
RESEARCH ARTICLE

Using deep transfer learning to detect

scoliosis and spondylolisthesis from x-ray

images

Mohammad FraiwanID
1*, Ziad AudatID

2, Luay FraiwanID
3, Tarek Manasreh2

1 Department of Computer Engineering, Jordan University of Science and Technology, Irbid, Jordan,

2 Department of Special Surgery, Jordan University of Science and Technology, Irbid, Jordan, 3 Department

of Biomedical Engineering, Jordan University of Science and Technology, Irbid, Jordan

* mafraiwan@just.edu.jo

Abstract

Recent years have witnessed wider prevalence of vertebral column pathologies due to life-

style changes, sedentary behaviors, or injuries. Spondylolisthesis and scoliosis are two of

the most common ailments with an incidence of 5% and 3% in the United States population,

respectively. Both of these abnormalities can affect children at a young age and, if left

untreated, can progress into severe pain. Moreover, severe scoliosis can even lead to lung

and heart problems. Thus, early diagnosis can make it easier to apply remedies/interven-

tions and prevent further disease progression. Current diagnosis methods are based on

visual inspection by physicians of radiographs and/or calculation of certain angles (e.g.,

Cobb angle). Traditional artificial intelligence-based diagnosis systems utilized these

parameters to perform automated classification, which enabled fast and easy diagnosis sup-

porting tools. However, they still require the specialists to perform error-prone tedious mea-

surements. To this end, automated measurement tools were proposed based on

processing techniques of X-ray images. In this paper, we utilize advances in deep transfer

learning to diagnose spondylolisthesis and scoliosis from X-ray images without the need for

any measurements. We collected raw data from real X-ray images of 338 subjects (i.e., 188

scoliosis, 79 spondylolisthesis, and 71 healthy). Deep transfer learning models were devel-

oped to perform three-class classification as well as pair-wise binary classifications among

the three classes. The highest mean accuracy and maximum accuracy for three-class clas-

sification was 96.73% and 98.02%, respectively. Regarding pair-wise binary classification,

high accuracy values were achieved for most of the models (i.e., > 98%). These results and

other performance metrics reflect a robust ability to diagnose the subjects’ vertebral column

disorders from standard X-ray images. The current study provides a supporting tool that can

reasonably help the physicians make the correct early diagnosis with less effort and errors,

and reduce the need for surgical interventions.
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Introduction

The spinal column is comprised of 33 small bones called vertebrae, which are classified into

five distinct areas; cervical, thoracic, lumbar, sacrum, and coccygeal. It is essential for the

human body motion and stability. More importantly, the spinal column provides protection

for the spinal cord and nerve roots. The spinal cord is part of the central nervous system

(CNS) and is responsible for carrying sense and movement information from and to the brain.

Hence, the degeneration of the spine results in a wide range of ailments (e.g., restricted

motion, pain, numbness, etc.), and reduces the quality of life in general [1].

Several pathologies can affect the vertebral column. In this paper, we examine two types of

degenerative pathologies; Scoliosis and Spondylolisthesis. Scoliosis is a curvature of the tho-

racic or lumbar spine in the coronal plane (i.e., sideways). It is diagnosed by the specialist

using X-ray images of the spine and possibly a Magnetic Resonance Imaging (MRI) to rule out

tumors [2]. More specifically, the Cobb angle is measured on the image of the vertebrae col-

umn, and a value > 10˚ indicates scoliosis [3]. In addition, other signs can indicate scoliosis

(e.g., uneven shoulders, waist, hip, or ribcages). Scoliosis is a common spinal disorder with a

prevalence of 0.47-5.2% depending on the country [2]. For example, it is estimated that 6 to 9

million people in the United States suffer from some degree of scoliosis [4]. Spondylolisthesis

is a condition caused by an injured vertebral shipping or slipping forward on the vertebrae

directly below it [1]. This is typically categorized into different grades depending on the degree

of slippage (e.g., low grade vs high grade) [5]. Spondylolisthesis exhibits a prevalence in adult

population of 6% [6], and can cause difficulties in standing and walking, numbness, or weak-

ness in one or both legs [5].

The process of diagnosing the spinal column disorders starts with a physical examination.

In this step, the doctor investigates the patient’s medical history, participation in sports/physi-

cal activity, and involvement in accidents. Moreover, the back and spine need to be carefully

examined for signs of abnormal shape, restricted range of motion, or muscle weakness/spasm.

In addition, the examination involves performing posture and gait analysis [5]. Once an initial

diagnosis is made, the next step would be radiological examinations. X-ray images of the back

provides more information about the structure of the spine and the existence of fractures,

infections, or other abnormalities. Whereas, computed tomography (CT) images are useful for

inspecting the spinal canal. On the other hand, the magnetic resonance imaging (MRI) tech-

nique show the spinal cord and nerve, roots and their surroundings [4, 5]. These imaging tests

enable the objective determination of biomechanical features (e.g., Cobb angle) and represent

a gold standard for the diagnosis of vertebral column ailments [1]. These images are normally

taken laterally or from anterior/posterior view of the patient’s back. However, the measure-

ment accuracy of the biomechanical angles is subjective and depends on the experience of the

specialist (i.e., radiologist or orthopediatrician). Moreover, high case workload, stress, urgency,

or lack of qualified specialists can lead to errors and incorrect diagnosis.

The medical literature in relation to the health of the vertebral column has focused primar-

ily on extracting biomechanical parameters that objectively determine and quantify the disease

state of the spine. To this end, scoliosis and its severity can be diagnosed using the Cobb angle,

which was described by John Cobb in 1948 and represent the gold standard. However, it has

some shortcomings relating to measurement difficulties and in relation to 3D deformities [7].

Similarly, spondylolisthesis can be determined from several parameters that can be measured

directly from radiographs. Some of these include; sacral slope, lumbar lordosis, and pelvic inci-

dence. Statistical analysis results in the literature showed significant differences of these

parameters across different disease states and normal subjects [1].
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The research landscape using machine learning (ML) and artificial intelligence (AI) fol-

lowed a similar path to that of the medical literature by designing algorithms that can automat-

ically extract the aforementioned biomechanical markers of disease from medical images [8–

11], which can be utilized by the specialists for diagnosis. Furthermore, these parameters can

be utilized as features for AI-based diagnosis by classifying images into healthy and different

disease classes [1, 12, 13]. However, the accuracy of such methods is either low [14–16] or

highly dependent on the accuracy of measurement of the biomechanical parameters [1, 12,

17]. In contrast, the work in this paper does not require any explicit measurements of any

parameters. It relies on the feature extraction capabilities of deep learning convolutional neural

networks to automatically determine the disease class of the input X-ray images. Thus, it elimi-

nates compounded errors and the need for multiple diagnosis steps and complex image pro-

cessing algorithms.

Recently, deep learning AI architectures has enabled more innovation in disease diagnosis

from medical images. For example, Mahajan et al. [18, 19] and Raina et al. [20] employed sin-

gle shot multiBox detector (SSD) in a combination with deep transfer learning models to

detect COVID-19 infections from chest x-ray (CXR) images, and achieved high levels of per-

formance in terms of precision (i.e., 93.01%). In the context of scoliosis, Yang et al. [16] used

unclothed back images, after bounding the region of interest (i.e., the subject’s back) using

faster recurrent convolutional neural network (Faster-RCNN), as input to the Resnet architec-

ture. They reported an average accuracy of 80% for scoliosis screening but the performance

was very low using an external validation dataset (i.e., 55.5%-87%). In a similar study, Kokabu

et al. [21] used a combination of 3D depth sensors and a custom-made convolutional neural

networks (CNN) to measure the Cobb angle from nude back images. Although their study

employed additional hardware, the results show very low specificity (42%-78%). More impor-

tantly, the author should have reported the absolute percentage error as the dataset contain a

varying range of Cobb angles (0˚-64˚) and the absolute error does not fully reflect the perfor-

mance of the model (e.g., an error of 5 of 10 is different from an error of 5 of 50). The approach

proposed in this paper does not require extra hardware and achieves superior performance.

The Cobb angle is typically measured using X-ray images. Hence, Tan et al. [22] used a

combination of image processing techniques and U-net deep learning architecture to deter-

mine the location of vertebrae of interest and subsequently measure the Cobb angle. A wide

range of approaches for Cobb angle measurement and scoliosis detection by Karpiel et al. [8].

Classification techniques were also used to distinguish various scoliosis-related classes. Wang

et al. [15] designed a deep learning model to differentiate between progressive (P) and non-

progressive (NP) classes at first clinic visit. Vergari et al. [23] combined CNN with discrimi-

nate analysis to determine the type of scoliosis treatment appearing the X-ray image (i.e.,

brace, spinal implant, or neither). Although their study did not aim to diagnose scoliosis, the

authors claim that their work will facilitate the processing of large databases for such research

purposes. Colombo et al. [14] used video raster stereography (RST) as an input to supervised

and unsupervised machine learning models, and extracted representative features of scoliosis

in comparison to healthy subjects. They reported an accuracy range of 84.9%-87.5%. These tra-

ditional approaches still rely on explicit feature extraction and image precessing techniques.

A similar path was taken in the literature for spondylolisthesis identification. Neto et al.

[24] used non-deep machine learning techniques (e.g., Support Vector Machine) to differenti-

ate healthy subjects from those suffering from spondylolisthesis/Disk herniation. They used X-

ray images as an input and extracted six biomechanical attributes that are markers of the dis-

ease states and form the features for classification. They achieved an 85.9% maximum accu-

racy. This methodology of processing X-ray images to extract disease features and using

various classical (i.e., non-deep) machine learning algorithms (e.g., multilayer perceptron) and
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processing techniques (e.g., clustering) was taken by several related works [1, 12, 25, 26]. How-

ever, such explicit extraction of measurements and features may complicate usability and can

be error prone [27]. Liao et al. [28] proposed automatic spondylolisthesis measurement using

CT images as input. The idea of such approaches is that computerized methods can achieve

better accuracy in detecting vertebra edges, features, keypoints, or segmental motion angles

[27, 29] in a manner that spondylolisthesis can be accurately determined/graded. This litera-

ture suffers from the same aforementioned shortcomings it terms of accuracy, explicit process-

ing, or multiple stages of diagnosis.

The contributions of this paper are as follows:

• Develop a reliable artificial intelligence system for the diagnosis of scoliosis and spondylo-

listhesis based on radiographic X-ray images of the vertebral column. Such a system can pro-

vide support for clinical diagnosis decisions, and reduce errors and overhead.

• We collect X-ray images of subjects suffering from scoliosis and spondylolisthesis, as well as

healthy ones, as determined by the specialists in the hospital. This dataset will expand and

enrich any comparable publicly available datasets, enable the development of automated

machine learning and AI algorithms for the detection of vertebrae ailments, and can be used

for training and educating medical students, residents, and specialists.

• Investigate several deep learning convolutional neural network models for the classification

of scoliosis, spondylolisthesis, and normal X-ray images using transfer learning.

• We evaluate the performance of the deep learning models for three-class (scoliosis vs spon-

dylolisthesis vs normal) and pair-wise classification problems (scoliosis vs spondylolisthesis,

scoliosis vs normal, and spondylolisthesis vs normal). The cost of each model in terms of

training and testing times were also evaluated.

• We share, through public data repository, the original images and resized versions that

match the requirements of deep learning models in five sizes; [224 224 3], [227 227 3], [256

256 3], [299 299 3], and [331 331 3].

The rest of this paper is organized as follows. In the materials and methods section, we pres-

ent the data collection procedure, subjects, deep learning models, performance evaluation

setup, and performance metrics. The results section provides the results in detail and discus-

sion of the various observations. The conclusion section presents the future works and con-

cludes the work in this paper.

Materials and methods

The work in this paper exploits the abilities of generically pre-trained convolutional neural

network models to automatically classify X-ray images into three possible spine-related condi-

tions; scoliosis, spondylolisthesis, or normal(i.e., healthy). The approach achieves high perfor-

mance metrics while not requiring manual or automatic measurements nor any feature

extraction as this is inherently done by the deep learning architecture. In addition, no elaborate

image processing or modeling are required. Fig 1 shows the general steps for customizing the

pre-trained models for classification of the X-ray images into normal (i.e., healthy), scoliosis,

or spondylolisthesis.

Subjects and data collection

The current study was conducted according to the guidelines of the Declaration of Helsinki

and approved by the Institutional Review Board (IRB) at King Abdullah University Hospital
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(KAUH), Deanship of Scientific Research at Jordan University of Science and Technology in

Jordan (Ref. 19/144/2021). X-ray images of the vertebral column were collected locally at King

Abdullah University Hospital, Jordan University of Science and Technology, Irbid, Jordan.

Written informed consent was obtained from all subjects involved in the study (or their

parents in case of minors). The diagnosis was determined by two orthopedic specialists at the

KAUH.

The dataset included 338 subjects (240 females, 98 males) with an age range from 9 months

to 79 years and mean ± SD of 24.9 ± 18.58 years. The number of subjects with normal X-ray

images was 71 (40 females, 31 males) with an age range of 9 months to 56 years and

mean ± SD of 19.41 ± 11.19. The number of subjects diagnosed with spondylolisthesis was 79

(49 females, 30 males) with an age range of 15-79 years and mean ± SD of 53.59 ± 14.02. The

number of subjects diagnosed with scoliosis was 188 (151 females, 37 males) with an age range

of 5-35 years and mean ± SD of 14.73 ± 3.36.

Deep learning models

Typically, the main input to the diagnosis of vertebral column diseases is medical images (i.e.,

X-ray, CT, or MRI). Hence, convolutional neural networks (CNNs) were used to classify the

input into the possible disease state. CNNs are a type of feed forward neural networks with a

deep architecture and form the basis for a major part of the deep learning models (DNNs) in

the literature. Other types include Recurrent Neural Network (RNN) with variations (e.g.,

Long Short Term Memory (LSTM), and transformers), and Generative adversarial networks

(GANs). CNNs have been found to be useful for image processing and classification as they

are able to extract patterns and features in images regardless of scaling, mirroring, rotation, or

translation.

The CNN is generally comprised of several types of layers and takes a tensor of order 3 as

input (i.e., an image with N rows, M columns, and 3 (RGG) color channels). Convolution lay-

ers scan the image looking for correlated regions (e.g., vertebra). The input image is divided

into small subparts called receptive fields, which in turn are grouped into feature maps. Each

feature map has a corresponding weight matrix (i.e., kernel), which is learned/updated during

training. Rectified linear unit (ReLU) usually follows the convolution layer and introduces

nonlinearity into the CNN. Pooling layers reduce the dimensionality of the feature maps feed-

ing into subsequent layers by considering subparts of the feature map and taking the maxi-

mum (i.e., max-pooling), average (i.e., average-pooling), or other statistical measure. Fully

connected layers are similar to multilayer perceptron (MLP) networks and ensure that all ele-

ments in the previous layer contribute to the output or following layer. Dropout layers remove

certain elements of the network in order to prevent overfitting and improve model generaliza-

tion. The mathematical foundations, benefits, alternatives, and tradeoffs are well-established in

the literature and beyond the scope of this work [30].

Fig 1. A graphical abstract of the transfer deep learning approach.

https://doi.org/10.1371/journal.pone.0267851.g001
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Transfer learning utilizes pre-trained deep learning models, which were developed using mil-

lions of images from the ImageNet [31] and other databases (e.g., Places365 [32]). The models

are able to classify images into hundreds of categories. However, they can be tailored and

retrained to preform new tasks using transfer learning. For this to work, the final layer need to

be changed to match the number of output classes in the new task. Depending on the model, the

final layer could be a FullyConnectedLayer or a Convolution2DLayer, and needs to be replaced

accordingly with a number of filters equal to the number of output classes. As for the input, each

model requires images to be of a certain dimension (e.g., [244 244 3]), which requires resizing.

In addition, grayscale images (i.e., 2D) need to be transformed to rgb (i.e., 3D) images.

The following is a short description of the 14 convolutional neural network models used in

this paper:

• SqueezeNet is 18 layers deep with an image input size of [227 227 3]. It was designed with

the premise that smaller deep neural networks can offer comparable accuracy levels to large

architectures but with the advantages of lesser inter-process communication, faster deploy-

ment on end-user machines, and more suitability to resource-limited environments. The

model was pre-trained using the ImageNet database [31] to classify images into 1000 possible

object classes (e.g., screwdriver, car, etc.). In this paper, SqueezeNet v1.1 was used, which

provides the same accuracy as SqueezeNet v1.0 but with less computational overhead [33].

• GoogLeNet is 22 layers deep with an image input size of [224 224 3]. It is part of the family

of Inception deep learning models and it is marked by the improved utilization of the com-

puting resources, which allowed for increasing the depth and width of the network without

any additional computational cost [34]. The model is available pre-trained on images from

ImageNet or Places365 [32]. The former was used in this work.

• Inception-v3 is the third version of the Inception models, which improves on the previous

two by having more parameters (e.g., utilizing three different filter sizes in the parallel con-

volution layers). The model is 48 layers deep with an image input size of [299 299 3] pre-

trained on images form ImageNet [35].

• DenseNet-201, as the name suggests, is 201 layers deep with an image input size of [224 224

3]. The model represents a big jump in the number of layers compared to others. This was

made possible by shortening the connections between layers close to the input/output. Con-

nections between layers are made such that each layer feeds into later layers, which improves

feature propagation/reuse and drastically reduces the number of parameters [36].

• MobileNets is 53 layers deep with an image input size of [224 224 3]. It is a network designed

for mobile environments. Thus, the model is required to be efficient and small by reducing

the memory requirements. This is achieved by inverted residual bottleneck layers that

require computation that can be scheduled with minimum working set (i.e., number of ten-

sors concurrently stored in memory) [37].

• ResNet-101, ResNet-50, and ResNet-18. The ResNet family of models with the correspond-

ing layer depth require the same image input size of [224 224 3] and pre-trained on the Ima-

geNet database. The architecture is characterized by using network-in-network scheme that

employ learning residual functions with reference to layer inputs [38]. It is a winner of the

ImageNet Large Scale Visual Recognition Challenge 2015 (ILSVRC2015).

• The Xception model is 71 layers deep with an image input size of [299 299 3]. It is trained on

images from the ImageNet database. The architecture improves on the Inception network by

replacing the standard inception modules with depthwise separable convolutions [39].
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• The Inception-ResNet-v2 model is 164 layers deep with an image input size of [299 299 3]. It

is trained on images from the ImageNet database. The architecture is hybrid of the Inception

model and residual connections, which results in faster training [40].

• ShuffleNet is another model designed for resource limited deployment environments. It is

based on pointwise group convolutions and channel shuffling, to drastically improve the

computational overhead without scarifying the classification accuracy [41]. The model is

pre-trained using the ImageNet database and requires an image input size of [224 224 3].

• NAsnetMobile is the mobile version of the Neural Architecture Search Network (Nasnet)

model. The main idea of this type of models is to learn the network architecture during

training on the specific dataset using reinforcement learning search. Converging to the best

model is reduced to finding the optimal cell structure (i.e., convolutional layer), which is

duplicated to other convolutional networks but with different weights [42]. The model is

pre-trained on the ImageNet database and requires an image input size of [224 224 3].

• DarkNet-53 is pre-trained on the ImageNet database and requires an input image of size

[256 256 3]. The model is 53 layers deep and was designed with speed and object detection

as primary objectives [43]. It improves on the previous version, DarkNet-19 by using more

layers and employing residual connections [44].

• EfficientNet-b0 is the baseline EfficientNet architecture, which provides scaled models up to

EfficientNet-b7. The architecture design is based on the idea of compound scaling, which

uniformly scale the network depth, width, and input resolution by fixed scaling coefficients

[45]. The model is pre-trained using the ImageNet database and requires an input image of

size [224 224 3].

Performance evaluation setup

The deep learning models were modified, trained, and evaluated using MATLAB R2021a soft-

ware running on an HP OMEN 30L desktop GT13 with 64 GB RAM, NVIDIA1GeForce

RTX™ 3080 GPU, Intel1Core™ i7-10700K CPU @ 3.80GHz, and 1TB SSD.

To prevent the models from overfitting specific image details, pixel translation (i.e., shifting

the image) by 30 pixels vertically and horizontally was performed on the X-ray images used for

training. Moreover, training images were randomly flipped along the x-axis (i.e., reflection),

and rescaled from the range [0.9,1.1]. The model training options were set such that the mini-

mum batch size was 10 (except for NASNet-Mobile, which had the size set to 2 due to slow-

ness), the max epochs was set to 6, and initial learning rate was 0.003. Moreover, the stochastic

gradient descent with momentum (SGDM) optimizer was used for training due to popularity

and fast convergence [46]. The holdout method with a split of 70% training and 30% testing

was used. Furthermore, to counter any bias in the data split, the experiments were repeated 40

times, and the minimum, maximum, average, and standard deviation (SD) were reported. In

addition, samples of the training and validation curves were reported for the highest preform-

ing model for each classification problem.

Performance metrics

The performance of the models was evaluated using five metrics: precision, recall, specificity,

F1 score, and accuracy. Precision is the ratio of true positives to all images identified as positive

(i.e., including false positives). Recall (i.e., sensitivity) is the ratio of true positives to all relevant

elements (i.e., the actual positives). Specificity, or the true negative rate, measures the ability to

identify negative elements. The F1 score is the harmonic mean of the recall and precision and
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expresses the accuracy of classification in unbalanced datasets. The accuracy is defined as the

ratio of the true positives for all classes to the number of instances (i.e., total images in the test-

ing set). The five measures are defined as follows:

Precision ¼
TP

TP þ FP
ð1Þ

Recall ¼
TP

TP þ FN
ð2Þ

Specificity ¼
TN

TN þ FP
ð3Þ

F1 ¼ 2�
Recall� Precision
Recallþ Precision

ð4Þ

Accuracy ¼
PNo: of Classes

i TPi

No: of testing images
ð5Þ

Where TP (true positives) is the number of correctly classified images (i.e., for each one of

the classes), FP (false positives) is the number of wrongly classified images as another class,

and FN (false negatives) is the number of images missed by the classifier.

Results and discussion

The purpose of the experiments was to evaluate the effectiveness of the pre-trained models,

after customization and training, in identifying the correct disease diagnosis of the X-ray

image. Moreover, since deep learning algorithms incur high overhead, the time of the training

and testing was recorded too. Depending on the classification problem (three classes or two,

and type of disease), the number of testing images ranged from 45 to 101.

Tables 1 and 2 show the performance evaluation metrics for classifying X-ray images into

normal, scoliosis, or spondylolisthesis. The DensNet-201 achieved the highest accuracy value

over the three statistical measures with a mean of 96.34%, maximum 99.01%, and minimum

94.06%. On the other hand, the baseline EfficientNet model performed the worst with an aver-

age accuracy of 87.92%, although NASNet-Mobile scored the lowest minimum accuracy of

78.22%. The later displayed the highest variation in accuracy values based on the standard

deviation of 4.8%. The other performance metrics display a consistent and homogenous ability

to identify negative as well as positive cases with a similar performance pattern to the accuracy

results (i.e., DenseNet-201 achieving the best results). The F1-score is of special importance as

the dataset is imbalanced due to the scoliosis class having more images in comparison to the

other two. Thus, the accuracy values maybe misleading, but this is not the case as the F1-score

reflects a similar performance over all classes.

Fig 2 shows the training and validation progress curve for a sample run of the highest per-

forming model, which gives an indication of the fitting performance of the model and the

need for more training/data. The loss value indicates the error while training/validation. The

figures show that there is no underfitting as the two validation and training loss curves are

going down consistently and within a small gap to each other. Similarly, there is no overfitting

as they are not diverging toward the end of the training epochs. Furthermore, the validation

curve does not great noisy progress, which means that the validation dataset is representative

of the classification problem (i.e., the ability of the model to generalize).
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Fig 3 shows the DenseNet-201 sample confusion matrix for three-class classification. The

model performs almost consistently over all classes with scoliosis detected perfectly but 2 nor-

mal images misclassified as scoliosis and 2 spondylolisthesis cases misclassified as scoliosis.

The number of testing images is 101. Fig 4 shows a sample output from the three class classifi-

cation process with the identification probability calculated by the deep learning model for

each.

Tables 3 and 4 show the performance evaluation metrics for classifying X-ray images into

normal or scoliosis. The Resnet-101 and ResNet-18 achieved the highest mean accuracy (i.e.,

97.66%) although the ResNet-18 model is smaller and faster. Since this is an easier classifica-

tion problem that the three-class one, all models achieved high accuracy values with less stan-

dard deviation over multiple runs. However, the NASNet-Mobile model had a 4.55% SD.

Similarly, the F1 score and other metrics display consistent good performance over all classes.

Table 1. The accuracy of classifying X-ray images into three classes; normal, scoliosis, or spondylolisthesis, for each deep learning model. The results are reported for

40 runs of each model. SD stands for standard deviation.

Model Mean accuracy Max. accuracy Min. accuracy SD

SqueezeNet 91.29% 95.05% 87.13% 2.94%

GoogLeNet 93.76% 96.04% 91.09% 1.40%

Inception-v3 92.97% 95.05% 89.11% 1.83%

DenseNet-201 96.34% 99.01% 94.06% 1.48%

MobileNet-v2 91.39% 95.05% 88.12% 1.75%

ResNet-101 93.27% 95.05% 86.14% 2.71%

ResNet-50 94.36% 96.04% 91.09% 1.98%

ResNet-18 94.26% 95.05% 92.08% 1.02%

Xception 88.22% 92.08% 85.15% 2.58%

Inception-ResNet-v2 90.30% 94.06% 83.17% 3.05%

ShuffleNet 92.38% 96.04% 89.11% 2.38%

NASNet-Mobile 90.30% 95.05% 78.22% 4.80%

DarkNet-53 91.58% 95.05% 86.14% 2.85%

EfficientNet-b0 87.92% 91.09% 83.17% 2.18%

https://doi.org/10.1371/journal.pone.0267851.t001

Table 2. The mean overall F1 score, precision, and recall parameters for the 14 deep learning models performing three-class classification.

Model F1 Score Precision Recall Specificity

SqueezeNet 89.98% 94.10% 88.00% 94.54%

GoogLeNet 93.24% 95.52% 91.55% 95.88%

Inception-v3 92.32% 94.66% 90.93% 94.97%

DenseNet-201 95.97% 97.61% 94.62% 97.89%

MobileNet-v2 90.35% 93.74% 88.13% 94.45%

ResNet-101 92.55% 96.15% 90.16% 96.38%

ResNet-50 93.84% 96.74% 91.79% 96.91%

ResNet-18 93.82% 96.65% 91.73% 96.80%

Xception 86.71% 93.08% 83.47% 93.32%

Inception-ResNet-v2 89.34% 92.99% 87.36% 93.29%

ShuffleNet 91.76% 94.48% 90.28% 94.55%

NASNet-Mobile 89.77% 90.99% 89.62% 91.00%

DarkNet-53 90.62% 94.77% 88.23% 95.01%

EfficientNet-b0 86.41% 92.98% 82.62% 93.47%

https://doi.org/10.1371/journal.pone.0267851.t002
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Fig 5 shows a sample training and validation progress curve showing the loss and accuracy val-

ues. The figure clearly displays a stable learning behavior and appropriate training and valida-

tion sets. Fig 6 shows the confusion matrix for a sample run of ResNet-18. In that run, there

were no false negatives but 2 false positive cases. The number of testing images is 77.

Tables 5 and 6 show the performance evaluation metrics for classifying X-ray images into

normal or spondylolisthesis. Most models achieved very high mean accuracy (> 96%) with

ResNet-101 achieving the highest value of 99.33%. Several models achieved a maximum accu-

racy of 100%, however the NASNet-Mobile model achieved the lowest accuracy with high fluc-

tuation over several runs (5.18% SD) along with the DarkNet-53 model (4.94% SD). Fig 7

shows an excellent training/validation progress curve with the training and validation losses

decrease to a point of stability with a very small gap between them (i.e., no overfitting/underfit-

ting). Fig 8 shows a sample confusion matrix with one false positive case (i.e., normal diag-

nosed as spondylolisthesis). The number of testing images is 45.

Tables 7 and 8 show the performance valuation metrics for classifying X-ray images into

scoliosis vs spondylolisthesis. The performance of all models drops, although with varying

degrees, as they try to differentiate between two disease states. Nonetheless, Dense-Net-101

achieved a high mean accuracy of 97%. One notable difference from the other classification

results is that some models achieved a low minimum accuracy (Inception-ResNet-v2: 78.75%

and 4.97% SD, NASNet-Mobile: 73.75% and 6.12% SD). In addition, almost all models dis-

played greater standard deviation. This indicates the sensitivity of the results to the type of

Fig 2. The DenseNet-201 sample training and validation curve for three-class classification.

https://doi.org/10.1371/journal.pone.0267851.g002
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Fig 3. The DenseNet-201 sample confusion matrix for three-class classification.

https://doi.org/10.1371/journal.pone.0267851.g003

Fig 4. A sample output from the three class classification process.

https://doi.org/10.1371/journal.pone.0267851.g004
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training/validation data split in most models. Fig 9 shows the training/validation curve for the

DenseNet-201 model. The figure displays a stable learning curve. Fig 10 shows a sample confu-

sion matrix with one spondylolisthesis case misdiagnosed as scoliosis. The number of testing

images is 80.

Since deep learning models are computation intensive, we have compared the time required

to train and test each model. Table 9 shows the mean training and validation times for each of

the 14 deep learning models for the four types of classification problems in this work. As the

table shows, the smaller the dataset, the lesser the time required by all models. SqueezeNet

required the least time and it is very fast in comparison to all others. However, the time

required by the highest accuracy models (DenseNet-201, ResNet-18, and ResNet-101) is some-

what reasonable. On the other hand, NasNet-Mobile is extremely slow and achieved the lowest

accuracies throughout.

Table 3. The accuracy of classifying X-ray images into two classes; normal or scoliosis, for each deep learning model. The results are reported for 40 runs of each

model.

Model Mean accuracy Max. accuracy Min. accuracy SD

SqueezeNet 95.71% 98.70% 92.21% 2.13%

GoogLeNet 97.01% 97.40% 93.51% 1.23%

Inception-v3 96.23% 97.40% 93.51% 1.43%

DenseNet-201 97.01% 98.70% 96.10% 0.88%

MobileNet-v2 95.45% 97.40% 94.81% 0.92%

ResNet-101 97.66% 98.70% 97.40% 0.55%

ResNet-50 97.14% 97.40% 96.10% 0.55%

ResNet-18 97.66% 98.70% 96.10% 1.02%

Xception 91.17% 94.81% 88.31% 2.36%

Inception-ResNet-v2 93.38% 96.10% 88.31% 2.16%

ShuffleNet 95.97% 98.70% 90.91% 2.25%

NASNet-Mobile 92.73% 97.40% 83.12% 4.55%

DarkNet-53 97.27% 98.70% 96.10% 0.74%

EfficientNet-b0 92.99% 96.10% 88.31% 2.46%

https://doi.org/10.1371/journal.pone.0267851.t003

Table 4. The mean overall F1 score, precision, and recall parameters for the 14 deep learning models performing normal vs scoliosis classification.

Model F1 Score Precision Recall Specificity

SqueezeNet 94.33% 96.26% 93.04% 97.50%

GoogLeNet 96.18% 97.52% 95.12% 98.32%

Inception-v3 95.01% 97.38% 93.24% 98.28%

DenseNet-201 96.12% 97.69% 94.82% 98.48%

MobileNet-v2 93.97% 96.69% 91.96% 97.84%

ResNet-101 96.97% 98.45% 95.71% 98.98%

ResNet-50 96.27% 98.11% 94.76% 98.75%

ResNet-18 97.01% 97.80% 96.31% 98.55%

Xception 87.54% 93.54% 84.55% 95.86%

Inception-ResNet-v2 90.90% 95.24% 88.30% 96.92%

ShuffleNet 94.70% 96.37% 93.66% 97.56%

NASNet-Mobile 89.45% 95.41% 86.82% 96.98%

DarkNet-53 96.51% 97.29% 95.89% 98.20%

EfficientNet-b0 90.34% 94.76% 87.74% 96.63%

https://doi.org/10.1371/journal.pone.0267851.t004
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Table 10 shows a comparison to the related work in the literature in terms of performance.

Although the related literature produced high accuracy values, these approaches [1, 12, 17]

require extensive and error-prone measurement of the biomechanical parameters that indi-

cated the specific disease case, which is not required by our approach. To our knowledge, no

other study has included deep learning in the classification of scoliosis vs spondylolisthesis vs

normal X-ray images. Colombo et al. [14] addressed the problem of healthy vs scoliosis classifi-

cation and achieved a low accuracy of 85% at their best. Similarly, Wang et al. [15] could not

achieve high accuracy in scoliosis progression detection, and Yang et al. achieved an average

accuracy of 80% for distinguishing scoliosis severity based on the Cobb angle (< 10˚,10˚-

19˚,20˚-44˚, or� 45�). On the other hand, the work in this paper achieves superior accuracy

with less input processing/measurements although there is no exactly comparable literature.

Nonetheless, the work in this paper can be further improved by:

• Including images of more vertebral column diseases (e.g., disc degeneration, spondylitis,

osteoporosis, etc.) in a global image data store similar to ImageNet.

• Development of algorithms and using transfer learning to pinpoint faulty vertebrae or the

exact location of the spine anomaly.

• Multistage classification. First images are classified into the corresponding disease state fol-

lowed by localization or severity grading.

Fig 5. The RestNet-18 sample training and validation curve for normal vs scoliosis classification.

https://doi.org/10.1371/journal.pone.0267851.g005
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• Continual learning by the development and deployment of mobile applications to aid physi-

cians, collect data, and refinement of the AI models.

Conclusion

Artificial intelligence-aided diagnosis systems are being proposed and deployed into many

medical areas. These systems have many advantages such as aiding undermanned remote

Fig 6. The RestNet-18 sample confusion matrix for normal vs scoliosis classification.

https://doi.org/10.1371/journal.pone.0267851.g006

Table 5. The accuracy of classifying X-ray images into two classes; normal or spondylolisthesis, for each deep learning model. The results are reported for 40 runs of

each model.

Model Mean accuracy Max. accuracy Min. accuracy SD

SqueezeNet 98.00% 100.00% 95.56% 1.95%

GoogLeNet 96.00% 100.00% 93.33% 2.93%

Inception-v3 96.22% 100.00% 91.11% 2.78%

DenseNet-201 98.00% 100.00% 95.56% 1.64%

MobileNet-v2 96.22% 97.78% 93.33% 1.83%

ResNet-101 99.33% 100.00% 97.78% 1.07%

ResNet-50 98.44% 100.00% 97.78% 1.07%

ResNet-18 98.22% 100.00% 97.78% 0.94%

Xception 96.00% 97.78% 91.11% 2.73%

Inception-ResNet-v2 96.22% 100.00% 95.56% 1.50%

ShuffleNet 97.56% 100.00% 95.56% 1.64%

NASNet-Mobile 86.44% 93.33% 80.00% 5.18%

DarkNet-53 96.89% 100.00% 84.44% 4.94%

EfficientNet-b0 96.44% 97.78% 88.89% 2.81%

https://doi.org/10.1371/journal.pone.0267851.t005
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Table 6. The mean overall F1 score, precision, and recall parameters for the 14 deep learning models performing normal vs spondylolisthesis classification.

Model F1 Score Precision Recall Specificity

SqueezeNet 98.00% 98.01% 98.12% 97.87%

GoogLeNet 95.99% 96.27% 96.16% 95.82%

Inception-v3 96.21% 96.31% 96.25% 96.18%

DenseNet-201 97.98% 98.17% 97.89% 98.11%

MobileNet-v2 96.18% 96.62% 96.04% 96.41%

ResNet-101 99.33% 99.37% 99.32% 99.34%

ResNet-50 98.43% 98.60% 98.33% 98.55%

ResNet-18 98.21% 98.40% 98.10% 98.34%

Xception 95.96% 96.36% 95.89% 96.11%

Inception-ResNet-v2 96.19% 96.55% 96.07% 96.37%

ShuffleNet 97.54% 97.73% 97.47% 97.65%

NASNet-Mobile 85.84% 89.39% 85.68% 87.38%

DarkNet-53 96.84% 97.13% 96.79% 97.00%

EfficientNet-b0 96.43% 96.64% 96.37% 96.51%

https://doi.org/10.1371/journal.pone.0267851.t006

Fig 7. The RestNet-101 sample training and validation curve for normal vs spondylolisthesis classification.

https://doi.org/10.1371/journal.pone.0267851.g007
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areas, reducing human errors, and optimizing costs. In this paper, it has been shown that

transfer deep learning using locally collected X-ray images is able to achieve high performance

in terms of correctly identifying normal subjects from those suffering from scoliosis or spon-

dylolisthesis. The highest mean accuracy values ranged from 96.34% for three-class classifica-

tion to> 97% for the other classification problems. Even though deep learning incurs high

overhead, the results show that training and validation can be performed in a reasonably low

time using off the shelf hardware resources.

Fig 8. The RestNet-101 sample confusion matrix for normal vs spondylolisthesis classification.

https://doi.org/10.1371/journal.pone.0267851.g008

Table 7. The accuracy of classifying X-ray images into two classes; scoliosis, or spondylolisthesis, for each deep learning model. The results are reported for 40 runs of

each model.

Model Mean accuracy Max. accuracy Min. accuracy SD

SqueezeNet 93.88% 97.50% 86.25% 3.14%

GoogLeNet 94.75% 96.25% 91.25% 1.75%

Inception-v3 94.00% 98.75% 88.75% 3.43%

DenseNet-201 97.00% 98.75% 96.25% 1.05%

MobileNet-v2 92.62% 97.50% 88.75% 2.73%

ResNet-101 93.12% 95.00% 90.00% 1.89%

ResNet-50 94.50% 96.25% 90.00% 2.30%

ResNet-18 95.13% 97.50% 92.50% 1.90%

Xception 88.38% 92.50% 86.25% 2.13%

Inception-ResNet-v2 89.50% 95.00% 78.75% 4.97%

ShuffleNet 93.62% 96.25% 90.00% 2.24%

NASNet-Mobile 89.00% 96.25% 73.75% 6.12%

DarkNet-53 93.75% 98.75% 88.75% 2.50%

EfficientNet-b0 91.25% 93.75% 90.00% 1.32%

https://doi.org/10.1371/journal.pone.0267851.t007
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Table 8. The mean overall F1 score, precision, and recall parameters for the 14 deep learning models performing scoliosis vs spondylolisthesis classification.

Model F1 Score Precision Recall Specificity

SqueezeNet 92.06% 95.91% 89.91% 97.00%

GoogLeNet 93.39% 96.23% 91.49% 97.25%

Inception-v3 92.22% 96.00% 90.12% 97.05%

DenseNet-201 96.31% 97.95% 95.00% 98.5%

MobileNet-v2 90.66% 93.66% 88.90% 95.44%

ResNet-101 91.15% 95.40% 88.66% 96.63%

ResNet-50 92.98% 96.40% 90.83% 97.35%

ResNet-18 93.88% 96.45% 92.11% 97.42%

Xception 84.05% 92.91% 80.62% 94.86%

Inception-ResNet-v2 85.44% 93.03% 82.98% 94.87%

ShuffleNet 92.09% 94.19% 90.92% 95.69%

NASNet-Mobile 87.72% 87.86% 89.76% 88.28%

DarkNet-53 91.95% 95.95% 89.58% 97.02%

EfficientNet-b0 88.61% 93.88% 85.77% 95.58%

https://doi.org/10.1371/journal.pone.0267851.t008

Fig 9. The DenseNet-201 sample training and validation curve for scoliosis vs spondylolisthesis classification.

https://doi.org/10.1371/journal.pone.0267851.g009
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Transfer deep learning can be used to perform spondylolisthesis and scoliosis screening in

order to improve the selection of patients who would require further costly CT or MRI imag-

ing. Moreover, the work in this paper can be further improved and made robust by larger data-

bases of more images and more diseases. In addition, field deployment will allow practical

benefits and continuous improvements.

Fig 10. The RestNet-101 sample confusion matrix for scoliosis vs spondylolisthesis classification.

https://doi.org/10.1371/journal.pone.0267851.g010

Table 9. The mean training and validation time for classifying X-ray images for each deep learning model. All times are in seconds.

Model NormalScolSpond NormScol NormSpond ScolSpond

SqueezeNet 16.35 14.08 10.99 14.69

GoogLeNet 34.1 26.13 19.24 26.9

Inception-v3 84.58 68.07 47.6 69.5

DenseNet-201 243.52 199.25 126 196.4

MobileNet-v2 151.47 86.1 66.91 99.77

ResNet-101 367.83 284.4 169.87 288.16

ResNet-50 161.04 131.47 78.1 126.98

ResNet-18 62.58 50.28 30.7 49.97

Xception 337.25 221.25 135.68 256.77

Inception-ResNet-v2 246.48 201.2 135.53 210.3

ShuffleNet 97.43 78.8 47.68 81.6

NASNet-Mobile 2271.3 1804.2 1024.5 1764

DarkNet-53 57.5 47.38 31.2 46.69

EfficientNet-b0 215.47 166.25 101.86 170.32

https://doi.org/10.1371/journal.pone.0267851.t009
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