.72 for 3-year OS (Figures 6B and 6D). Patients with low-
risk scores had better outcomes than patients with high-risk scores
immunofluorescence results suggests a significant enrichment of FOS+ B cells in

transcription factor AP-1 with JUNB, thereby promoting the expression of Blimp-1

a cells.



Figure 4. FOS+ B cells were in a mature state of differentiation

(A) The pseudotime analysis of B cells was exhibited, in which light blue represents more mature differentiation, while dark blue represents more naive cells. (B) The results of

the pseudotime analysis of B cells in the R and NR groups show that B cells in the NR group are more mature. (C) The B cells were divided into 12 stages according to the

results of the pseudotime analysis. (D) The results of the pseudotime analysis of four types of B cells show that the cells in the third and fourth groups aremoremature. (E) This

heatmap shows the relationship between cellular pseudotime score and cell stage, cell type, immunotherapy response, and gene expression. (F) Expression of differentially

expressed genes in the third group of B cell differentiation. (G) Differential expression of B cell development-related genes and immune-negative genes during cell

differentiation.
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(p = 0.01 for PFS, p = 0.027 for OS, Figures 7C and 7E). In an immu-
notherapy dataset (GSE179351) that included colorectal cancer
(n = 27) and pancreatic cancer (n = 17), there was also a significant
difference in efficacy between the high- and low-risk groups
(p = 0.01059, Figure 6F). In validation set 1 (Figures S6A–S6C), which
was also obtained by the fusion dataset mentioned above, there were
significant differences in prognosis (p = 0.016) between patients in the
high- and low-risk groups. We also validated the model in a uroepi-
thelial cancer immunotherapy dataset (n = 298) with a 1-year OS
predicted AUC of 0.68 and a 2-year OS predicted AUC of 0.8
(Figure S6D). Patients with low-risk scores all had better outcomes
than those with high-risk scores (p = 1.795� 10�4, Figure S6E). There
Molecular Therapy: Oncology Vol. 32 December 2024 7
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Figure 5. FOS+ B cells can exert immunosuppressive effects on various immune cells

(A and B) Differences in the number and intensity of various interactions between immune cells in the NR group compared with the R group; blue color represents low number

or weak intensity, arrows point to the cells receiving signals. (C) Heatmap of the number or intensity of differential signals. (D) Comparison of the expression of various

intercellular signaling pathways between the R and NR groups. (E, F, H, and I) Intensity and number of interactions between immune cells after splitting B cells into four

categories. (G) Expression of various cellular interaction pathways after splitting B cells into four categories.

Molecular Therapy: Oncology
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Figure 6. FOS+ B cell is reliable marker of immunotherapy efficacy and prognosis

(A) Intersection of 329 B cell marker genes and 563 differentially expressed genes in FOS+ B cells to obtain 170 genes. (B–E) The relationship between risk score and outcome

in the Xiangya HCC immunotherapy cohort, and patients with high-risk scores had poorer PFS andOS. (F) The relationship between risk score and outcome in GSE179351, a

colorectal cancer immunotherapy cohort. (G–I) The relationship between patient risk grouping and immunotherapy efficacy in the immunotherapy cohort of rectal or

pancreatic cancer. HCC, hepatocellular carcinoma; OS, overall survival; PFS, progression-free survival.

www.moleculartherapy.org
was also a significant difference in efficacy between the high- and low-
risk groups (p = 0.0015, Figure S6F). The above results also showed
that FOS+ B cells are associated with immunotherapy resistance
and a worse prognosis in pan-cancer.

FOS+ B cells negatively correlate with immunity status in pan-

cancer patients

B cells play an important role in the tumor immune microenviron-
ment, and we analyzed the relationship between FOS+ B cells and
pan-cancer immune cells and the prognosis of pan-cancer patients
using The Cancer Genome Atlas (TCGA) database. First, we analyzed
the relationship of the FOS+ B cell risk score in pan-cancer with some
immune function-related genes, including genes related to antigen
presentation, cell adhesion, immune coactivation, immune co-inhibi-
tion, immune receptor, and immune ligand. We found that FOS+ B
cells were largely negatively correlated with the expression of these
genes (Figure 7A), suggesting that FOS+ B cells may suppress anti-tu-
mor immunity. We then analyzed the infiltration of FOS+ B cells with
various immune cells in the tumor microenvironment, and we found
that FOS+ B cells also negatively correlated with the infiltration of
Molecular Therapy: Oncology Vol. 32 December 2024 9
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immune cells such as CD8+ T cells, cytotoxic lymphocytes, and NK
cells, which also supported their suppression of tumor immunity
(Figure 7B). We also explored the relationship between FOS+ B cells
in pan-cancer and tumor marks (Hallmark), and the results showed
that FOS+ B cells positively correlated with these tumor markers
and negatively correlated with the immunotherapy marker tumor
mutation burden (TMB) (Figures 7C and 7D). To explore the rela-
tionship between FOS+ B cells and the prognosis of patients with
pan-cancer, we explored the relationship between FOS+ B cell risk
scores and patient prognosis in the TCGA database and found
that FOS+ B cell risk scores correlated with the prognosis of
various tumors such as THCA, KIRC, KIRP, LUAD, and SKCM (Fig-
ures 7E–7J).

DISCUSSION
Immunotherapy has shown good effects in lung, esophageal, and
colorectal cancer, but not all patients with malignancies benefit
from immunotherapy,20–22 and many patients develop primary or
secondary drug resistance.23,24 B cells, as an important role of
immune cells, may have an important impact on the immuno-
therapy efficacy and prognosis of immunotherapy patients,25,26

but the specific effects of different types of B cells on immuno-
therapy and their effect mechanisms are unclear. In this study, we
used single-cell sequencing data from immunotherapy patients to
classify B cells and found that FOS+ B cells may reduce the efficacy
of immunotherapy. Immunofluorescence analysis and pan-cancer
immunotherapy cohort analysis also indicated that FOS+ B cells
negatively relate to immunotherapy efficiency and anti-tumor
immunity.

In this study, we discovered that FOS+ B cells were associated with the
efficacy of immunotherapy in patients and may reduce the effect of
immunotherapy. According to the National Center for Biotechnology
Information (NCBI) GenBank, the FOS family includes members Fos,
Fos-B, Fra1 (FOSL1), and Fra2 (FOSL2), which encode proteins con-
taining a leucine zipper that can dimerize with the JUN family protein,
such as JUNB.27,28 The dimerization forms the activator protein 1
(AP1) complex and acts as a transcription factor (NCBI, 2020; Gene
ID: 2353). Previous studies have shown that the Fos and c-fos genes
are associated with proliferation, differentiation, transformation,
and cell death.29,30 The effect of Fos expression on tumor B cells has
not been specifically investigated, but previous studies have shown
that AP-1, composed of Fos and Jun, has an important effect on B
cell differentiation and maturation.31 Previous studies have revealed
that the promoter of the Blimp1 gene contains AP-1 binding sites.18

Blimp1 can promote the differentiation of B cells into antibody-
secreting cells (ASCs), and c-Fos can bind to it to transactivate Blimp1
transcription, subsequently promoting the generation of ASCs. There-
Figure 7. Association of FOS+ B cells in pan-cancer with immunity and patient

(A) Association of FOS+ B cell risk score with expression of multiple immune status-asso

of infiltration of multiple immune cells in multiple cancers, with blue representing negativ

with red representing positive association and blue representing negative association

Prognostic differences between patients in high-risk and low-risk groups in multiple TC
fore, we speculated whether AP-1 in B cells could promote Blimp1 and
facilitate the differentiation of B cells into immunosuppressive plasma
cells. However, due to the limited number of Blimp1-expressing cells
in single-cell sequencing data, the correlation between JUNB, FOS,
and Blimp1 was not particularly strong. Our research results also indi-
cate that Blimp-1 levels were significantly increased inB cells of immu-
notherapy-resistant patients, and IgA expression was elevated in
plasma cells. All these findings support our hypothesis, although
further experimental verification is still required.

Prior studies have indicated an association between Bregs and a poor
prognosis.12 In addition, Bregs are known to secrete multiple immuno-
suppressive cytokines, including IL-10, IL-35, and TGF-b, suggesting
their role in suppressing anti-tumor immunity, which could potentially
diminish the efficacy of immunotherapy. In our current study, we also
identified a subset of B cells characterized by FOS expression, indicating
a relatively mature differentiation state. Notably, these FOS+ B cells ex-
hibited high levels of TGF-b expression but did not show elevated
expression of IL-1. This suggests that, while the FOS+ B cells identified
in this study possess immunosuppressive properties like Bregs,
their relationship with Bregs warrants further investigation. Some
researchers have identifiedB cells with lowCD21 expression inHIV-in-
fected individuals, which are found in patients with long-term inflam-
matory responses. These CD19+CD10�CD27�CD21low B cells may
be associated with B cell exhaustion resulting from chronic inflamma-
tory reactions.32 However, in our study, FOS+ B cells did not
exhibit low CD21 expression, indicating that the FOS+ B cells identified
in our research do not align with this exhaustion B cell subtype. There-
fore, we propose that FOS+ B cells are not entirely synonymous with
previously identified Bregs or exhaustion B cells but may represent a
distinct subset of Bregs. Further research is needed to explore this
possibility.

To further validate the relationship between FOS+ B cells and immu-
notherapy efficacy and prognosis, we established a prognostic model
of FOS+ B cells and tested it in pan-cancer immune cell cohorts,
including an HCC immunotherapy cohort from Xiangya Hospital.
In all these cohorts, FOS+ B cells were strongly associated with immu-
notherapy efficacy and prognosis. In the non-immunotherapy
pan-cancer cohorts from TCGA, FOS+ B cells were also associated
with the prognosis of various tumors such as LUAD, THCA,
SKCM, etc. FOS+ B cells were negatively associated with immunophe-
notype-related genes such as antigen presentation and immune
coactivation. Negative correlations with the degree of immune cell
infiltration, such as CD8+ T cells and cytotoxic lymphocytes, as well
as with TMB, were also investigated. These results again suggest in
the pan-cancer data that FOS+ B cells may be negatively associated
with immunotherapy efficacy and prognosis.
prognosis

ciated genes in pan-cancer. (B) Association of FOS+ B cell risk score with the degree

e association. (C) Association of FOS+ B cell risk score with multiple tumor markers,

. (D) Association of FOS+ B cell risk scores with TMB in multiple cancers. (E–J)

GA (The Cancer Genome Atlas) cohorts.
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In this study, for the first time, we identified a subtype of B cells that is
negatively associated with the efficacy of pan-cancer immunotherapy.
Immunofluorescence analysis and pan-cancer immunotherapy
cohort analysis also indicated that FOS+ B cells negatively relate to
immunotherapy efficiency and anti-tumor immunity. However, this
study has the following shortcomings: first, although a large immuno-
therapy transcriptome cohort was used for analysis, the sample size of
the single-cell dataset was still relatively small, which may cause some
errors, and more cancer types should be integrated to characterize
FOS+ B cells. Second, the specific infiltration of FOS+ B cells in NR
patients and their interaction with other immune cells require further
confirmation through basic research such as flow cytometry. Finally,
Although AP-1 and JUNB in FOS+ B cells can promote Blimp1
expression, Blimp1 is a pan-plasma cell marker and not specific to
immunosuppressive plasma cells. This suggests that FOS+ B cells
may generate immunosuppressive plasma cells via alternative mech-
anisms beyond the AP-1/JUNB pathway. Further studies are needed
to explore these potential mechanisms. Despite the above shortcom-
ings, this study represents an important exploration of the correlation
between B cells and immunotherapy efficacy and provides new ideas
for further studies.

Conclusions

This study discovers and reports the correlation between FOS+ B cells
and immunotherapy resistance. This study provides evidence that
FOS may form AP-1 with JUNB, thereby promoting the expression
of Blimp-1 and subsequently facilitating the differentiation of B cells
into immunosuppressive plasma cells. In addition, FOS+ B cells may
exert immunosuppressive effects on immune cells, including CD8+

T cells, via the TNF signaling pathway.

MATERIALS AND METHODS
Publicly single-cell transcriptome and spatial transcriptome

data

The scRNA-seq data of skin cancer, lung cancer, colon cancer, and
HCC patients who received anti-PD-1 treatment were analyzed.
The skin cancer data (GSE123813)33 include a total of 40,314 immune
cells from 10 patients with BCC, which was histologically confirmed.
These 10 patients received 200 mg pembrolizumab every 3 weeks or
350 mg cemiplimab every 2 weeks. Six patients R, and 4 patients
did NR.

The transcriptomic data of approximately 92,000 single cells from 12
patients with non-small cell lung cancer, who received neoadjuvant
PD-1 blockade in combination with chemotherapy, are included in
GSE207422.34 Researchers assessed the treatment efficacy of these
12 patients using the RECIST1.1 criteria. Among these patients, 6
were evaluated as having a partial response, while the remaining 6
were assessed as having stable disease (SD). The publicly available sin-
gle-cell data for immunotherapy patients is scarce, so we only identi-
fied and analyzed these two datasets from the GEO (Gene Expression
Omnibus) database. We also conducted an analysis of a colorectal
cancer spatial transcriptome dataset along with its corresponding
single-cell transcriptome dataset (GSE144735).35
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Xiangya single-cell transcriptome data

The single-cell data for immunotherapy patients with colon cancer
and HCC used in this study were from Xiangya Hospital of Central
South University. The study included single-cell data from two co-
lon cancer patients who received immunotherapy, with one
showing no response to the treatment and the other exhibiting a
partial response. In addition, the study included single-cell data
from an HCC patient who received immunotherapy and was eval-
uated as having SD following the treatment. The Medical Ethics
Committee of Xiangya Hospital at Central South University
approved the study protocol (ID: 2019050127), and patients pro-
vided informed consent.

For single-cell sequencing, patient surgical specimens were collected
and wiped clean of surface fluids with lint-free paper. The tissues
were then placed in 2 mL cryovials and stored at 2�C–8�C. The
tissue was first transferred to a culture dish pre-filled with 1�
PBS. Tissue pieces, measuring 0.5 mm2, were cut and added to a
dissociation solution (0.35% collagenase IV, 2 mg/mL papain, 120
units/mL DNase I). The reaction was carried out at 37�C in a
shaking water bath at 100 rpm for 20 min. Subsequently, 1� PBS
(containing 10% fetal bovine serum) was added to halt the dissoci-
ation process. The tissue pieces were then gently pipetted up and
down 10 times using a pipette gun. The cell suspension was filtered
through a 30-mm cell strainer. After that, the suspension was centri-
fuged at 300 � g for 5 min at 4�C, and the cell pellet was collected.
The cell pellet was resuspended in 100 mL of 1� PBS (0.04% BSA)
and then subjected to red blood cell lysis using 1 mL of red blood
cell lysis buffer (MACS 130-094-183, 10�) for 2–10 min at room
temperature. Following lysis, the cells were centrifuged at 300 � g
for 5 min at room temperature, and the cell pellet was collected.
Dead cells were removed using a dead cell removal kit (MACS
130-090-101). After the reaction, the cells were centrifuged to re-
move the reagent. The cells were then resuspended in 1� PBS
(0.04% BSA) and centrifuged at 300 � g for 3 min at 4�C (repeated
twice). This process resulted in a cell suspension containing candi-
date cells after tissue dissociation, red blood cell lysis, and dead cell
removal. The cell suspension was then supplemented with 50 mL of
1� PBS (0.04% BSA). Cell viability was assessed using trypan blue
staining, with a requirement of >85% cell viability. Cell counts
were determined using a hemocytometer or an automated cell
counter (Countess II Automated Cell Counter), with a cell concen-
tration requirement of 700–1,200 cells/mL. The final cell suspension
obtained after dissociation was loaded into the 10� Chromium in-
strument. Cell capture, cDNA amplification, and library construc-
tion were carried out according to the official kit instructions
(10� Genomics Chromium Single-Cell 30 kit, V3). After library
construction, sequencing was performed on the NovaSeq 6000
sequencing platform (paired-end multiplexing run, 150 bp), with
a sequencing depth requirement of 20,000 reads per cell.

Immunotherapy bulk RNA-seq data

To investigate the relationship and predictive role of FOS+ B cells in
immunotherapy efficacy, we systematically collected bulk RNA-seq
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data and clinical information from patients across four ICI RNA-seq
datasets. Three of the datasets were public datasets, while the HCC
immunotherapy dataset was obtained from Xiangya Hospital of
Central South University. The Xiangya HCC immunotherapy cohort
is an immunotherapy bulk RNA-seq dataset collected from Xiangya
Hospital of Central South University, which included RNA-seq
data of 36 patients with HCC who received immunotherapy. The
patients’ surgical samples and clinical information were collected
(Table S1). Secondary sequencing libraries were constructed by
removing ribosomal RNA using the Human/Mouse/Rat Ribo-Zero
rRNA Removal Kit (Epicenter, Madison, WI). At a high temperature,
the poly(A)+ or poly(A)– RNA fraction was cleaved into small
fragments using divalent cations to ensure purification. We then
constructed cDNA libraries using reverse transcription cleavage to
obtain RNA fragments. The average insert size of a double-ended
library is 250–350 bp. The cDNA libraries were sequenced on an
Illumina NovaSeq 6000 system (LC-Bio Technology, Hangzhou,
China) according to the recommended protocol.

One of the 3 publicly available datasets was downloaded from the GEO
database (GSE179351),36 which included transcriptomic data from 44
patients with colorectal or pancreatic cancer who received immuno-
therapy. The second publicly available dataset is IMvigor 210, which
contains 298 patients with uroepithelial cancer who received immuno-
therapy.37 The last publicly available dataset is a pan-cancer immuno-
therapy dataset obtained by fusing 10 public datasets as described by
Zhang et al., who used the ComBat method to de-batch this fusion da-
taset.38 We randomly divided this dataset into a training set (training
set, n = 721) and a validation set (validation set 1, n = 154). In this
study, the training set was used as a generalized cancer training set.
Validation set 1, Imvigor 210, GSE179351, and the Xiangya dataset
were used as validation sets to assess and validate the model.

Pan-cancer bulk RNA-seq data

The pan-cancer bulk RNA-seq data (TCGA) used in this study were
obtained from the UCSC XENA data portal (https://xenabrowser.
net).39 Tumor mutation burden (TMB) data for tumor patients,
used in this article for the analysis of the correlation between FOS+

B cell downregulation and TMB, were obtained from the cBioPortal
website (https://www.cbioportal.org).40

Single-cell transcriptome and spatial transcriptome analysis

We analyzed the scRNA-seq data using the R package "Seurat." To
retain high-quality scRNA-seq data, the raw gene expression data
for each cell was screened by applying 3 measures: only genes ex-
pressed in at least 5 single cells were used, cells expressing less than
100 genes were excluded, and cells with more than 5% of mitochon-
drial genes were removed.41 To identify marker genes for each cell
population, cutoff thresholds, adjusted p values <0.01, and log2
(fold change) of absolute values > 1 were used. For cluster annotation,
we used some of the recognized marker genes of immune cells for
annotation.42 We evaluated cell-to-cell communication between
different cell types using the "CellChat" package.43 The R package
"monocle2" was used for B cell differentiation pseudotime analysis.44
We analyzed spatial transcriptome data along with its corresponding
single-cell sequencing data. Analysis of cell composition in the
spatial transcriptome was performed based on gene expression in
the single-cell data. The R package Seurat was employed to integrate
the single-cell transcriptome and spatial transcriptome data.

Multiple immunofluorescence assays

The slideswere initially treatedwith 4%paraformaldehyde for 15min at
room temperature, with gentle agitation, to fix the samples. Subse-
quently, for membrane protein labeling, they were permeabilized
using 0.2% Triton X-100 for 10 min at room temperature. Following
this, a 3% BSA solution was employed for blocking purposes, allowing
for a 30-min incubation. Primary antibodies (CD20, 1:400; c-fos, 1:200;
CDX2, 1:200) were applied and left to incubate overnight at 4�C. Sub-
sequently, fluorescent secondary antibodies corresponding to the pri-
mary antibodieswere incubated at room temperature for 1 h. Cell nuclei
were labeled using DAPI. Immunofluorescence double-labeled cells
were then collected and analyzed using a ZEISS confocal microscope.

Construction and validation of immunotherapy predictionmodel

FOS+ B cell marker genes and B cell marker gene intersection were
taken as FOS+ B cell marker genes, and then we performed univariate
Cox regression analysis to assess the cluster value of FOS+ B cell
marker genes on the OS of patients in the immunotherapy training
set, and genes with p < 0.01 were identified as prognostic genes.
Next, to minimize overfitting, prognostic genes were assessed by least
absolute shrinkage and selection operator (LASSO) Cox proportional
risk regression using the "glmnet" package. Based on the genes gener-
ated by the LASSO Cox regression analysis, we used multivariate Cox
regression analysis to construct a risk prediction model and classified
patients into low- or high-risk groups based on median cutoff values.
To validate the predictive power of the model, we used the "survival-
ROC" package to calculate the AUC.45 We used the R package "surv-
miner"46 and the Kaplan-Meier method for patient survival analysis.
The log rank test was used to determine the statistical significance of
the differences.

Pathway and functional enrichment analysis

We used the R package "clusterProfiler"47 to perform gene ontology
(GO) and functional enrichment analyses. GO analysis was per-
formed using the enrichGO function of the R package "clusterPro-
filer," and GO annotations were based on the genome-wide annota-
tion package (org.Hs.eg.db) released by the Bioconductor project.48

The KEGG analysis was performed using the enrichKEGG function
of the R package "clusterProfiler," which acquires pathway data and
performs functional analysis through the latest online KEGG
database.

Statistical analysis

We performed statistical analyses using R v.4.2.0 (https://www.
r-project.org). We used Spearman correlation to assess the associa-
tion between FOS+ B cell risk scores and biological pathways or im-
mune characteristics. The chi-square distribution was used to analyze
differences in cell proportions. The Benjamini-Hochberg method was
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used to calculate the false discovery rate, and the p value < 0.05 was
considered significant.
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