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Transcranial direct current stimulation (tDCS) continues to demonstrate success as a medical intervention for neurodegenerative
diseases, psychological conditions, and traumatic brain injury recovery. One aspect of tDCS still not fully comprehended is the
influence of the tDCS electric field on neural functionality. To address this issue, we present a mathematical, multiscale model
that couples tDCS administration to neuron electrodynamics. We demonstrate the model’s validity and medical applicability with
computational simulations using an idealized two-dimensional domain and then anMRI-derived, three-dimensional human head
geometry possessing inhomogeneous and anisotropic tissue conductivities. We exemplify the capabilities of these simulations with
real-world tDCS electrode configurations and treatment parameters and compare the model’s predictions to those attained from
medical research studies. The model is implemented using efficient numerical strategies and solution techniques to allow the use
of fine computational grids needed by the medical community.

1. Introduction

Transcranial direct current stimulation (tDCS) is a medical
procedure that delivers electrical stimulation to the brain
through electrodes positioned on the scalp. The electrodes
deliver an electrical current on the order of 1-2mA and
produce an electric field in the patient’s cerebral cavity that
alters neuron excitability. A common use of this treatment is
to assist neurons in firing action potentials (APs) by increas-
ing their resting membrane potential. Current biomedical
research continues to demonstrate the benefits of tDCS as a
medical treatment. Recognition memory in Alzheimer dis-
ease patients has improved [1, 2]. Individuals who suffer from
Parkinson’s disease have demonstrated enhanced physical
and mental skills [3, 4]. Patients diagnosed with neuropsy-
chiatric disorders, including great depression, have shown
improved cognitive capabilities [5, 6]. Further, poststroke

recovery can be expedited with strategic administrations of
tDCS [7, 8].

Current components of tDCS include the Laplace equa-
tion [9–13], which is given by

∇ ⋅M∇Φ = 0, �⃗� ∈ Ω, (1)

where Φ is the electric potential, M represents the tissue
conductivity tensor field, and Ω is the entire head cavity,
including the brain. In isotropic tissues,M can be represented
as a scalar which will vary among different tissue types.

Computational simulations of tDCS that utilize (1) have
the capability to compute the strength of the tDCS electric
potential and electric current at specific points in the brain
and head cavity [11, 14]. What these models do not have,
however, is the capability to provide a description of cellular-
level functionality. The fundamental objective of tDCS is to
alter neuron excitability by increasing or decreasing neural
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transmembrane voltage [15, 16]; without this level of biologi-
cal abstraction included in a tDCSmodel, it is not possible to
examine tDCS effects on brain cells within a computational
simulation.

Beyond the tDCS modeling and simulation field, the
computational neuroscience community possesses a large
collection of biologically inspired, mathematical models
of neural-level dynamics. The Hodgkin-Huxley model, for
example, emulates voltage-gated ion channel functionality
[17].TheHindmarsh-Rosemodel incorporates neuron burst-
ing, which is the diverse and chaotic behavior of rapid
action potential spiking, believed to be very important in
information encoding and propagation [18]. More recently,
models have included individual neurotransmitter species,
receptors, and binding kinetics to emulate neuron-neuron
influences and communication [19].

A multiscale model that couples tDCS and cellular
level functionality would enable researchers to simulate the
impact that tDCS has on neurons. For instance, correlations
between tDCS and ion channel functionality, action potential
behavior, and neurotransmitter dynamics could be studied.
In addition, patient-specific electrode configurations and
treatment parameters could be optimized based on neuron
behavior. Furthermore, a multiscale model would provide
a bridge between the tDCS numerical simulation field and
the computational neuroscience field, thereby enabling tDCS
simulations access to the sophisticated, physiologically based
cellular and subcellular models of the neuroscience commu-
nity.

Several researchers have investigated the influence of
extracellular electrical fields on the transmembrane voltage
of individual and small groups of cells [15, 16, 20, 21]. At
the organ level, Szmurło et al. [22, 23] demonstrated the
applicability of the bidomain model [24] (see Section 2.1)
to electroencephalograph (EEG) applications. They showed
that this model, which has historically been used in cardiac
applications, can reproduce scalp surface electric potential
measurements originating from neuron action potentials.

In this paper, we combine these modeling strategies to
produce a multiscale model of tDCS. We begin by coupling
the bidomain model partial differential equations (PDEs)
with boundary conditions that model tDCS treatments. We
validate the model against several test cases on two different
geometries. First, we simulate the model on an idealized two-
dimensional domain, which provides a basic environment for
visualizing and investigating electric potential and electric
field characteristics. Then, we utilize an MRI-derived, three-
dimensional human head geometry that possesses inhomo-
geneous and anisotropic tissue conductivities. In this setting,
we examine the electric potential, electric current, electric
field, and transmembrane voltage results produced from real-
world tDCS electrode configurations. In both geometries,
five distinct tissue types are used: skin, skull, cerebrospinal
fluid (CSF), and the grey matter (GM) and white matter
(WM) portions of the brain. Further, we detail the numerical
methods and solution techniques that we implemented to
enable reasonable simulation execution times.

To our knowledge, this paper presents the first multiscale
tDCS model and simulations. We hope that the modeling

and computational approaches presented in this paper help
to expand tDCS simulation capabilities and further our
understanding of tDCS impacts at the cellular level.

2. Materials and Methods

This section presents details of the model, numerics, and
computational simulations used in this paper. First, an over-
view of the bidomain model is provided, as well as a descrip-
tion of the adaptation of this model for tDCS. Then, the
numerical methods used to implement the multiscale tDCS
model are described. Next, an overview of computational
tools that we utilized is presented. Finally, the numerical
experiments that were performed are described.

2.1. Bidomain Model. Modeling each cell in the brain and
head is not computationally feasible; the bidomain model is
based on a volume averaging approach, where the value at a
point in a tissue is treated as an average over a minuscule,
multicellular region around the point [25]. The bidomain
model, as its name implies, models two domains, namely,
the intracellular and extracellular spaces. Each of these
domains is considered continuous within the brain, and
they are insulated from each other by the cell membrane.
Transcellular electric current is possible via ion channels in
the cell membrane, and the transmembrane electric potential
is defined to be the difference between intracellular and
extracellular electric potentials, V = Φ

𝑖
− Φ
𝑒
.

The bidomain model is given by the following system of
partial differential equations for points in the brain, �⃗� ∈ Ω

𝐵
:

∇ ⋅ (M
𝑖
∇V) + ∇ ⋅ (M

𝑖
∇Φ
𝑒
) = 𝜒𝐶

𝑚

𝜕V
𝜕𝑡

+ 𝜒𝐼ion, (2)

∇ ⋅ (M
𝑖
∇V) + ∇ ⋅ ((M

𝑖
+M
𝑒
) ∇Φ
𝑒
) = 0, (3)

𝜕 ⃗𝑠

𝜕𝑡
= 𝐹 ( ⃗𝑠, V, 𝑡) , (4)

whereΦ
𝑒
= Φ
𝑒
(�⃗�, 𝑡) is the extracellular electric potential and

V = V(�⃗�, 𝑡) is the transmembrane voltage. Note that, in this
formulation, Φ

𝑖
has been eliminated with the substitution of

V; if desired, Φ
𝑖
can be computed at any point in the domain

usingΦ
𝑖
= V + Φ

𝑒
.M
𝑖
andM

𝑒
represent the intracellular and

extracellular tissue conductivity tensor fields, respectively. In
addition, 𝜒 is the cell membrane surface to volume ratio and
𝐶
𝑚
is the cell membrane capacitance. 𝐼ion = 𝐼ion( ⃗𝑠, V, 𝑡) is the

total ionic current between the intracellular and extracellular
domains, across the cell membrane. Equation (4), which
characterizes the electrophysiological state of the neurons,
can be represented by a single equation or by a system of
ordinary differential equations (ODEs) [25].

Equations (2)–(4) are defined in the brain. Outside of
the brain tissue, the scalp, skull, and cerebrospinal fluid are
modeled as a passive conductor with the Laplace equation (1).
In this extracerebral domain, neurons and other electrically
responsive cells are not present, and so only the extracellular
domain exists. Thus, the intracellular current is confined
to the brain; this condition is enforced by requiring that



Computational and Mathematical Methods in Medicine 3

the outflow of intracellular current from the brain into the
extracerebral region equals zero:

⃗𝑛 ⋅ (M
𝑖
∇ (V + Φ

𝑒
)) = 0, �⃗� ∈ 𝜕Ω

𝐵
, (5)

where 𝜕Ω
𝐵
is the surface boundary of the brain.

Extracellular electric field continuity at the interface
between the brain and extracerebral domain is preserved by
requiring that ⃗𝑛 ⋅ (M

𝑒
∇Φ
𝑒
) and Φ

𝑒
are continuous over 𝜕Ω

𝐵
.

To simplify notation, for the remainder of this paper Φ
𝑒
will

be represented simply as Φ.

2.2. tDCS Adaptation. To make the bidomain model suit-
able for tDCS applications, two specific areas need to be
addressed. First, the boundary conditions on the scalp must
model tDCS administration. Second, cellular models that
emulate neuron electrodynamics are necessary. The result of
this adaptation is our multiscale tDCS model.

2.2.1. Boundary Conditions. On the surface of the head, there
are three separate boundary conditions needed to model
tDCS. First, current delivered via tDCS anode electrodes is
implemented by the nonhomogeneous Neumann boundary
condition

⃗𝑛 ⋅M∇Φ = 𝐼 (�⃗�) , (6)

where 𝐼(�⃗�) is the inward current at points on the boundary
positioned under the anode electrode(s). Second, the cathode
electrodes are given by the homogeneous Dirichlet condition

Φ (�⃗�) = 0, (7)

for points on the boundary covered by the cathode elec-
trode(s). All other points on the scalp surface are presumed
insulated, and so the outward normal component of the
current at these points must equal zero:

⃗𝑛 ⋅M∇Φ = 0. (8)

2.2.2. Cell Model. Simulating single neuron transmembrane
voltage dynamics was accomplished with the FitzHugh-
Nagumo (FHN) model [26]:

𝜕V
𝜕𝑡

=
𝑐
1

V2amp
(V − Vrest) (V − Vth) (Vpeak − V) − (𝑐

2
𝑤) + 𝐼app,

(9a)

𝜕𝑤

𝜕𝑡
= 𝑏 (V − Vrest − 𝑐3𝑤) , (9b)

where V is again the transmembrane voltage and 𝑤 is a state
variable that controls transmembrane voltage repolarization.
Here, the threshold voltage is defined as Vth = Vrest + 𝑎Vamp,
and Vamp is the difference between peak and resting mem-
brane voltages, Vamp = Vpeak − Vrest. We used 𝑎 = 0.13,
𝑏 = 13.0, 𝑐

1
= 260.0, 𝑐

2
= 100.0, and 𝑐

3
= 1.0, as proposed by

FitzHugh [26] with the coefficients scaled for seconds. This
implementation of the FHN model allows us to define Vrest
and Vpeak, which we set to −0.07V and 0.04V, respectively.
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Figure 1: FitzHugh-Nagumo model action potential response.

Figure 1 displays an AP response of the FHN model when
given an applied current 𝐼app for 𝑡 ∈ [0.05, 0.06].

The PDE system (2)–(4) and this cell model couple
through the the right-hand side of (2) and (9a). Also, when
using the FHN model with the bidomain model, (4) is
represented by the single state equation (9b).

2.3. Numerical Implementation. The multiscale tDCS model
was solved with a Godunov operator splitting scheme [25].
The solution algorithm consists of the following two steps.

(1) Solve the ODE system:

𝜕V
𝜕𝑡

=
𝑐
1

V2amp
(V − Vrest) (V − Vth) (Vpeak − V) − (𝑐

2
𝑤) ,

𝜕𝑤

𝜕𝑡
= 𝑏 (V − Vrest − 𝑐3𝑤) ,

(10)

for 𝑡
𝑛
< 𝑡 ≤ 𝑡

𝑛
+ Δ𝑡, and V(𝑡

𝑛
) and 𝑤(𝑡

𝑛
) are known.

Let Ṽ
𝑛
denote the partial solution of V at step 𝑡

𝑛
+ Δ𝑡.

(2) Solve the PDE system:
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M
𝑒

𝜒𝐶
𝑚

∇Φ) = 0, �⃗� ∈ Ω \ Ω
𝐵
,

(11)

for 𝑡
𝑛
< 𝑡 ≤ 𝑡

𝑛
+ Δ𝑡, V(𝑡

𝑛
) = Ṽ

𝑛
, and boundary

conditions are specified in Sections 2.1 and 2.2.

The result is numerical solutions of V and Φ at time
step 𝑡

𝑛+1
= 𝑡
𝑛
+ Δ𝑡. This fractional step method decouples

the nonlinear ODEs from the PDEs. This is advantageous
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(a) Head boundary of mesh (b) WM and GM portion of mesh

Figure 2: Portions of the computational grid used in multiscale tDCS simulations.

since the ODE system can then be evaluated more frequently
than the PDEs during periods of rapid transmembrane
voltage change, that is, AP spiking, without having to also
solve the computationally intensive PDE system. In addition,
this Godunov splitting scheme is numerically stable and
computationally efficient [27].

The ODE system in step (1) is solved with Heun’s method
[28].ThePDE system in step (2) is solved as a coupled system,
discretizing in time with the implicit Euler method, and in
space with the finite elementmethod [29].The resulting finite
element formulation yields the following system of equations
in block matrix form [25]:

(
A B
B𝑇 C)(

V⃗
Φ⃗
) = (

�⃗�

0⃗
) , (12)
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and V
𝑗
and Φ

𝑗
are the unknown transmembrane and electric

potentials that together form the solution that we seek.
Here, 𝑁

𝑖
and 𝑁

𝑗
are finite element basis functions over the

discretized domain.

The linear system (12) is solved by the conjugate gradient
method [30] preconditionedwith the following block precon-
ditioner [29]:

K = (
Ã−1 0
0 C̃−1

) , (14)

where Ã−1 and C̃−1 are incomplete LU (ILU) factorizations
[31] of A and C, respectively.

2.4. Computational Tools. Several of the multiscale tDCS
numerical simulations are performed on a three-dimensional
grid derived from human MRI data. The SimNIBS software
package [32] provides the associated computational grid; it
is a high-quality tetrahedral mesh of the scalp, skull, CSF,
GM, and WM. Gmsh [33] supported mesh visualization
and supplied grid file conversion to a format supported by
Diffpack (http://www.diffpack.com/) [34]. Figure 2 displays
portions of the computational mesh used in the three-
dimensional simulations.

Finite element solutions were performed with Diffpack.
An anisotropic conductivity tensor field for the brain region
of theMRI-derivedmesh is generated by SimNIBS and stored
in a Matlab [35] binary data file; the Matlab engine was
invoked and utilized in our C++ code to access these tensor
data at run time. The ODE solver (Heun’s method) was
implemented in C++, and the operator splitting scheme was
performed with Diffpack. In addition, the block coefficient
matrix (12) and block preconditioner (14) were implemented
with Diffpack. Results were exported to VTK format and
visualized with ParaView (http://www.paraview.org/).

2.5. Multiscale tDCS Numerical Experiments. Numerical
experiments were contrived to examine the following four
properties:

(1) action potential conduction velocity;
(2) tDCS electric potential;
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Figure 3: Two-dimensional geometry used in multiscale tDCS
simulations; the gray scale illustrates the electrical conductivity of
the different tissue types.

(3) tDCS electric current and field;
(4) tDCS-induced transmembrane voltage increase.

Experiments were run with a global time-step Δ𝑡 = 1ms.
The ODE system was solved more frequently with a time
step Δ𝑡ODE = 0.5ms. At each Δ𝑡 time step, the system
of (12) was solved using the conjugate gradient method
preconditioned with a relaxed ILU block matrix (14), with
relaxation parameter 𝜔 = 0.5 [31] for both the Ã−1 and C̃−1
blocks. A relative residual convergence monitor of ‖𝑟𝑘‖/‖𝑟0‖
was used, where ‖𝑟0‖ is the norm of the initial residual, and
‖𝑟
𝑘
‖ is the norm of the residual of the 𝑘th iteration. The

convergence tolerance was set to 10−8. In all experiments, the
parameter 𝐶

𝑚
was set to 1 × 10

−4
(F/m2), and 𝜒 was set to

1.26 × 10
5
(1/m) [36].

The multiscale tDCS model was assessed and validated
against several two- and three-dimensional numerical exper-
iments. The following subsections describe each of these.

2.5.1. Two-Dimensional Experiments. Figure 3 displays the
geometry used for two-dimensional experiments. It is con-
structed with concentric annuli to simulate the overlapping
and embedded nature of head and cerebral tissues. The
innermost region, emulating the white matter of the brain, is
a circle with radius = 40mm. Surrounding this region, four
annuli are positioned with outer radii equal to 50, 70, 90,
and 100mm, which emulate the GM, CSF, skull, and scalp
tissues, respectively. To simulate the interwoven nature of the
CSF with the GM and WM, a 10mm thick CSF strip extends
horizontally through the center of the geometry, providing a
passage for CSF through the GM andWM.This prototypical
domain allows us to observe and comprehensively assess
action potential conduction, electric potential, and electric
field simulation results throughout the entire domain.

Isotropic extracellular conductivitieswere assigned to dif-
ferent tissues: skin = 0.465, skull = 0.010, CSF = 1.654, GM =
0.276, and WM = 0.126, each with units S/m [37], and an
intracellular conductivity value of 0.1 S/mwas used in theGM
and WM. Each experiment included 10,000 linear triangular
finite elements.

Individual two-dimensional experiments are described in
the following paragraphs.

Action potential conduction: an AP centered at
(0, −25), encompassing a circular regionwith radius =
2.5mm, was simulated for 𝑡 ∈ (0, 10]ms. Total simu-
lation time is 100ms. tDCS was not administered and
so the homogeneous Neumann boundary condition
⃗𝑛 ⋅M
𝑒
∇Φ = 0was imposed on the entire scalp surface.

This experiment is used to ensure the biological
legitimacy of the multiscale model’s AP conduction
velocity and in doing so verifies that appropriate
parameter values were selected. This experiment is
also used to examine the electric potential, Φ, pro-
duced by the AP.

tDCS electric potential and field: models of tDCS
based on the Laplace equation (1) accurately quantify
tDCS electric potentials and fields [11, 14]. Therefore,
to validate the multiscale model, its electric potential
and electric field simulation results are compared to
those produced by (1).

These comparisons are performed using two simu-
lations. First, tDCS was simulated with the anode
and cathode electrodes positioned at (−100, 0) and
(70.7, 70.7), respectively. Electrode size is 10mm, and
the anode electric current magnitude was set to
1.0mA (see Section 2.2.1) at 𝑡 = 0. No AP was
artificially initiated; that is, 𝐼app = 0 (9a), and
simulation duration is 100ms.

This numerical experiment was repeated with a
different electrode configuration, placing the anode
electrode at (−70.7, 70.7) and the cathode at (0, −100).
This electrode arrangement was selected to provide
substantive differences from the first arrangement.
First, the electric current entry via the anode does
not neighbor the central CSF channel, as is the case
with the first electrode configuration. Second, the
current exit at the cathode electrode is as distant
from the central CSF channel as possible in this
two-dimensional domain. In addition, the anode and
cathode are on opposite sides of the CSF channel in
the second configuration.

2.5.2. Three-Dimensional Experiments. Three-dimensional
experiments were conducted on an MRI-derived volume
mesh. Figure 2 displays portions of the mesh used in these
simulations. Extracellular conductivities of the scalp, skull,
and CSF were isotropic and set to 0.465 S/m, 0.010 S/m,
and 1.654 S/m, respectively [37]. Anisotropic extracellular
conductivities of the GM andWMportions of the brain were
used; this tensor field is provided by the SimNIBS software
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Table 1: Multiscale tDCS three-dimensional numerical experiment electrode configurations, specified using the international 10-20 system.

Anode Cathode(s) Target region
Montage 1 C3 C4 Motor cortex (ipsilateral to anode)
Montage 2 C3 Fp2 Motor cortex (ipsilateral to anode)
Montage 3 Forehead symmetric Mastoids (both) Motor cortex; STN and SN
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Figure 4: Action potential conduction in two-dimensional geometry.

package (see Section 2.4). The intracellular conductivity for
the brain region was set to 0.1 S/m.

Three separate electrode montages were selected for the
three-dimensional simulations (see Table 1). Each montage is
specified using the international 10-20 system [38]. Transcra-
nial direct current stimulation applied with montage 1 has
shown to enhancemotor sequence learning [39], for example.
This montage is known to target the motor cortex region
ipsilateral to the anode electrode [40]. Montage 2 has been
utilized in a host of biomedical research studies involving
motor skills and also enhances neural tissue excitability in
the motor cortex ipsilateral to the anode [38]. Montage
3 has been shown to improve gait and bradykinesia in
patients with Parkinson’s disease [3]. However, the regions
of the brain and the mechanisms by which tDCS enhances
motor performance in these individuals remain unclear.
Neurostimulation research suggests that stimulation of the
primary motor cortex is a catalyst for motor-skill improve-
ment [3, 41]. In addition, other research studies verify that
electrical stimulation to the subthalamic nucleus (STN) and
substantia nigra (SN) greatly improvesmotor performance in
Parkinson’s disease patients [42–46].

In allmontages, the anode electric currentmagnitudewas
set to 1.0mA (see Section 2.2.1) at 𝑡 = 0 and the surface area
of each electrode is approximately 25 cm2 [3, 39]. Numerical
experiments were run for 100ms, and no APs were forced;
that is, 𝐼app = 0 (9a). The head geometry is comprised of
approximately 1.1 million linear tetrahedra finite elements.

Again, the Laplace equation (1) accurately models tDCS
electric potentials and fields [11, 14]. For each montage,

the multiscale model is validated by comparing its scalp
surface electric potential simulation results against those
generated by Laplace equation-based simulations. A similar
comparison is performed with the tDCS electric current
and field. Then, the multiscale model’s ability to predict the
areas of the brain that become more excitable from tDCS
treatments administered with these three montages is veri-
fied. This is accomplished by examining the transmembrane
voltage increase in those regions of the brain known to
become more excitable from tDCS. For montages 1 and 2,
the motor cortex ipsilateral to the anode is examined, and for
montage 3 the motor cortex and the STN and SN regions are
inspected (see Table 1).

3. Results and Discussion

3.1. Two-Dimensional Simulations

3.1.1. Action Potential Conduction. Transmembrane volt-
age results for the AP numerical experiment described in
Section 2.5.1 are presented in Figure 4. Figure 4(a) shows the
start of the AP. By time 𝑡 = 10ms, AP dispersion is quite
noticeable (Figure 4(b)). The conduction velocity is approx-
imately 2.0m/s. This value is on the lower end of normal
neural conduction velocities [47]; however, average AP speed
varies among individuals and testing conditions [48]. In
addition, the conduction velocity can easily be adjusted in
the model by changing 𝜒, 𝐶

𝑚
,M
𝑖
, orM

𝑒
. Further, alternative

neuron models possess different AP transmembrane voltage
upstroke rates that will affect conduction velocity [25].
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Figure 5: Electric potential (Φ) from action potential.
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Figure 6: Electric potential (Φ) results for the first tDCS electrode configuration; anode at (−100, 0) and cathode at (70.7, 70.7).

Figure 5 displays the electric potential,Φ, produced from
the AP. Figure 5(a) shows Φ throughout the entire two-
dimensional domain at 𝑡 = 46ms. Variability in the electric
potential due to the inhomogeneous extracellular conduc-
tivities is noticeable. Figure 5(b) displays electric potential
time-course plots, for points at the center of the domain
and surface boundary that intersect each Cartesian axis.
The curves representing the points that intersect the 𝑥-
axis, namely, (−100, 0) and (100, 0), are similar due to their
symmetry with respect to the AP. However, all other curves
show variability due to their spacial separation and tissue
conductivity inhomogeneity.

These electric potential results are of the same order
of magnitude as those reported by Szmurło et al. [22].
Further, they are several orders of magnitude lower than
those produced during tDCS sessions [37]. These results are
consistent with the observation that head surface electric
potential measurements are dominated by the tDCS electric
current with negligible impact from AP conduction [49].

This numerical experiment confirms that the selected
parameter set produces biologically reasonable action poten-
tial results. Conduction speeds are appropriate and the elec-
tric potential resulting from anAP is consistent with previous
research reports. In the following sections, the multiscale
model is validated when tDCS is administered.

3.1.2. tDCS Administration

First Electrode Configuration. Electric potential simulation
results for the Laplace equation-based model and the mul-
tiscale model are presented in Figure 6.The electric potential
of the Laplace model (Figure 6(a)) closely resembles the
multiscale model’s electric potential at both 𝑡 = 1ms
(Figure 6(b)) and 𝑡 = 25ms (Figure 6(c)). The electric
potential difference between these two times has minuscule
change. For 𝑡 > 25ms, the electric potential stabilizes, and no
visible differences were observed throughout the remainder
of the simulation.
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Figure 7: Electric field results for the first tDCS electrode configuration: anode at (−100, 0) and cathode at (70.7, 70.7); the color bar specifies
current density and streamlines show electric field direction.
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Figure 8: Electric potential (Φ) results for the second tDCS electrode configuration: anode at (−70.7, 70.7) and cathode at (0, −100).

Figure 7 displays the tDCS electric fields for the Laplace
and multiscale models. Multiscale model results are shown
at 𝑡 = 1ms, but they are essentially identical at all times.
Differences between the models’ electric current densities
and fields are virtually indistinguishable.The tendency of the
electric field to shunt the skull is due to the low conductivity
of this tissue, and this produces an increased current density
exiting the edges of the anode and entering the edges of the
cathode [11]. In addition, the portion of the electric current
that penetrates the skull has high affinity for the highly
conductive CSF.

Second Electrode Configuration. Figures 8 and 9 display
electric potential and electric field results for both models
with tDCS delivered with the second electrode configuration.
The multiscale simulation results again match the Laplace-
based simulation results very closely. Electric field shunting is
again present as well as the resulting areas of higher current
density at the borders of the electrodes. Perhaps more visible

in this electrode configuration is the propensity of the current
to gravitate towards CSF regions of the domain (Figure 9).
Similar to the first configuration, electric potential, current,
and field results of the multiscale model were essentially
identical at all time steps.

These two experiments demonstrate that the multiscale
tDCS model can accurately compute electric potentials and
fields when tDCS is administered. In the next section these
validations are continued. In addition, the ability of the
multiscale model to accurately identify regions of the brain
that are electrically excited by tDCS is also demonstrated.

3.2. Three-Dimensional Simulations

3.2.1. Montage 1. Figure 10 displays the electric potential and
field results of the multiscale model simulated with the mon-
tage 1 electrode configuration (see Table 1). Maximum and
minimum surface potential coincide with electrode location
(Figure 10(a)). Figure 10(b) illustrates the electric current and
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Figure 9: Electric field results for the second tDCS electrode configuration: anode at (−70.7, 70.7) and cathode at (0, −100); the color bar
specifies current density and streamlines show electric field direction.
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Figure 10: Multiscale model electric potential and current simulation results using montage 1; 𝑡 = 1ms.

field within a coronal cross-section through the C3 and C4
electrodes, viewed from the posterior. Curvilinear electric
field lines within the cerebral tissue due to the interwoven
CSF and GM andWM tissues are visible.

The shunting of the electric field along the scalp and
skull is noticeable in Figure 10(b), resulting in regions of
higher current density at the electrode edges, similar to the
two-dimensional simulation results (see Section 3.1). Further,
electric potential, current, and field results are essentially the
same at all time steps, aswas observed in the two-dimensional
experiments. These results are in agreement with simulation
results produced by Laplace equation-based models.

Figure 11 displays transmembrane voltage results for this
montage. A sagittal cross-section through the motor cortex
ipsilateral to the anode electrode and perpendicular to the
primary electric field direction was taken. Viewing perspec-
tive is from the left side of the head with the head facing left.
The arrows (Figure 11(a)) locate the motor cortex, which is

the area of the brain expected to have increased excitability
from tDCS (see Table 1). Results are displayed for 𝑡 = 1, 10,
25, 50, and 100ms. The increased sensitivity of neural tissue
to generate action potentials was quantified as a percentage
with the following formula:

AP sensitivity =
Vrest − V
Vrest − Vth

× 100%, (15)

where Vrest = −70mV and Vth = −55.7mV, given the parame-
ters used with the FHN cell model (see Section 2.2.2). This
formula provides a measure of the degree to which neural
tissue has increased from its resting membrane potential to
become more susceptible to firing action potentials.

After 1ms of tDCS administration (Figure 11(a)),
increases in resting potential are noticed throughout the
cerebral tissue, most notably in the motor cortex. At time
𝑡 = 10ms (Figure 11(b)), AP sensitivity in portions of
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Figure 11: Transmembrane voltage increase in sagittal cross-section through motor cortex ipsilateral to the anode; viewing perspective is
from the left side with head facing left. The arrows in (a) locate the primary motor cortex.
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Figure 12: Multiscale model electric potential and current simulation results using montage 2; 𝑡 = 1ms.

the motor cortex has increased by approximately 8%. By
25ms (Figure 11(c)), the effects of tDCS are quite visible.
Again the greatest increase in sensitivity is achieved in
the motor cortex, with the majority of this region having
values over 5% and portions exceeding 10%. After 25ms,
the membrane potential begins to repolarize (Figure 11(d)).
This process is slow, and by the end of the simulation
(Figure 11(e)), resting membrane potential is still elevated in
the motor cortex.

3.2.2. Montage 2. Montage 2 electric potential and elec-
tric field results are presented in Figure 12. Maximum and
minimum surface potential again coincide with anode and
cathode electrode placement, respectively (Figure 12(a)). The
current density and direction are viewed from a plane
intersecting the anode and cathode centers (Figure 12(b)).
The electric field shunts along the skull, as was observed
in montage 1, again resulting in higher current magnitudes
at the borders of the electrodes. Wave-like electric field
lines through the interwoven CSF, GM, and WM are also
visible. These results are in agreement with those generated
by Laplace equation-based models.

Figure 13 displays the transmembrane voltage results for
montage 2. A slice longitudinal through the motor cortex

ipsilateral to the anode, approximately perpendicular to the
primary electric field path, was taken. Viewing perspective is
from the left posterior of the head, with the head facing left.
The arrows (Figure 13(a)) locate the motor cortex ipsilateral
to the anode, the expected region of increased action poten-
tial sensitivity. Results are displayed for 𝑡= 1, 10, 20, and 50ms.

The multiscale simulation predicts an increase in trans-
membrane voltage in the motor cortex after 1ms of tDCS
treatment (Figure 13(a)), andAP sensitivity increases near 7%
are visible at 10ms (Figure 13(b)). The maximum increase in
resting membrane voltage for this montage occurs at 20ms
(Figure 13(c)). Repolarization occurs for 𝑡 > 20ms and is
quite observable at 50ms (Figure 13(d)).

Montages 1 and 2 possess similar transmembrane voltage
trends in the motor cortex region. The simulations predict
that montage 1 will, however, increase the resting membrane
voltage in this region approximately 1.5 times that of montage
2. This phenomena can be explained by the fact that the
electric current distribution with montage 1 is more confined
to this locality due to the closer proximity of its electrodes
to each other and to the motor cortex [11]. Supporting this
explanation is the observation that tDCS medical research
studies fundamentally use montage 1 with motor cortex
specific applications, whereas montage 2 is also utilized in
other treatment focuses [38].
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Figure 13: Transmembrane voltage increase in plane longitudinally through the motor cortex ipsilateral to the anode; viewing perspective is
from the left posterior with the head facing towards the left. The arrows in (a) locate the primary motor cortex.
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Figure 14: Multiscale model electric potential and current simulation results using montage 3; 𝑡 = 1ms.

3.2.3. Montage 3. Figure 14 displays surface potential and
electric field simulation results for the third montage. The
patient’s left mastoid is shown; an identical cathode is posi-
tioned over the contralateral mastoid. The electric current
and field are displayed in a cross-section through the centers
of the anode and left mastoid cathode. Once again, the
current reaches maximal values at electrode edges, and both
skull-divergent and convoluted cerebral electric field lines are
present. These results are consistent with those generated by
Laplace-based models.

Based on the research communities’ suggestion that
motor cortex stimulation enhances mobility and movement
capabilities in Parkinson’s disease patients (see Section 2.5.2),
we first examined the increase in transmembrane voltage
in this region (Figure 15). A plane through the left primary
motor cortex was taken; viewing perspective is from the rear.
The motor cortex is indicated by the arrows (Figure 15(a)),
and results are displayed for 𝑡 = 1, 10, 20, and 50ms.

Increases in motor cortex excitability are observable at
10ms (Figure 15(b)) and reach maximal values at 20ms
(Figure 15(c)). Repolarization begins after this time and is
noticeable at 50ms (Figure 15(d)). Although an increase
in the resting membrane potential of the motor cortex is
visible throughout this simulation, the increase is low when

compared to the previous two montages. Specifically, AP
sensitivity increases do not exceed 2.0%, which is less than
50% attained by montage 2 and less than 25% attained by
montage 1.

Next, the increase in membrane resting potential in the
subthalamic nucleus and substantia nigra regions (Figure 16)
were examined, due to results from deep brain stimulation
research affirming that electrically stimulating these regions
yields enhanced motor abilities (see Section 2.5.2). A coronal
slice through the STN and SN regions is shown, viewed from
the posterior. Results are again displayed for 𝑡 = 1, 10, 20, and
50ms.

Resting membrane voltage increases in these regions
are much larger than those seen in the motor cortex, with
AP sensitivity values comparable to those attained with
montages 1 and 2. After 1ms of tDCS administration, AP
sensitivity increases in the STNand SN regions are observable
(Figure 16(a)). By 10ms (Figure 16(b)), AP sensitivity in these
regions is approaching 4 percent. Maximal increases occur
once again at 20ms (Figure 16(c)), and after 20msmembrane
voltage begins to repolarize (Figure 16(d)).

These three-dimensional numerical experiments further
validate the multiscale model’s ability to accurately com-
pute the electric potentials and currents generated during
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Figure 15: Transmembrane voltage increase in plane through left motor cortex viewed from the back of the head. The arrows in (a) locate
the primary motor cortex region.
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Figure 16: Transmembrane voltage increase in coronal slice through the STN and SN, viewed from the back of the head. The arrows in (a)
locate the STN and SN regions.

tDCS treatments. In addition, using an MRI-derived head
geometry and anisotropic tissue conductivities, the ability
of the multiscale model to identify regions in the brain
that have elevated resting membrane potentials during tDCS
treatments with three real-world electrode configurations has
been shown.

4. Conclusions

We have presented a novel, multiscale model of tDCS that
couples the mathematics of this procedure to neuronal
functioning.Themodel has been validated against several test
cases with comparisons to existing simulations and medical
research results. In all of these experiments, the multiscale
model accurately simulates tDCS electric potentials and
electric fields. We verified the model’s ability to correctly
identify those areas of the brain known to be electrically
stimulated by specific, real-world tDCS electrode montages.
Further, we demonstrated the model’s medical applicability
with simulations on a three-dimensional head geometry,
derived fromMRI data, with anisotropic and inhomogeneous
tissue conductivities.

To our knowledge, this paper presents the first multiscale
model and simulations of tDCS, which effectively couples
cellular-level functionality with tDCS treatment conditions.
In addition, our simulation implementation strategies pro-
vide an intersection between the tDCS simulation and com-
putational neuroscience communities. In the future, we plan
to enhance the fidelity of our simulations with more robust,

location-specific neuron models. We also plan to investigate
alternative electrode configurations and the numerical meth-
ods that most efficiently execute these simulations.
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[22] R. Szmurło, J. Starzyński, B. Sawicki, and S. Wincenciak,
“Multiscale finite element model of the electrically active
neural tissue,” in Proceedings of the International Conference on
Computer as a Tool (EUROCON ’07), pp. 2343–2348, Warsaw,
Poland, September 2007.
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